@article{ECP1431,
author = {Goran Peskir},
title = {The Law of the Hitting Times to Points by a Stable Lévy Process with No Negative Jumps},
journal = {Electron. Commun. Probab.},
fjournal = {Electronic Communications in Probability},
volume = {13},
year = {2008},
keywords = {Stable L'evy process with no negative jumps, spectrally positive, first hitting time to a point, first passage time over a point, supremum process, a Chapman-Kolmogorov equation of Volterra type, Laplace transform, the Wiener-Hopf factorisation.},
abstract = {Let $X=(X_t)_{t \ge 0}$ be a stable Levy process of index $\alpha \in (1,2)$ with the Levy measure $\nu(dx) = (c/x^{1+\alpha}) I_{(0,\infty)}(x) dx$ for $c>0$, let $x>0$ be given and fixed, and let $\tau_x = \inf\{ t>0 : X_t=x \}$ denote the first hitting time of $X$ to $x$. Then the density function $f_{\tau_x}$ of $\tau_x$ admits the following series representation: $$f_{\tau_x}(t) = \frac{x^{\alpha-1}}{\pi ( \Gamma(-\alpha) t)^{2-1/\alpha}} \sum_{n=1}^\infty \bigg[(-1)^{n-1} \sin(\pi/\alpha) \frac{\Gamma(n-1/\alpha)}{\Gamma(\alpha n-1)} \Big(\frac{x^\alpha}{c \Gamma(-\alpha)t} \Big)^{n-1} $$ $$- \sin\Big(\frac{n \pi}{\alpha}\Big) \frac{\Gamma(1+n/\alpha)}{n!} \Big(\frac{x^\alpha}{c \Gamma(-\alpha)t}\Big)^{(n+1)/\alpha-1} \bigg]$$ for $t>0$. In particular, this yields $f_{\tau_x}(0+)=0$ and $$ f_{\tau_x}(t) \sim \frac{x^{\alpha-1}}{\Gamma(\alpha-1), \Gamma(1/\alpha)} (c \Gamma(-\alpha)t)^{-2+1/\alpha} $$ as $t \rightarrow \infty$. The method of proof exploits a simple identity linking the law of $\tau_x$ to the laws of $X_t$ and $\sup_{0 \le s \le t} X_s$ that makes a Laplace inversion amenable. A simpler series representation for $f_{\tau_x}$ is also known to be valid when $x<0$.},
pages = {no. 60, 653-659},
issn = {1083-589X},
doi = {10.1214/ECP.v13-1431},
url = {http://ecp.ejpecp.org/article/view/1431}}