Linear Speed Large Deviations for Percolation Clusters
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Linear Speed Large Deviations for Percolation Clusters |
2. | Creator | Author's name, affiliation, country | Yevgeniy Kovchegov; UCLA Mathematics Department, USA |
2. | Creator | Author's name, affiliation, country | Scott Roger Sheffield; Microsoft Research |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | |
4. | Description | Abstract | Let $C_n$ be the origin-containing cluster in subcritical percolation on the lattice $\frac{1}{n} \mathbb Z^d$, viewed as a random variable in the space $\Omega$ of compact, connected, origin-containing subsets of $\mathbb R^d$, endowed with the Hausdorff metric $\delta$. When $d \geq 2$, and $\Gamma$ is any open subset of $\Omega$, we prove that $$\lim_{n \rightarrow \infty}\frac{1}{n} \log P(C_n \in \Gamma) = -\inf_{S \in \Gamma} \lambda(S)$$ where $\lambda(S)$ is the one-dimensional Hausdorff measure of $S$ defined using the correlation norm: $$||u|| := \lim_{n \rightarrow \infty} - \frac{1}{n} \log P (u_n \in C_n )$$ where $u_n$ is $u$ rounded to the nearest element of $\frac{1}{n}\mathbb Z^d$. Given points $a^1, \ldots, a^k \in \mathbb R^d$, there are finitely many correlation-norm Steiner trees spanning these points and the origin. We show that if the $C_n$ are each conditioned to contain the points $a^1_n, \ldots, a^k_n$, then the probability that $C_n$ fails to approximate one of these trees tends to zero exponentially in $n$. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2003-12-27 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/1098 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v8-1098 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 8 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|