Quantitative asymptotics of graphical projection pursuit
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Quantitative asymptotics of graphical projection pursuit |
2. | Creator | Author's name, affiliation, country | Elizabeth S Meckes; Case Western Reserve University |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Projection pursuit, concentration inequalities, Stein's method, Lipschitz distance |
3. | Subject | Subject classification | 60E15;62E20 |
4. | Description | Abstract | There is a result of Diaconis and Freedman which says that, in a limiting sense, for large collections of high-dimensional data most one-dimensional projections of the data are approximately Gaussian. This paper gives quantitative versions of that result. For a set of $n$ deterministic vectors $\{x_i\}$ in $R^d$ with $n$ and $d$ fixed, let $\theta$ be a random point of the sphere and let $\mu_\theta$ denote the random measure which puts equal mass at the projections of each of the $x_i$ onto the direction $\theta$. For a fixed bounded Lipschitz test function $f$, an explicit bound is derived for the probability that the integrals of $f$ with respect to $\mu_\theta$ and with respect to a suitable Gaussian distribution differ by more than $\epsilon$. A bound is also given for the probability that the bounded-Lipschitz distance between these two measures differs by more than $\epsilon$, which yields a lower bound on the waiting time to finding a non-Gaussian projection of the $x_i$, if directions are tried independently and uniformly. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | American Institute of Mathematics |
7. | Date | (YYYY-MM-DD) | 2009-05-03 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1457 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v14-1457 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 14 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|