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1 Introduction

Let (Bu, 0 ≤ u ≤ 1) be standard Brownian excursion and (Ls, 0 ≤ s < ∞) its local time, more
precisely its local time at time 1:∫ h

0

Ls ds =

∫ 1

0

1(Bu≤h) du, h ≥ 0.

Biane - Yor [4] give an extensive treatment, including an elegant description of the law of L as a
random time-change of the Brownian excursion:

(1
2Ls/2, s ≥ 0)

d
= (Bτ−1(s), s ≥ 0) for τ(t) =

∫ t

0

1/Bs ds

where
d
= indicates equality in law. Takács [14] gives a combinatorial approach to formulas for

the marginal law of Ls. Bertoin - Pitman [3] discuss transformations between Brownian excursion
and other Brownian-type processes. References to further papers on standard Brownian excursion
can be found in those references.
Consider the question

Given a function ` = (`(s), 0 ≤ s <∞), can we define a process B` = (B`u, 0 ≤ u ≤ 1)
whose law ψ(`) is, in some sense, the conditional law of B given L = `?

As discussed in section 1.1, Warren and Yor [16] have recently given a quite different analysis of
a similar question, and related ideas appeared earlier in the superprocesses literature. Of course,
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the joint law of (B,L) implicitly gives us conditional laws, i.e. specifies B` for almost all ` with
respect to the law of L. One consequence of our results is that in fact B` exists much more
generally.
We first define two (not quite usual) function spaces. First, let Cexc[0, 1] be the set of continuous
functions f : [0, 1]→ [0,∞) which are “excursions” in the sense

f(0) = f(1) = 0, f(u) > 0 for 0 < u < 1. (1)

Give Cexc[0, 1] the topology of convergence in measure:

fn → f iff

∫ 1

0

max(1, |fn(x)− f(x)|) dx→ 0.

Let Pexc be the space of probability laws on Cexc[0, 1], with the topology of weak convergence.
Second, let L be the set of Borel measurable functions ` : [0,∞)→ [0,∞) such that
(i) s∗ = s∗(`) := sup{s : `(s) > 0} <∞
(ii)

∫ s∗
0
`(s) ds = 1

(iii)
∫ b
a 1/`(s) ds <∞ for all 0 < a < b < s∗

(iv)
∫ a

0
1/`(s) ds =∞ for all a > 0.

Give L the topology: `m → ` iff∫ ∞
0

max(1, |`m(s) − `(s)|) ds→ 0

and ∫ b

a

∣∣∣ 1
`m(s) −

1
`(s)

∣∣∣ ds→ 0 for all 0 < a < b < s∗(`) .

The purpose of this paper is to present a construction, which can be outlined as follows.

Construction 1 Let ` ∈ L. There is a certain consistent family (R`k, k ≥ 1) of k-leaf random
trees, defined in section 2.1. Applying the general correspondence [2] between consistent families
of trees and excursion functions, we obtain (section 2.2) a Cexc[0, 1]-valued process B`. The local
time for B` is `; that is, ∫ h

0

`(s) ds =

∫ 1

0

1(B`u≤h) du, h ≥ 0.

The map `→ law(B`) is continuous from L into Pexc.

The construction does not directly involve any “Brownian” ingredients, but the next theorem
(proved in section 3.2) shows that B` can be interpreted as Brownian excursion conditioned to
have local time `. An intuitive explanation of why everything works out is in section 3.3.

Theorem 2 For ` ∈ L write ψ(`) = law(B`). If B is standard Brownian excursion and L its
local time, then ψ(`) is a version of the conditional law of B given L = `.

The Biane-Yor description easily implies that L takes values in L and that the support of the law
of L is the whole space L. Thus by the continuity assertion of the construction, ψ(`) is specified
uniquely “by continuity” for all ` ∈ L. We emphasize this uniqueness because our definition of
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ψ(`) will be somewhat indirect, and without knowing continuity one might suspect there could
be different extensions of ψ from the set of “typical paths of L” to larger spaces such as L.

