Novel characteristics of split trees by use of renewal theory
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Novel characteristics of split trees by use of renewal theory |
2. | Creator | Author's name, affiliation, country | Cecilia Ingrid Holmgren; Cambridge University; United Kingdom |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Random Trees, Split Trees, Renewal Theory |
3. | Subject | Subject classification | 05C05; 05C80; 68W40; 68P10;68R10; 60C05; 68P05 |
4. | Description | Abstract | We investigate characteristics of random split trees introduced by Devroye [SIAM J Comput 28, 409-432, 1998]; split trees include e.g., binary search trees, $m$-ary search trees, quadtrees, median of $(2k+1)$-trees, simplex trees, tries and digital search trees. More precisely: We use renewal theory in the studies of split trees, and use this theory to prove several results about split trees. A split tree of cardinality n is constructed by distributing n balls (which often represent data) to a subset of nodes of an infinite tree. One of our main results is a relation between the deterministic number of balls n and the random number of nodes N. In Devroye [SIAM J Comput 28, 409-432, 1998] there is a central limit law for the depth of the last inserted ball so that most nodes are close to depth $\ln n/\mu+O(\ln n)^{1/2})$, where $\mu$ is some constant depending on the type of split tree; we sharpen this result by finding an upper bound for the expected number of nodes with depths $\geq \mu^{-1}\ln n-(\ln n)^{1/2+\epsilon}$ or depths $\leq\mu^{-1}\ln n+(\ln n)^{1/2+\epsilon}$ for any choice of $\epsilon>0$. We also find the first asymptotic of the variances of the depths of the balls in the tree. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | Uppsala University |
7. | Date | (YYYY-MM-DD) | 2012-01-16 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/1723 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v17-1723 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 17 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|