A simple proof of the Poincaré inequality for a large class of probability measures
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | A simple proof of the Poincaré inequality for a large class of probability measures |
2. | Creator | Author's name, affiliation, country | Dominique Bakry; LSP, Univ. Toulouse 3 |
2. | Creator | Author's name, affiliation, country | Franck Barthe; LSP, Univ. Toulouse 3 |
2. | Creator | Author's name, affiliation, country | Patrick Cattiaux; LSP, Univ. Toulouse 3 |
2. | Creator | Author's name, affiliation, country | Arnaud Guillin; LATP, Univ. Aix-Marseille 1 |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Lyapunov functions, Poincar'e inequality, log-concave measure |
3. | Subject | Subject classification | 26D10, 47D07, 60G10, 60J60 |
4. | Description | Abstract | Abstract. We give a simple and direct proof of the existence of a spectral gap under some Lyapunov type condition which is satisfied in particular by log-concave probability measures on $\mathbb{R}^n$. The proof is based on arguments introduced in Bakry and al, but for the sake of completeness, all details are provided. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | Agence Nationale de la Recherche, Projet IFO |
7. | Date | (YYYY-MM-DD) | 2008-02-04 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1352 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v13-1352 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 13 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|