Indexing metadata

Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales
 
2. Creator Author's name, affiliation, country Mihai Gradinaru; Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e
 
2. Creator Author's name, affiliation, country Ivan Nourdin; Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e
 
3. Subject Discipline(s)
 
3. Subject Keyword(s)
 
4. Description Abstract Let $X$ be the fractional Brownian motion of any Hurst index $H\in (0,1)$ (resp. a semimartingale) and set $\alpha=H$ (resp. $\alpha=\frac{1}{2}$). If $Y$ is a continuous process and if $m$ is a positive integer, we study the existence of the limit, as $\varepsilon\rightarrow 0$, of the approximations $$ I_{\varepsilon}(Y,X) :=\left\{\int_{0}^{t}Y_{s}\left(\frac{X_{s+\varepsilon}-X_{s}}{\varepsilon^{\alpha}}\right)^{m}ds,\,t\geq 0\right\} $$ of $m$-order integral of $Y$ with respect to $X$. For these two choices of $X$, we prove that the limits are almost sure, uniformly on each compact interval, and are in terms of the $m$-th moment of the Gaussian standard random variable. In particular, if $m$ is an odd integer, the limit equals to zero. In this case, the convergence in distribution, as $\varepsilon\rightarrow 0$, of $\varepsilon^{-\frac{1}{2}} I_{\varepsilon}(1,X)$ is studied. We prove that the limit is a Brownian motion when $X$ is the fractional Brownian motion of index $H\in (0,\frac{1}{2}]$, and it is in term of a two dimensional standard Brownian motion when $X$ is a semimartingale.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2003-10-30
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/166
 
10. Identifier Digital Object Identifier 10.1214/EJP.v8-166
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 8
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.