Indexing metadata

Central limit theorems for the $L^{2}$ norm of increments of local times of Lévy processes


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Central limit theorems for the $L^{2}$ norm of increments of local times of Lévy processes
 
2. Creator Author's name, affiliation, country Michael B. Marcus; City College, CUNY; United States
 
2. Creator Author's name, affiliation, country Jay S. Rosen; College of Staten Island, CUNY; United States
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Central Limit Theorem, $L^{2}$ norm of increments, local time, L\'evy process
 
3. Subject Subject classification Primary 60F05, 60J55, 60G51
 
4. Description Abstract

Let $X=\{X_{t},t\in R_{+}\}$   be a symmetric Lévy process with  local time   $\{L^{ x }_{ t}\,;\,(x,t)\in R^{ 1}\times  R^{  1}_{ +}\}$. When the Lévy exponent $\psi(\lambda)$  is regularly varying at zero with   index $1<\beta\leq 2$, and satisfies some additional regularity conditions,  $$ \lim_{t\to\infty}{ \int_{-\infty}^{\infty} ( L^{ x+1}_{t}- L^{ x}_{ t})^{ 2}\,dx- E\left(\int_{-\infty}^{\infty} ( L^{ x+1}_{t}- L^{ x}_{ t})^{ 2}\,dx\right)\over t\sqrt{\psi^{-1}(1/t)}}$$ is equal in law to $$(8c_{\psi,1 })^{1/2}\left(\int_{-\infty}^{\infty} \left(L_{\beta,1}^{x}\right)^{2}\,dx\right)^{1/2}\,\eta$$ where    $L_{\beta,1}=\{L^{ x }_{\beta, 1}\,;\, x \in R^{ 1} \}$ denotes the local time, at time 1, of   a symmetric stable process with index $\beta$,   $\eta$ is a normal random variable with mean zero and variance one that is independent of $L _{ \beta,1}$, and $c_{\psi,1}$ is a known constant that depends on $\psi$.
When the Lévy exponent $\psi(\lambda)$  is regularly varying at infinity with   index $1<\beta\leq 2$ and satisfies some additional regularity conditions $$\lim_{h\to 0}\sqrt{h\psi^{2}(1/h)} \left\{ \int_{-\infty}^{\infty} ( L^{ x+h}_{1}- L^{ x}_{ 1})^{ 2}\,dx- E\left( \int_{-\infty}^{\infty} (  L^{ x+h}_{1}- L^{ x}_{ 1})^{ 2}\,dx\right)\right\}$$ is equal in law to $$(8c_{\beta,1})^{1/2}\,\,\eta\,\, \left( \int_{-\infty}^{\infty}  (L_{1}^{x})^{2}\,dx\right)^{1/2}$$ where $\eta$ is a normal random variable with mean zero and variance one that is independent of   $\{L^{ x }_{ 1},x\in R^{1}\}$, and $c_{\beta,1}$ is a known constant.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) National Science Foundation and PSC-CUNY
 
7. Date (YYYY-MM-DD) 2012-01-18
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/1740
 
10. Identifier Digital Object Identifier 10.1214/EJP.v17-1740
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 17
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.