Almost sure asymptotics for the number of types for simple $\Xi$-coalescents
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Almost sure asymptotics for the number of types for simple $\Xi$-coalescents |
2. | Creator | Author's name, affiliation, country | Fabian Freund; University of Hohenheim; Germany |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | almost sure convergence; coalescent; external branches; mutation |
3. | Subject | Subject classification | 60F15; 05C05; 60F25; 92D15 |
4. | Description | Abstract | Let $K_n$ be the number of types in the sample $\left\{1,\ldots, n\right\}$ of a $\Xi$-coalescent $\Pi=(\Pi_t)_{t\geq0}$ with mutation and mutation rate $r>0$. Let $\Pi^{(n)}$ be the restriction of $\Pi$ to the sample. It is shown that $M_n/n$, the fraction of external branches of $\Pi^{(n)}$ which are affected by at least one mutation, converges almost surely and in $L^p$ ($p\geq 1$) to $M:=\int^{\infty}_0 re^{-rt}S_t dt$, where $S_t$ is the fraction of singleton blocks of $\Pi_t$. Since for coalescents without proper frequencies, the effects of mutations on non-external branches is neglectible for the asymptotics of $K_n/n$, it is shown that $K_n/n\rightarrow M$ for $n\rightarrow\infty$ in $L^p$ $(p\geq 1)$. For simple coalescents, this convergence is shown to hold almost surely. The almost sure results are based on a combination of the Kingman correspondence for random partitions and strong laws of large numbers for weighted i.i.d. or exchangeable random variables. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2012-01-06 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1704 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v17-1704 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 17 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|