We chose to present results in the setting of excursions so that we could appeal directly to
the results of [2] giving a correspondence between trees and excursion functions. Straightforward
modifications give parallel results (outlined in section 4) for reflecting Brownian bridge conditioned
on its local time.

Let us mention two open problems suggested by Theorem 2.

(a) Find explicit formulas, in terms of `, for the law ψ(`) or the marginal laws of B`u for 0 < u < 1.
Our definition of B` via (2) and (8) isn’t very helpful.

(b) It is clear that conditions (i) and (ii) on ` are necessary. It turns out that condition (iv) is
necessary to ensure that B` is strictly positive on (0, 1): see (4). However, condition (iii) is not
quite necessary: one can make examples where

∫
1/`(s) diverges at some point s0 ∈ (0, s∗), and

where the process B` has only one upcrossing and downcrossing over height s0. Perhaps the most
general setting is where ds/`(s) is a sigma-finite measure on (0, s∗).

1.1 Related work

Warren and Yor [16] study the analogous question with standard Brownian excursion replaced
by reflecting Brownian motion Bref killed upon first hitting +1, when it has local time Lref .
They introduce a Brownian burglar process B̂ and give a representation of Bref in terms of the
independent pair (B̂, Lref). This leads to a description of the conditional laws B`ref which is more
explicit than ours. Warren (personal communication) observes that the processes B`ref and B`

cannot be expected to be semimartingales.

There are some conceptually related results in the more sophisticated setting of superprocesses.
As Le Gall [9] and others have observed,

(a) the Dawson-Watanabe superprocess can be constructed by running conditionally independent
copies of the underlying Markov process along the branches of a “genealogical tree”

(b) the genealogical tree can be constructed from the excursions of a Brownian-type process, with
the “total mass process” being the local time of the Brownian process.

And Perkins [13] showed that for a superprocess one can condition the total mass process to be
a specified continuous function `, in other words can condition the genealogical tree on the local
time process. See Donnelly and Kurtz [7] for a recent ”coalescing particle” derivation. Thus
implicit in this circle of ideas is the idea of conditioning an excursion on its local time. To make
this explicit one needs a careful treatment of the correspondence between an excursion function
(i.e. element of Cexc[0, 1]) and trees (which we call continuum trees). This general correspondence
was treated in Aldous [2], and the present paper is an illustration of the uses of this general theory.

2 The construction

2.1 A non-homogeneous analog of Kingman’s coalescent

Fix ` ∈ L. For each integer k ≥ 1 we will define a process of k coalescing particles (later rephrased
as a random tree). Here is a verbal description of the process. Take “time” t decreasing from
∞ to 0. Let each of k particles be born at independent random times with probability density `
(here we use condition (ii) of the definition of L). Particles coalesce into clusters according to the
rule: in time [t, t− dt], each pair of clusters has chance 4

`(t)dt to merge into a single cluster.
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The figure shows a realization of the process for k = 5. It is clear that we can regard the process
as a random tree R`k. The range space of R`k is the set of ordered real k-trees t, defined as follows.
The tree t has k leaves labeled {1, 2, . . . , k} at real-valued positive heights x1, . . . , xk (xi being
the birth time of particle i), where the root at height 0 has degree 1 (see remark below (4)).
The internal vertices (branchpoints) have degree 3, and we distinguish the two branches at a
branchpoint as “left” and “right”. Such a tree has a “shape” σ: in the figure, the shape records
the information that particle 1 merges with particle 4 at some unspecified time b4,1 with particle
4 on the left of particle 1; then at some time b1,3 the cluster {1, 4} merges with particle 3 which
is on its right; and so on. The tree t is completely specified by the triple (σ,x,b), where σ is the
shape, x = (xi, . . . , xk) is the vector of leaf-heights, and b = (bj, j ∈ Jσ) is the set of heights of
branchpoints (the exact convention for the index set Jσ of branchpoints is unimportant). In the
random tree R`k, write X`

i and B`j for the heights of the labeled leaves and the branchpoints, and

assign branches to left/right at random. The law of R`k may be described by a density f`k(σ,x,b),
whose interpretation is that for each shape σ

P (shape(R`k) = σ,X`
i ∈ [xi, xi + dxi]∀i, B`j ∈ [bj, bj + dbj]∀j) = f`k(σ,x,b) dxdb.

