How to cite item

Some limit results for Markov chains indexed by trees

  
@article{ECP3601,
	author = {Peter Czuppon and Peter Pfaffelhuber},
	title = {Some limit results for Markov chains indexed by trees},
	journal = {Electron. Commun. Probab.},
	fjournal = {Electronic Communications in Probability},
	volume = {19},
	year = {2014},
	keywords = {Tree-indexed Markov chain, weak   convergence, tightness, random measure, empirical measure},
	abstract = {We consider a sequence of Markov chains $(\mathcal X^n)_{n=1,2,...}$ with $\mathcal X^n = (X^n_\sigma)_{\sigma\in\mathcal T}$, indexed by the full binary tree $\mathcal T = \mathcal T_0 \cup \mathcal T_1 \cup ...$, where $\mathcal T_k$ is the $k$th generation of $\mathcal T$. In addition, let $(\Sigma_k)_{k=0,1,2,...}$ be a random walk on $\mathcal T$ with $\Sigma_k \in \mathcal T_k$ and $\widetilde{\mathcal R}^n = (\widetilde R_t^n)_{t\geq 0}$ with $\widetilde R_t^n := X_{\Sigma_{[tn]}}$, arising by observing the Markov chain $\mathcal X^n$ along the random walk. We present a law of large numbers concerning the empirical measure process $\widetilde{\mathcal Z}^n = (\widetilde Z_t^n)_{t\geq 0}$ where $\widetilde{Z}_t^n = \sum_{\sigma\in\mathcal T_{[tn]}} \delta_{X_\sigma^n}$ as $n\to\infty$. Precisely, we show that if $\widetilde{\mathcal R}^n \Rightarrow{n\to\infty} \mathcal R$ for some Feller process $\mathcal R = (R_t)_{t\geq 0}$ with deterministic initial condition, then $\widetilde{\mathcal Z}^n \Rightarrow{n\to\infty} \mathcal Z$ with $Z_t = \delta_{\mathcal L(R_t)}$.},
	pages = {no. 77, 1-11},
	issn = {1083-589X},
	doi = {10.1214/ECP.v19-3601},    
        url = {http://ecp.ejpecp.org/article/view/3601}}