A Rate-Optimal Trigonometric Series Expansion of the Fractional Brownian Motion
Abstract
Let $B^{(H)}(t),t\in\lbrack -1,1]$, be the fractional Brownian motion with Hurst parameter $H\in (1/2,1)$. In this paper we present the series representation $B^{(H)}(t)=a_{0}t\xi_{0}+\sum_{j =1}^{\infty }a_{j}( (1-\cos (j\pi t))\xi_{j}+\sin (j\pi t)\widetilde{\xi }_{j}), t\in \lbrack -1,1]$, where $a_{j},j\in \mathbb{N}\cup {0}$, are constants given explicitly, and $\xi _{j},j\in \mathbb{N}\cup {0}$, $\widetilde{\xi }_{j},j\in \mathbb{N}$, are independent standard Gaussian random variables. We show that the series converges almost surely in $C[-1,1]$, and in mean-square (in $L^{2}(\Omega )$), uniformly in $t\in \lbrack -1,1]$. Moreover we prove that the series expansion has an optimal rate of convergence.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1381-1397
Publication Date: November 19, 2005
DOI: 10.1214/EJP.v10-287
References
- Dzhaparidze, Kacha; van Zanten, Harry. A series expansion of fractional Brownian motion. Probab. Theory Related Fields 130 (2004), no. 1, 39--55. MR2092872 http://www.ams.org/mathscinet-getitem?mr=2005i:60065
- Dzhaparidze, Kacha; van Zanten, Harry. Optimality of an explicit series expansion of the fractional Brownian sheet. Statist. Probab. Lett. 71 (2005), no. 4, 295--301. MR2145497 http://www.ams.org/mathscinet-getitem?mr=MR2145497 http://www.math.vu.nl/stochastics/publications.php http://www.math.vu.nl/stochastics/publications.php
- Iglói, E.; Terdik, G. Long-range dependence through gamma-mixed Ornstein-Uhlenbeck process. Electron. J. Probab. 4 (1999), no. 16, 33 pp. (electronic). MR1713649 http://www.ams.org/mathscinet-getitem?mr=2000m:60060
- Kühn, Thomas; Linde, Werner. Optimal series representation of fractional Brownian sheets. Bernoulli 8 (2002), no. 5, 669--696. MR1935652 http://www.ams.org/mathscinet-getitem?mr=2003m:60131
- van der Vaart, Aad W.; Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. xvi+508 pp. ISBN: 0-387-94640-3 MR1385671 http://www.ams.org/mathscinet-getitem?mr=97g:60035

This work is licensed under a Creative Commons Attribution 3.0 License.