It is easy to see that the verbal description above is equivalent to the density formula

f`k(σ,x,b) = 2−(k−1)

∏k
i=1 `(xi)∏

j∈Jσ
1
4
`(bj)

exp

(
−
∫ ∞

0

(
n(s)

2

)
4
`(s) ds

)
(2)

where n(s) = |{i : xi > s}| − |{j : bj > s}| is the number of edges at height s and
(
n
2

)
= 0

for n = 0, 1. In (2), the term 2−(k−1) is the chance of a particular set of left/right assignments,∏
i `(xi) is the density function of the k leaves, and the remaining terms are the density of the

k − 1 branchpoints.

Note that an ordered k-tree is equipped with a distance d: for points v1 and v2 with branchpoint
w,

d(v1, v2) = (height(v1) − height(w)) + (height(v2)− height(w)). (3)
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Note also that the specialization of (2) to k = 2 is

f`k(σ, x1, x2, b) =
2`(x1)`(x2)

`(b)
exp

(
−
∫ min(x1,x2)

b

4
`(s) ds

)
. (4)

So condition (iv) in the definition of L ensures that the height B of the branchpoint in R`2 is
strictly positive.
Remarks. (a) Kingman’s coalescent [12] is the analogous process with the k particles born at time
0, with time running from 0 to ∞ and with each pair of clusters merging at rate 1. We later need
the easy fact that, in Kingman’s coalescent, the number Nk(t) of clusters at time t > 0 satisfies

Nk(t) ↑ N∞(t) <∞ a.s. (5)

As noted by Kingman [11] the non-homogeneous case is just a deterministic time-change of the
homogeneous case. While many variations have been considered in population genetics [15], our
“random birth times” setting has no visible biological interpretation and so has apparently not
been studied explicitly.
(b) In our context it would be more natural (cf. Theorem 3 later) to use 2B as our “standard”
version of Brownian excursion; with this standardization, the factor 4 in the coalescence rate
4/`(s) would become 1.

2.2 Representing continuum trees by excursion functions

It is clear from the verbal description of the coalescing particle process that the family (R`k, k ≥ 1)
is consistent, in the sense

the subtree of Rk spanned by the root and vertices {1, 2, . . . , k − 1}

is distributed as Rk−1 , for each k ≥ 2 . (6)

This ties in with the following general theory from [2]. Given f ∈ Cexc[0, 1] satisfying minor extra
conditions, and given u1, . . . , uk ∈ (0, 1), we can specify an ordered real k-tree t(f, u1, . . . , uk)
by:
(a) the root is at height 0
(b) there are leaves 1, . . . , k, with leaf i at height f(ui)
(c) for the paths from the root to leaves i and j, the branchpoint is at height infmin(ui,uj)≤u≤max(ui,uj) f(u).

