Indexing metadata

On relaxing the assumption of differential subordination in some martingale inequalities


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document On relaxing the assumption of differential subordination in some martingale inequalities
 
2. Creator Author's name, affiliation, country Adam Osekowski; University of Warsaw
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Martingale; differential subordination; moment inequality; weak-type inequality
 
3. Subject Subject classification 60G44; 60G42
 
4. Description Abstract

Let $X$, $Y$ be continuous-time martingales taking values in a se\-pa\-rable Hilbert space $\mathcal{H}$.

(i) Assume that $X$, $Y$ satisfy the condition $[X,X]_t\geq [Y,Y]_t$ for all $t\geq 0$. We prove the sharp inequalities $$ \sup_t||Y_t||_p\leq (p-1)^{-1}\sup_t||X_t||_p,\qquad 1 < p\leq 2,$$ $$ \mathbb{P}(\sup_t|Y_t|\geq 1)\leq \frac{2}{\Gamma(p+1)}\sup_t||X_t||_p^p,\qquad 1\leq p\leq 2,$$ and for any $K>0$ we determine the optimal constant $L=L(K)$ depending only on $K$ such that $$ \sup_t ||Y_t||_1\leq K\sup_t\mathbb{E}|X_t|\log|X_t|+L(K).$$

(ii) Assume that $X$, $Y$ satisfy the condition $[X,X]_\infty-[X,X]_{t-}\geq [Y,Y]_\infty-[Y,Y]_{t-}$ for all $t\geq 0$. We establish the sharp bounds $$ \sup_t||Y_t||_p\leq (p-1)\sup_t||X_t||_p,\qquad 2\leq p < \infty$$ and $$ \mathbb{P}(\sup_t|Y_t|\geq 1)\leq \frac{p^{p-1}}{2}\sup_t||X_t||_p^p,\qquad 2\leq p < \infty.$$

This generalizes the previous results of Burkholder, Suh and the author, who showed the above estimates under the more restrictive assumption of differential subordination. The proof is based on Burkholder's technique and integration method.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2011-01-02
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1593
 
10. Identifier Digital Object Identifier 10.1214/ECP.v16-1593
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 16
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.