Indexing metadata

A two-time-scale phenomenon in a fragmentation-coagulation process


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document A two-time-scale phenomenon in a fragmentation-coagulation process
 
2. Creator Author's name, affiliation, country Jean Bertoin; Universite Pierre et Marie Curie
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Two-time-scale, fragmentation, coagulation, random forest, subaging.
 
3. Subject Subject classification 60F05, 60G57
 
4. Description Abstract

Consider two urns, $A$ and $B$, where initially $A$ contains a large number $n$ of balls and $B$ is empty. At each step, with equal probability, either we pick a ball at random in $A$ and place it in $B$, or vice-versa (provided of course that $A$, or $B$, is not empty). The number of balls in $B$ after $n$ steps is of order $\sqrt n$, and this number remains essentially the same after $\sqrt n$ further steps. Observe that each ball in the urn $B$ after $n$ steps has a probability bounded away from $0$ and $1$ to be placed back in the urn $A$ after $\sqrt n$ additional steps. So, even though the number of balls in $B$ does not evolve significantly between $n$ and $n+\sqrt n$, the precise contain of urn $B$ does.

This elementary observation is the source of an interesting two-time-scale phenomenon which we illustrate using a simple model of fragmentation-coagulation. Inspired by Pitman's construction of coalescing random forests, we consider for every $n\in \mathbb{N}$ a uniform random tree with $n$ vertices, and at each step, depending on the outcome of an independent fair coin tossing, either we remove one edge chosen uniformly at random amongst the remaining edges, or we replace one edge chosen uniformly at random amongst the edges which have been removed previously. The process that records the sizes of the tree-components evolves by fragmentation and coagulation. It exhibits subaging in the sense that when it is observed after $k$ steps in the regime $k\sim tn+s\sqrt n$ with $t>0$ fixed, it seems to reach a statistical equilibrium as $n\to\infty$; but different values of $t$ yield distinct pseudo-stationary distributions.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) ANR-08-BLAN-0220-01
 
7. Date (YYYY-MM-DD) 2010-07-01
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1552
 
10. Identifier Digital Object Identifier 10.1214/ECP.v15-1552
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 15
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.