If we allow f to be random and take U1, . . . , Uk to be independent U(0, 1) independent of f , then

Rk = t(f, U1, . . . , Uk) (7)

defines a family (Rk, k ≥ 1) which is clearly consistent in the sense (6). Theorem 15 of [2] gives
a converse: if a family (Rk, k ≥ 1) is consistent then, under two technical conditions, there exists
a random Cexc[0, 1]-valued function f such that (7) holds, and f is unique in law. In the next
section we state the technical conditions (10, 11) and verify them for the family (R`k, k ≥ 1),
where ` ∈ L. Then [2] Theorem 15 yields a random function, which we now call B`, such that

R`k
d
= t(B`, U1, . . . , Uk). (8)
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This representation shows in particular that the heights (B`(Ui), 1 ≤ i < ∞) (the birth-times of
particles in the coalescent process) are independent with density `(·), implying by the Glivenko-
Cantelli theorem that the local time process for B` is indeed a.s. equal to the deterministic
function `(·).
To obtain the continuity assertion of Construction 1, consider `n → ` in L. From the density
formula (2) and the definition of the topology on L,∑

σ

∫ ∫ (
f`n (σ,x,b)− f`(σ,x,b)

)−
dxdb → 0.

This implies convergence in total variation of law(R`nk ) to law(R`k). In particular, writing Xi for
the height of vertex i,

(X`n
1 , . . . , X`n

k )
d→ (X`

1, . . . , X
`
k).

By the representation (8), this is equivalent to

(B`n(U1), . . . , B`n(Uk))
d→ (B`(U1), . . . , B`(Uk)). (9)

But it is not hard to show (cf. [5]) that (9) is equivalent to weak convergence B`n
d→ B` when

Cexc[0, 1] is given the topology of convergence in measure.
In the next section we check the technical conditions (10, 11), and thereby complete Construction
1.

2.3 Checking the technical conditions

The consistent family (R`k, k ≥ 1) specifies, by Kolmogorov extension, a tree R`∞ with an infinite
number of leaves V1, V2, . . . . The first technical condition ([2] equation (7)) is that the set of leaves
be precompact with respect to the natural distance d at (3). One formulation of precompactness
is: for each ε > 0 there exists an a.s. finite set of points (Zj , 1 ≤ j ≤Mε) such that

sup
1≤i<∞

min
1≤j≤Mε

d(Vi, Zj) ≤ 2ε. (10)

To establish this, for h > 0 let Sh be the set of points of R`∞ at height h which are on the path
from the root to some Vi at height ≥ h + ε. Clearly (10) holds for {Zj} = ∪0≤i≤s∗/ε Sεi (note
we are using condition (i) of the definition of L), so it is enough to show that the cardinality
|Sh| is a.s. finite. But ignoring births, the coalescing particle process of section 2.1 evolves as a
deterministic time-change of Kingman’s coalescent, so that in the notation of (5)

|Sh| d
= NQh

(∫ h+ε

h

4
`(s) ds

)
where Qh ≤ ∞ is the number of branches ofR`∞ at height h+ε. By the Cauchy-Schwarz inequality

ε2 =

(∫ h+ε

h

1 ds

)2

≤
(∫ h+ε

h

`(s) ds

)(∫ h+ε

h

1/`(s) ds

)
≤
∫ h+ε

h

1/`(s) ds.

Since Nk(t) ≤ N∞(t) and t→ N∞(t) is decreasing, we deduce

|Sh| is stochastically smaller than N∞(ε2/4).
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So |Sh| is a.s. finite, establishing (10).
The second technical condition ([2] Theorem 15 condition (a)) is as follows. In R`∞, condition
on height(V1) = x1. Then for each interval [y, y + δ] ⊂ [0, x1] it is required that some vertex Vi
(2 ≤ i <∞) satisfy

height(Vi) ≤ y + δ, height(B1,i) ≥ y (11)

where B1,i is the branchpoint of V1 and Vi. To verify this requirement, consider the coalescing
particle process of section 2.1, and let (N∗k (t), y + δ ≥ t ≥ y) be the number of points of the tree
at height t which are on the path from the root to some Vj (2 ≤ j ≤ k) with height(Vj) ≤ y + δ.
Then

P ( (11) holds for some 2 ≤ i ≤ k) = 1− E exp

(
−
∫ y+δ

y

N∗k (s) ds

)
(12)

because the conditional probability of a cluster coalescing with the cluster containing particle 1
during [s, s−ds] equals N∗(s) ds. Now N∗k (s) ↑ N∗∞(s), say, in probability, and it suffices to show

that
∫ y+δ

y
N∗∞(s) ds = ∞. But as s decreases, N∗k (s) is the non-homogeneous Markov process

with transition rates

n→ n+ 1 rate k`(s)

n→ n− 1 rate

(
n

2

)
/`(s).

