Indexing metadata

Quantitative asymptotics of graphical projection pursuit


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Quantitative asymptotics of graphical projection pursuit
 
2. Creator Author's name, affiliation, country Elizabeth S Meckes; Case Western Reserve University
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Projection pursuit, concentration inequalities, Stein's method, Lipschitz distance
 
3. Subject Subject classification 60E15;62E20
 
4. Description Abstract There is a result of Diaconis and Freedman which says that, in a limiting sense, for large collections of high-dimensional data most one-dimensional projections of the data are approximately Gaussian. This paper gives quantitative versions of that result. For a set of $n$ deterministic vectors $\{x_i\}$ in $R^d$ with $n$ and $d$ fixed, let $\theta$ be a random point of the sphere and let $\mu_\theta$ denote the random measure which puts equal mass at the projections of each of the $x_i$ onto the direction $\theta$. For a fixed bounded Lipschitz test function $f$, an explicit bound is derived for the probability that the integrals of $f$ with respect to $\mu_\theta$ and with respect to a suitable Gaussian distribution differ by more than $\epsilon$. A bound is also given for the probability that the bounded-Lipschitz distance between these two measures differs by more than $\epsilon$, which yields a lower bound on the waiting time to finding a non-Gaussian projection of the $x_i$, if directions are tried independently and uniformly.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) American Institute of Mathematics
 
7. Date (YYYY-MM-DD) 2009-05-03
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1457
 
10. Identifier Digital Object Identifier 10.1214/ECP.v14-1457
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 14
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.