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1. Introduction. We will show that if a sequence of domains Dk increases to a domain
D then the reflected Brownian motions in Dk’s converge to the reflected Brownian motion
in D, under mild technical assumptions. Our theorem follows easily from known results and
is perhaps known as a “folk law” among the specialists but it does not seem to be recorded
anywhere in an explicit form. The purpose of this note is to fill this gap. As the theorem itself
is not hard to prove, we will start with some remarks explaining the significance of the result
in the context of a currently active research area.
Very recently some progress has been made on the “hot spots” conjecture (Bañuelos and
Burdzy [1], Burdzy and Werner [4]), and more papers are being written on the topic. The
conjecture was stated in 1974 by J. Rauch and very little was published on the problem since
then (see [1] for a review). The conjecture is concerned with the maximum of the second
Neumann eigenfunction for the Laplacian in a Euclidean domain. Reflected Brownian motion
was used in [1] and [4] to prove the conjecture for some classes of domains and also to give a
counterexample. D. Jerison and N. Nadirashvili (private communication) have an argument
proving the conjecture for planar convex domains. The question of whether the conjecture
holds in planar simply connected domains seems to be the most interesting open problem in
the area.

A possible way of constructing a counterexample to the “hot spot” conjecture for a class of
domains might be first to fix a domain D in the class and consider a sequence of domains Dk
increasing to D. Then one could consider reflected Brownian motions in Dk’s and study their
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limit, if any, as k → ∞. If one could find domains Dk with rough boundaries such that as
k → ∞, the reflecting Brownian motions in Dk would look more and more like a reflecting
Brownian motion in D with drift, diffusion, or holding on the boundary of D then this might
provide a basis for a class of counterexamples. A counterexample was constructed along these
lines in Bass and Burdzy [2] but the crucial difference is that in that paper, a conditioned
rather than reflected Brownian motion was used. The moral of this note is that a similar
construction is impossible for the reflected Brownian motion. In other words, one cannot use
“rough boundary” effects to construct counterexamples to the “hot spots” conjecture.

2. Weak convergence. A domain D is said to have continuous boundary if for every z ∈ ∂D
there is a ball B(z, r) centered at z with radius r > 0 such that D ∩ B(x, r) is the region
above the graph of a continuous function. Reflecting Brownian motion can be constructed
as a strong Markov process not only on a domain with smooth or Lipschitz boundary with
Hölder cusps (see Lions and Sznitman [10], Bass and Hsu [3], Fukushima and Tomisaki [9]
and the references therein) but on a bounded domain D with continuous boundary as well.
Suppose that n ≥ 1 and assume that D is a bounded domain in Rn with continuous boundary.
Let W 1,2(D) = {f ∈ L2(D, dx) : ∇f ∈ L2(D, dx)} and let E(f, g) = 1

2

∫
D
∇f · ∇gdx for

f, g ∈W 1,2(D). It is known (see Theorem 2 on page 14 of Maz’ja [12]) that (E , W 1,2(D)) is a

regular Dirichlet space on D (see [8]); that is, W 1,2(D)∩C(D) is dense both in (W 1,2(D), E1/2
1 )

and in (C(D), ‖ · ‖∞), where E1 = E + ( , )L2(D). Therefore there is a strong Markov process

X associated with (E ,W 1,2(D)), having continuous sample paths on D; one can construct a
consistent Markovian family of distributions for the process starting from every point in D
except possibly for a subset of ∂D having zero capacity (see [5]). Thus constructed process X
is the reflecting Brownian motion on D in the sense that this definition agrees with all other
standard definitions in smooth domains.
Suppose that {Dk, k ≥ 1} is an increasing sequence of domains with continuous boundaries
such that

⋃∞
k=1Dk = D. Let Xk be the reflecting Brownian motion on Dk for k ≥ 1. We use

P kx (Px) to denote the law of Xk (X) starting from x, respectively.
Note that if x ∈ D then x ∈ Dk for sufficiently large k.

Theorem 1 For each T > 0, there is a subset H of [0, T ] with Lebesgue measure T such that
for each x ∈ D, the finite dimensional distributions of {Xk

t , t ∈ H} under P kx converge to
those of {Xt, t ∈ H} under Px.

Proof. The proof is the same as that of Theorem 3.6 in Chen [5].