Clearly N∗∞ cannot be bounded throughout any interval of time, implying N∗∞(s) =∞ on y+ δ >
s ≥ y. Letting k→∞ in (12) establishes (11).

3 Proof of Theorem 2

3.1 Discrete trees and Brownian excursion

Here we recall a background result, Theorem 3, needed in the next section. Consider a tree
in the usual combinatorial sense, with each edge having length 1. There is a classical one-to-
one correspondence between rooted ordered trees on m vertices and walk-excursions w = (0 =
w(0), w(1), . . . , w(2m) = 0) with w(i) > 0, 1 ≤ i ≤ 2m− 1 and |w(i+ 1)− w(i)| = 1. See e.g. [1]
section 2.2 for details: briefly, each step (i, i+ 1) of the walk corresponds to traversing an edge
of the tree from height w(i) to height w(i+ 1), and each edge is traversed once in each direction.
Call w the depth-first walk associated with the tree. Such a walk w may be rescaled to define
w̃ ∈ Cexc[0, 1] by setting

w̃( i
2m

) = w(i), 0 ≤ i ≤ 2m, with linear interpolation over ( i
2m
, i+1

2m
). (13)

Cayley’s formula says there are mm−1 rooted trees on m labeled vertices. Let T m be a uniform
random rooted tree on m labeled vertices. Make T m into an ordered tree by assigning uniform
random order to the children of each vertex. Write Wm for the depth-first walk associated with
T m, and W̃m for its rescaling (13). Write Qm = (1 = Qm(0), Qm(1), . . . ) where Qm(h) is the
number of vertices of T m at height h. Call Qm the height profile of T m. Rescale Qm to obtain a
D[0,∞)-valued process

Q̃m(s) = Qm(b2m1/2sc), 0 ≤ s <∞. (14)
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Theorem 3 (1
2
m−1/2W̃m, 2m

−1/2Q̃m)
d→ (B,L), where L is local time for standard Brownian

excursion B.

Proof. The result 1
2
m−1/2W̃m

d→ B is a special case of [2] Theorem 23. This implies an integrated
form of joint convergence, as follows:

(1
2m
−1/2W̃m, 2m

−1/2Im)
d→ (B, I) (15)

where Im(s) =
∫ s

0
Q̃m(y) dy and I(s) =

∫ s
0
L(y) dy. The stronger assertion 2m−1/2Q̃m

d→ L
was proved by Drmota and Gittenberger [8]. Convergence of the marginal processes in Theorem
3 implies tightness of the joint processes, and then (15) identifies the limit and hence establishes
joint convergence.
In Theorem 3 the convergence in distribution was for random elements of C[0, 1]×D[0,∞). Then
because L is continuous and is non-zero on the interior on its support [0, supuBu], we also have

2m−1/2Q̃m
d→ L as random elements of L. (16)

3.2 Compatibility with standard Brownian excursion

Write B and L for standard Brownian excursion and its local time. The assertion of Theorem 2
which remains to be proved is the “conditional law” assertion, which is equivalent to the assertion

(B,L)
d
= (BL, L)

where B` has the law specified by the representation (8). By that representation, it is enough to
show that for each k

