Multiple Scale Analysis of Spatial Branching Processes under the Palm Distribution
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Multiple Scale Analysis of Spatial Branching Processes under the Palm Distribution |
2. | Creator | Author's name, affiliation, country | Anita Winter; Universität Erlangen-Nürnberg |
3. | Subject | Discipline(s) | Mathematics |
3. | Subject | Keyword(s) | infinite particle system, superprocess, interacting diffusion, clustering, Palm distribution, grove indexed systems of diffusions, grove indexed systems of branching models, Kallenberg's backward tree |
3. | Subject | Subject classification | Primary 60 K 35, 60 J 80; Secondary 60 J 60 |
4. | Description | Abstract | We consider two types of measure-valued branching processes on the lattice $Z^d$. These are on the one hand side a particle system, called branching random walk, and on the other hand its continuous mass analogue, a system of interacting diffusions also called super random walk. It is known that the long-term behavior differs sharply in low and high dimensions: if $d\leq 2$ one gets local extinction, while, for $d\geq 3$, the systems tend to a non-trivial equilibrium. Due to Kallenberg's criterion, local extinction goes along with clumping around a 'typical surviving particle.' This phenomenon is called clustering. A detailed description of the clusters has been given for the corresponding processes on $R^2$ in Klenke (1997). Klenke proved that with the right scaling the mean number of particles over certain blocks are asymptotically jointly distributed like marginals of a system of coupled Feller diffusions, called system of tree indexed Feller diffusions, provided that the initial intensity is appropriately increased to counteract the local extinction. The present paper takes different remedy against the local extinction allowing also for state-dependent branching mechanisms. Instead of increasing the initial intensity, the systems are described under the Palm distribution. It will turn out together with the results in Klenke (1997) that the change to the Palm measure and the multiple scale analysis commute, as $t\to\infty$. The method of proof is based on the fact that the tree indexed systems of the branching processes and of the diffusions in the limit are completely characterized by all their moments. We develop a machinery to describe the space-time moments of the superprocess effectively and explicitly. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2002-03-15 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/112 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v7-112 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 7 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|