A counterexample to rapid mixing of the Ge-Stefankovic process
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | A counterexample to rapid mixing of the Ge-Stefankovic process |
2. | Creator | Author's name, affiliation, country | Leslie Ann Goldberg; University of Liverpool; United Kingdom |
2. | Creator | Author's name, affiliation, country | Mark Jerrum; Queen Mary, University of London; United Kingdom |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Glauber dynamics; Independent sets in graphs; Markov chains; Mixing time; Randomised algorithms |
3. | Subject | Subject classification | 60J10 ; 05C31 ; 05C69 ; 68Q17 |
4. | Description | Abstract | Ge and Stefankovic have recently introduced a Markov chain which, if rapidly mixing, would provide an efficientprocedure for sampling independent sets in a bipartite graph. Such a procedure would be a breakthrough because it would give an efficient randomised algorithm for approximately counting independent sets in a bipartite graph, which would in turn imply the existence of efficient approximation algorithms for a number of significant counting problems whose computational complexity is so far unresolved. Their Markov chain is based on a novel two-variable graph polynomial which, when specialised to a bipartite graph, and evaluated at the point (1/2,1), givesthe number of independent sets in the graph. The Markov chain is promising, in the sense that it overcomes the most obvious barrier to rapid mixing. However, we show here, by exhibiting a sequence of counterexamples, that its mixing timeis exponential in the size of the input when the input is chosen from a particular infinite family of bipartite graphs. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | EPSRC |
7. | Date | (YYYY-MM-DD) | 2012-01-16 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1712 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v17-1712 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 17 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|