Indexing metadata

A Cramér Type Theorem for Weighted Random Variables


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document A Cramér Type Theorem for Weighted Random Variables
 
2. Creator Author's name, affiliation, country Jamal Najim; Université Paris 10-Nanterre
 
3. Subject Discipline(s) Mathematics
 
3. Subject Keyword(s) Large Deviations, empirical means, empirical measures, maximum entropy on the means
 
3. Subject Subject classification 60F10, 60G57
 
4. Description Abstract A Large Deviation Principle (LDP) is proved for the family $(1/n)\sum_1^n f(x_i^n) Z_i$ where $(1/n)\sum_1^n \delta_{x_i^n}$ converges weakly to a probability measure on $R$ and $(Z_i)_{i\in N}$ are $R^d$-valued independent and identically distributed random variables having some exponential moments, i.e., $$E e^{a |Z|}< \infty$$ for some $0< a< \infty$. The main improvement of this work is the relaxation of the steepness assumption concerning the cumulant generating function of the variables $(Z_i)_{i \in N}$. In fact, Gärtner-Ellis' theorem is no longer available in this situation. As an application, we derive a LDP for the family of empirical measures $(1/n) \sum_1^n Z_i \delta_{x_i^n}$. These measures are of interest in estimation theory (see Gamboa et al., Csiszar et al.), gas theory (see Ellis et al., van den Berg et al.), etc. We also derive LDPs for empirical processes in the spirit of Mogul'skii's theorem. Various examples illustrate the scope of our results.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2001-10-12
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/103
 
10. Identifier Digital Object Identifier 10.1214/EJP.v7-103
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 7
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.