Theorem 2 For each x ∈ D, {P kx , k ≥ 1} is tight on C([0,∞),Rn), the space of continu-
ous Rn-valued functions equipped with the local uniform topology. Therefore as k → ∞, P kx
converge weakly to Px on C([0, ∞),Rn).

Proof. In view of Theorem 1, it suffices to show that the family {P kx} is tight on C([0,∞),Rn).
Fix some x ∈ D and choose k0 such that x ∈ Dk0 . We will consider only k ≥ k0. Let r > 0 be
such that r < dist(x, ∂Dk0) and τk = inf{t > 0 : |Xk

t − x| ≥ r}. Note that for each k ≥ k0,
the process {Xk

t , 0 ≤ s < τk} is a Brownian motion killed upon leaving B(x, r). By Lemma
II.1.2 in Stroock [13], there is a constant c > 0 such that for each k ≥ k0,

P kx (t > τk) ≤ c exp
(
− r

c t

)
for t > 0. (1)
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Let a > 0. For each T > 0 and ε > 0, by (1) and the strong Markov property of Xk,

P kx

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ≤ P kx (a ≥ τk) + P kx

 sup
a≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε, a < τk


≤ c exp

(
− r

c a

)
+ P kµ

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ,

where µ is the sub-probability distribution at time a of Brownian motion killed upon leaving
B(x, r) and P kµ is the law of Xk with initial distribution µ. Let mk denote the Lebesgue
measure on D. Note that φ = dµ/dmk is bounded and independent of k for k ≥ k0. Using an
idea from Takeda (Theorem 3.1 of [14]), it can be shown that

lim
δ→0

sup
k≥1

P kµ

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 = 0. (2)

Indeed, by Lyons–Zheng’s forward and backward martingale decomposition (see Theorem 5.7.1
of [8]),

Xk
t −Xk

0 =
1

2
W k
t −

1

2

(
W k
T ◦ rT −W k

T−t ◦ rT
)

for all 0 ≤ t ≤ T, P kmk -a.s. (3)

where W k is a martingale additive functional of Xk (it is in fact an n-dimensional Brownian
motion, see the calcuation on page 302 of [5] or on page 211 of [8]) and rT is the time reversal
operator of X at time T , i.e., Xt(rT (ω)) = XT−t(ω) for each 0 ≤ t ≤ T . Since Xk is symmetric
under P kmk , for k ≥ k0,

P kµ

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε


≤ ‖φ‖∞P kmk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε


≤ ‖φ‖∞P kmk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
t −W k

s

∣∣ > ε

+ ‖φ‖∞P kmk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
T−t ◦ rT −W k

T−s ◦ rT
∣∣ > ε


= 2‖φ‖∞P kmk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
t −W k

s

∣∣ > ε


= 2‖φ‖∞ |Dk|P

 sup
0≤s,t≤T
|t−s|≤δ

|Bt −Bs| > ε

 ,

where B is the standard n-dimensional Brownian motion and |Dk| is the volume of Dk. Claim
(2) now follows. Hence

lim sup
δ→0

sup
k≥1

P kx

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ≤ c exp
(
− r

c a

)
.
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Letting a ↓ 0, we have that for each T > 0 and ε > 0,

lim
δ→0

sup
k≥1

P kx

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 = 0.

Thus the family {P kx , k ≥ 1} is tight on C([0,∞),Rn). Since each of its weak limit distribu-
tions must be Px by Theorem 1, we conclude that P kx ’s converge weakly to Px on C([0, ∞),Rn)
as k→∞.

3. Extension. Although Theorem 2 provides sufficient information for those interested in the
“hot spots” conjecture, it is natural to ask about possible generalizations of the result to larger
classes of domains D. It seems that the main technical, or one could even say philosophical
problem with any such generalization is the question of existence and uniqueness (or definition)
of a reflecting Brownian motion in D rather than proving the convergence. We will indicate in
a few words what is known about the existence of reflecting Brownian motion in an arbitrary
domain and then we will show how the weak convergence result might be extended.
When D is an arbitrary bounded domain in Rn, reflecting Brownian motion, in general,
can not be constructed on the Euclidean closure D of D as a strong Markov process. For
example, reflecting Brownian motion on a planar disk with a slit removed can not be a strong
Markov process on the Euclidean closure of the domain. However for any bounded open set
D, one can always find a suitable compact metric space D∗ that contains D as a dense open
subset such that (E ,W 1,2(D)) is a regular Dirichlet space on D∗. For example, the Martin-
Kuramochi compactification introduced by Fukushima in [7] can play the role of D∗. Therefore
a conservative strong Markov process X∗ with continuous sample paths can be constructed
on D∗. Fukushima [7] was the first person to construct reflecting Brownian motion on D∗

