Critical Exponents in Percolation via Lattice Animals
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Critical Exponents in Percolation via Lattice Animals |
2. | Creator | Author's name, affiliation, country | Alan Hammond; U.C. Berkeley, USA |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | |
4. | Description | Abstract | We examine the percolation model on $\mathbb{Z}^d$ by an approach involving lattice animals and their surface-area-to-volume ratio. For $\beta \in [0,2(d-1))$, let $f(\beta)$ be the asymptotic exponential rate in the number of edges of the number of lattice animals containing the origin which have surface-area-to-volume ratio $\beta$. The function $f$ is bounded above by a function which may be written in an explicit form. For low values of $\beta$ ($\beta \leq 1/p_c - 1$), equality holds, as originally demonstrated by F. Delyon. For higher values ($\beta > 1/p_c - 1$), the inequality is strict. We introduce two critical exponents, one of which describes how quickly $f$ falls away from the explicit form as $\beta$ rises from $1/p_c - 1$, and the second of which describes how large clusters appear in the marginally subcritical regime of the percolation model. We demonstrate that the pair of exponents must satisfy certain inequalities. Other such inequalities yield sufficient conditions for the absence of an infinite cluster at the critical value (c.f. cite{techrep}). The first exponent is related to one of a more conventional nature in the scaling theory of percolation, that of correlation size. In deriving this relation, we find that there are two possible behaviours, depending on the value of the first exponent, for the typical surface-area-to-volume ratio of an unusually large cluster in the marginally subcritical regime. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2005-03-04 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1131 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v10-1131 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 10 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|