Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators |
2. | Creator | Author's name, affiliation, country | Yuval Peres; Microsoft |
2. | Creator | Author's name, affiliation, country | Sebastien Roch; UCLA |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Markov chains on trees, reconstruction problem, Kesten-Stigum bound, phylogenetic reconstruction |
3. | Subject | Subject classification | 60J80, 92D15 |
4. | Description | Abstract | Consider a Markov chain $(\xi_v)_{v \in V} \in [k]^V$ on the infinite $b$-ary tree $T = (V,E)$ with irreducible edge transition matrix $M$, where $b \geq 2$, $k \geq 2$ and $[k] = \{1,\ldots,k\}$. We denote by $L_n$ the level-$n$ vertices of $T$. Assume $M$ has a real second-largest (in absolute value) eigenvalue $\lambda$ with corresponding real eigenvector $\nu \neq 0$. Letting $\sigma_v = \nu_{\xi_v}$, we consider the following root-state estimator, which was introduced by Mossel and Peres (2003) in the context of the ``recontruction problem'' on trees: \begin{equation*} S_n = (b\lambda)^{-n} \sum_{x\in L_n} \sigma_x. \end{equation*} As noted by Mossel and Peres, when $b\lambda^2 > 1$ (the so-called Kesten-Stigum reconstruction phase) the quantity $S_n$ has uniformly bounded variance. Here, we give bounds on the moment-generating functions of $S_n$ and $S_n^2$ when $b\lambda^2 > 1$. Our results have implications for the inference of evolutionary trees. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | NSF |
7. | Date | (YYYY-MM-DD) | 2011-05-19 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1630 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v16-1630 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 16 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|