Almost sure finiteness for the total occupation time of an $(d,\alpha,\beta)$-superprocess
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Almost sure finiteness for the total occupation time of an $(d,\alpha,\beta)$-superprocess |
2. | Creator | Author's name, affiliation, country | Xiaowen Zhou; Concordia University |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | |
4. | Description | Abstract | For $0<\alpha\leq 2$ and $0<\beta\leq 1$ let $X$ be the $(d,\alpha,\beta)$-superprocess, i.e. the superprocess with $\alpha$-stable spatial movement in $R^d$ and $(1+\beta)$-stable branching. Given that the initial measure $X_0$ is Lebesgue on $R^d$, Iscoe conjectured in [7] that the total occupational time $\int_0^\infty X_t(B)dt$ is a.s. finite if and only if $d\beta < \alpha$, where $B$ denotes any bounded Borel set in $R^d$ with non-empty interior. In this note we give a partial answer to Iscoe's conjecture by showing that $\int_0^\infty X_t(B)dt<\infty$ a.s. if $2d\beta < \alpha$ and, on the other hand, $\int_0^\infty X_t(B)dt=\infty$ a.s. if $d\beta > \alpha$. For $2d\beta< \alpha$, our result can also imply the a.s. finiteness of the total occupation time (over any bounded Borel set) and the a.s. local extinction for the empirical measure process of the $(d,\alpha,\beta)$-branching particle system with Lebesgue initial intensity measure. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2010-02-10 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1523 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v15-1523 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 15 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|