(t(B,U1, . . . , Uk), L)
d
= (RLk , L) (17)

where R`k is the random ordered real k-tree from section 2.1. We shall derive (17) from a simple
discrete analog (19) using the weak convergence result of Theorem 3.
Write q = (q(0), . . . , q(H)), for integers 1 = q(0), q(1), . . . , q(H) with each q(i) ≥ 1, and let∑
i q(i) = m. Define a random rooted unlabeled m-vertex tree T q as follows. For each 1 ≤ i ≤ H,

there are q(i) vertices at height i, and each is linked to a uniform random vertex at height i− 1,
independently for each vertex. (This is just a non-homogeneous variation of the classical Wright-
Fisher process, cf. [6]). Associated with the tree T q is its depth-first walk (Wq(i), 0 ≤ i ≤ 2m)
from section 3.1. Recall that T m is the uniform random rooted tree on m labeled vertices, that
Qm is its height profile, and that Wm is the associated depth-first walk.

Lemma 4 The conditional law of T m given Qm = q is the law of T q. So in particular (WQm ,Qm)
d
=

(Wm,Qm).

Proof. Condition on the sets of height-i vertices of T m being the sets (Ai, i ≥ 0). The conditional
law of T m is now uniform on the subset of allowable trees, i.e. trees such that each vertex v ∈ Ai+1

has a parent in Ai. Removing labels, it is clear this uniform law is the same as the law of T q for
q = (|Ai|, i ≥ 0).
Now choose uniformly at random k vertices of T q, label them {1, . . . , k}, and consider the subtree
Sq
k spanned by these vertices and the root. After randomly ordering the children of each vertex,

we may regard Sq
k as an ordered k-tree, with leaves and branchpoints at integer heights (the set
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of possible trees is actually larger than in the section 2.1 definition, e.g. because branchpoints
may have degree > 3, but this makes no essential difference).
Recall the one-to-one correspondence between rooted ordered trees t and walks w, and consider
a corresponding pair t and w. For this pair there is a 2 − 1 map φ : {0, 1, . . . , 2m − 1} →
{vertices of t} such that each step (i, i + 1) of the depth-first walk corresponds to traversing
the edge from φ(i) to its parent or from its parent to φ(i). And the heights of vertex φ(i) and
its parent are the decreasing arrangement of (w(i), w(i + 1)). Thus we can construct a uniform
random vertex of t as φ(Um), where

U has U [0, 1] distribution

Um = j or j + 1, where j
2m ≤ U ≤

j+1
2m

and the height of this random vertex is w̃(Um). Here and below the interpretation of “or” is that
a certain choice makes the assertion correct. Now the subtree Sq

1 of T q consisting of an edge from
the root to a random vertex of T q can be represented as

t(W, Um)
d
= Sq

1

where the definition of t(·) from section 2.2 extends naturally from the continuous to the discrete
setting. Similarly, the subtree spanned by the root and k random vertices can be represented as

t(Wq, Um,1, . . . , Um,k)
d
= Sq

k (18)

where (Ui, 1 ≤ i ≤ k) are independent U(0, 1) and

Um,i = j or j + 1 for j/2m ≤ Ui ≤ (j + 1)/2m.

In deriving (18) we use the fact that the height of the branchpoint of vertices v1 and v2 is the
minimum of the depth-first walk between v1 and v2. So in particular

(t(WQm , Um,1, . . . , Um,k),Qm)
d
= (SQm

k ,Qm). (19)

For deterministic qm define q̃m as at (14). Write 1
2m
−1/2t for the tree t with edge-lengths rescaled

by 1
2
m−1/2.

Lemma 5 If 2m−1/2q̃m→ ` in L then 1
2m
−1/2Sqm

k

d→ R`k.

The proof is deferred. Combining Lemma 5 and (16) we obtain convergence of the rescaled right
side of (19) to the right side of (17):(

1
2
m−1/2SQm

k , 2m−1/2Q̃m

)
d→
(
RLk , L

)
.

By Lemma 4 (WQm ,Qm)
d
= (Wm,Qm), so by Theorem 3 we obtain convergence of the rescaled

left side of (19) to the left side of (17):

(1
2m
−1/2t(WQm, Um,1, . . . , Um,k), 2m

−1/2Q̃m)
d→ (t(B,U1, . . . , Uk), L).