for arbitrary bounded domain D, with a consistent Markovian family of distributions for the
process starting from every point in D∗ except possibly for a subset of ∂D∗ having zero
capacity. Let P̃x denote the law of X∗ starting from x.
More recently there were some efforts to construct a reflecting Brownian motion on the Eu-
clidean closure D of D rather than on an abstract compactification D∗ of D. In [15], among
other things, Williams and Zheng constructed stationary reflecting Brownian motion on the
Euclidean closure D of a bounded domain D with the initial distribution being the normal-
ized Lebesgue measure in D. It is possible to modify that construction to obtain a reflecting
Brownian motion starting from any fixed point in D, by noting that for each starting point,
the reflecting Brownian motion in D has the same behavior as the standard Brownian motion
before it hits ∂D. In [5], among other things, Chen used quasi-continuous projection from
D∗ to D in order to construct a reflecting Brownian motion on D for every starting point in
D or even more generally, for every starting point in D∗ except possibly for a subset of ∂D∗

having zero capacity. Besides the construction, papers [15] and [5] discuss approximations of
the reflecting Brownian motion and give sufficient conditions for it to be a semimartingale.
A necessary and sufficient condition can be found in Chen, Fitzsimmons and Williams [6] for
stationary reflecting Brownian motion on the closure of a bounded Euclidean domain to be a
quasimartingale on each compact time interval.
Here is the idea of the construction in [5]. The coordinate maps D 3 x = (x1, · · · , xn) → xi,
i = 1, · · · , n, are elements of W 1,2(D). Let ϕi denote the quasi-continuous extension of x→ xi
to all of D∗ (see [8]) and set ϕ = (ϕ1, · · · , ϕn). Define X = ϕ(X∗) as the reflecting Brownian
motion on D, which has continuous sample paths on D. For each x, let Px denote the law
of X under P̃x and call X the reflecting Brownian motion on D. It is not hard to see that
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this definition agrees with all other standard definitions in smooth domains. The forward and
backward martingale decomposition (3) still holds for thus constructed reflecting Brownian
motion X under Pm, where m is the Lebesgue measure on D. Note that Pm(Xt ∈ ∂D) =

P̃m(X∗t ∈ ∂D∗) = 0 for each fixed t > 0. For any domain Dk in an increasing sequence
{Dk, k ≥ 1} such that

⋃∞
k=1 Dk = D, let (Xk, P kx ) be the reflecting Brownian motion on

Dk constructed as above. Then the proof of Theorem 2 applies to this sequence and shows
that both {|Dk|−1 P kmk , k ≥ 1} and {P kx , k ≥ k0} are tight on C([0,∞), Rn) for any x ∈ Dk0

for some k0 ≥ 1. Theorem 1 and its proof adapted from the proof of Theorem 3.6 in Chen
[5] extend to the present case. All these remarks taken together show that Theorem 2 can
be extended to arbitrary domains, with the suitable definition of reflected Brownian motion
mentioned above.

References
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domains. Ann. Probab., 19 (1991), 486-508.

[4] K. Burdzy and W. Werner, A counterexample to the “hot spots” conjecture. Preprint.

[5] Z.-Q. Chen, On reflecting diffusion processes and Skorokhod decompositions. Probab. Theory Rel.
Fields, 94 (1993), 281-351.

[6] Z.-Q. Chen, P. J. Fitzsimmons and R. J. Williams, Reflecting Brownian motions: quasimartin-
gales and strong Caccioppoli sets. Potential Analysis, 2 (1993), 219-243.

[7] M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains.
Osaka J. Math., 4 (1967), 183-215.

[8] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet forms and symmetric Markov processes.
Walter de Gruyter, Berlin, 1994

[9] M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on
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