Indexing metadata

Standard representation of multivariate functions on a general probability space


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Standard representation of multivariate functions on a general probability space
 
2. Creator Author's name, affiliation, country Svante Janson; Uppsala University
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Borel space; random graphs
 
3. Subject Subject classification 60A10
 
4. Description Abstract It is well-known that a random variable, i.e. a function defined on a probability space, with values in a Borel space, can be represented on the special probability space consisting of the unit interval with Lebesgue measure. We show an extension of this to multivariate functions. This is motivated by some recent constructions of random graphs.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2009-08-26
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1477
 
10. Identifier Digital Object Identifier 10.1214/ECP.v14-1477
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 14
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.