Thus (17) holds as the limit of the equality (19).
Remark. Lemma 5 says that genealogies in a non-homogeneous Wright-Fisher process are con-
verging to a non-homogeneous coalescent. In the usual population genetics setting (all particles
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born at the same time) this fact provided the original motivation for studying the coalescent, and
non-homogeneous versions have been studied (see [10] for references). So we will only outline the
proof in our “random birth-times” setting.

Outline proof of Lemma 5. Let t be an ordered k-tree with shape σ for which the heights (x∗i )
of labeled leaves and the heights (b∗j ) of branchpoints are all distinct integers. Let n(h) be the
number of edges of t from height h+ 1 to height h. Write (m)n := m(m− 1) . . . (m− n+ 1). It
is easy to see

P (Sq
k = t) = 2−(k−1) left/right assignments

×
∏

1≤h≤H, h6= any x∗i or b∗j

(q(h))n(h)

(q(h))n(h)
distinct parents at height h

× 1

mk

k∏
i=1

q(x∗i ) heights of leaves

×
k∏
i=1

(q(x∗i ) − 1)n(x∗i )

(q(x∗i ))
n(x∗i )

no branchpoint at height x∗i

×
∏
j∈Jσ

(q(b∗j )− 1)n(b∗j)−2

(q(b∗j ))n(b∗j)−1
one branchpoint at height b∗j .

To prove Lemma 5, let 2m−1/2q̃m→ ` in L. It is enough to show that∑
t

∣∣∣P (Sqm
k = t)− (1

2m
−1/2)2k−1f`k

(
σ, x∗

2m1/2 ,
b∗

2m1/2

)∣∣∣→ 0 (20)

for f`k defined at (2). Looking at terms in the formula above for P (Sq
k = t),

third term ∼ m−k(1
2
m1/2)k

∏
i

`
(

x∗i
2m1/2

)
fourth term → 1

fifth term ∼
∏
j

2m−1/2

`
(

b∗j
2m1/2

) .
It is not hard to see that proving (20) reduces to showing that if 1

2m
−1/2tm→ t then

∏
2m1/2a≤h≤2m1/2b

(qm(h))nm(h)

(qm(h))nm(h)
→ exp

(
−
∫ b

a

(
n(s)

2

)
4
`(s) ds

)
, 0 < a < b < s∗.

This in turn reduces to showing∫ b

a

∣∣∣∣ 2m1/2

qm(b2m1/2sc) −
4

`(s)

∣∣∣∣ ds→ 0

which is a consequence of 2m−1/2q̃m → ` in L.
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3.3 Why did the construction work?

The central mathematical idea is Lemma 4. Consider the random m-tree and its height profile
process. One can associate this with the depth-first walk and its local time process, and also one
can associate this with the non-homogeneous Wright-Fisher process. Taking weak limits enables
us to associate Brownian excursion and its local time with the non-homogeneous coalescent. This
idea was the motivation for the construction of the non-homogeneous coalescent. It is remarkable
that, while Lemma 4 is almost obvious in the discrete setting, there seems no way to state a
continuous space analog directly.

4 The bridge setting

Define Cbridge[0, 1] by relaxing requirement (1) of Cexc[0, 1] to

f(0) = f(1) = 0, f(u) ≥ 0 for 0 < u < 1.

Define L∗ by removing from the definition of L the requirement (iv). Construction 1 can be
extended to ` ∈ L∗, provided we allow the root of R`k to have arbitrary degree, and we obtain a
Cbridge[0, 1] -valued process B`. And Theorem 2 remains true, with standard Brownian excursion
replaced by standard reflecting Brownian bridge.
These assertions can be proved by minor modifications of the proofs in this paper and [2] Theorem
15 – we omit details.
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