Indexing metadata

The time constant and critical probabilities in percolation models


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document The time constant and critical probabilities in percolation models
 
2. Creator Author's name, affiliation, country Leandro Pimentel; Ecole Polytechnique Federale de Lausanne
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Percolation; time constant; critical probabilities; Delaunay triangulations
 
3. Subject Subject classification 60K35;82D30
 
4. Description Abstract We consider a first-passage percolation (FPP) model on a Delaunay triangulation $\mathcal{D}$ of the plane. In this model each edge $\mathbf{e}$ of $\mathcal{D}$ is independently equipped with a nonnegative random variable $\tau_\mathbf{e}$, with distribution function $\mathbb{F}$, which is interpreted as the time it takes to traverse the edge. Vahidi-Asl and Wierman \cite{VW90} have shown that, under a suitable moment condition on $\mathbb{F}$, the minimum time taken to reach a point $\mathbf{x}$ from the origin $\mathbf{0}$ is asymptotically $\mu(\mathbb{F})|\mathbf{x}|$, where $\mu(\mathbb{F})$ is a nonnegative finite constant. However the exact value of the time constant $\mu(\mathbb{F})$ still a fundamental problem in percolation theory. Here we prove that if $\mathbb{F}(0)<1-p_c^*$ then $\mu(\mathbb{F})>0$, where $p_c^*$ is a critical probability for bond percolation on the dual graph $\mathcal{D}^*$.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2006-08-07
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1210
 
10. Identifier Digital Object Identifier 10.1214/ECP.v11-1210
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 11
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.