@article{EJP754,
author = {Patrick Cattiaux and Nathael Gozlan and Arnaud Guillin and Cyril Roberto},
title = {Functional Inequalities for Heavy Tailed Distributions and Application to Isoperimetry},
journal = {Electron. J. Probab.},
fjournal = {Electronic Journal of Probability},
volume = {15},
year = {2010},
keywords = {weighted Poincaré inequalities, weighted Cheeger inequalities, Lyapunov function, weak inequalities, isoperimetric profile},
abstract = {This paper is devoted to the study of probability measures with heavy tails. Using the Lyapunov function approach we prove that such measures satisfy different kind of functional inequalities such as weak Poincaré and weak Cheeger, weighted Poincaré and weighted Cheeger inequalities and their dual forms. Proofs are short and we cover very large situations. For product measures on $\mathbb{R}^n$ we obtain the optimal dimension dependence using the mass transportation method. Then we derive (optimal) isoperimetric inequalities. Finally we deal with spherically symmetric measures. We recover and improve many previous result},
pages = {no. 13, 346-385},
issn = {1083-6489},
doi = {10.1214/EJP.v15-754},
url = {http://ejp.ejpecp.org/article/view/754}}