The time constant and critical probabilities in percolation models
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | The time constant and critical probabilities in percolation models |
2. | Creator | Author's name, affiliation, country | Leandro Pimentel; Ecole Polytechnique Federale de Lausanne |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Percolation; time constant; critical probabilities; Delaunay triangulations |
3. | Subject | Subject classification | 60K35;82D30 |
4. | Description | Abstract | We consider a first-passage percolation (FPP) model on a Delaunay triangulation $\mathcal{D}$ of the plane. In this model each edge $\mathbf{e}$ of $\mathcal{D}$ is independently equipped with a nonnegative random variable $\tau_\mathbf{e}$, with distribution function $\mathbb{F}$, which is interpreted as the time it takes to traverse the edge. Vahidi-Asl and Wierman \cite{VW90} have shown that, under a suitable moment condition on $\mathbb{F}$, the minimum time taken to reach a point $\mathbf{x}$ from the origin $\mathbf{0}$ is asymptotically $\mu(\mathbb{F})|\mathbf{x}|$, where $\mu(\mathbb{F})$ is a nonnegative finite constant. However the exact value of the time constant $\mu(\mathbb{F})$ still a fundamental problem in percolation theory. Here we prove that if $\mathbb{F}(0)<1-p_c^*$ then $\mu(\mathbb{F})>0$, where $p_c^*$ is a critical probability for bond percolation on the dual graph $\mathcal{D}^*$. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2006-08-07 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1210 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v11-1210 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 11 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|