Indexing metadata

Existence of an intermediate phase for oriented percolation


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Existence of an intermediate phase for oriented percolation
 
2. Creator Author's name, affiliation, country Hubert Lacoin; CNRS & Université Paris Dauphine; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Percolation: Growth model; Directed Polymers; Phase transition; Random media
 
3. Subject Subject classification 82D60; 60K37; 82B44
 
4. Description Abstract We consider the following oriented percolation model of $\mathbb {N} \times \mathbb{Z}^d$: we equip $\mathbb {N}\times \mathbb{Z}^d$ with the edge set $\{[(n,x),(n+1,y)] | n\in \mathbb {N}, x,y\in \mathbb{Z}^d\}$, and we say that each edge is open with probability $p f(y-x)$ where $f(y-x)$ is a fixed non-negative compactly supported function on $\mathbb{Z}^d$ with $\sum_{z\in \mathbb{Z}^d} f(z)=1$ and $p\in [0,\inf f^{-1}]$ is the percolation parameter. Let $p_c$ denote the percolation threshold ans $Z_N$ the number of open oriented-paths of length $N$ starting from the origin, and study the growth of $Z_N$ when percolation occurs. We prove that for if $d\ge 5$ and the function $f$ is sufficiently spread-out, then there exists a second threshold $p_c^{(2)}>p_c$ such that $Z_N/p^N$ decays exponentially fast for $p\in(p_c,p_c^{(2)})$ and does not so when $p> p_c^{(2)}$. The result should extend to the nearest neighbor-model for high-dimension, and for the spread-out model when $d=3,4$. It is known that this phenomenon does not occur in dimension 1 and 2.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2012-05-31
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/1761
 
10. Identifier Digital Object Identifier 10.1214/EJP.v17-1761
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 17
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.