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Abstract

A comprehensive study of percolation in a more general context than the usual ZZd setting is
proposed, with particular focus on Cayley graphs, almost transitive graphs, and planar graphs.
Results concerning uniqueness of infinite clusters and inequalities for the critical value pc are
given, and a simple planar example exhibiting uniqueness and non-uniqueness for different
p > pc is analyzed. Numerous varied conjectures and problems are proposed, with the hope of
setting goals for future research in percolation theory.

1 Introduction

Percolation has been mostly studied in the lattices ZZd, or in IRd. Recently, several researchers
have looked beyond this setting. For instance, Lyons (1996) gives an overview of current
knowledge about percolation on trees, while Grimmett and Newman (1990) study percolation
on (regular tree) × ZZ.

The starting point for a study of percolation on the Euclidean lattices is the fact that the
critical probability for percolation, denoted pc, is smaller than one. (See below for exact
definitions and see Grimmett (1989) for background on percolation). The first step in a study
of percolation on other graphs, for instance Cayley graphs of finitely generated groups, will be
to prove that the critical probability for percolation on these graphs is smaller than one. In
this note, we will show that for a large family of graphs, indeed, pc < 1. In particular, this
holds for graphs satisfying a strong isoperimetric inequality (positive Cheeger constant).

The second part of the paper discusses non-uniqueness of the infinite open cluster. A criterion is
given for non-uniqueness, which is proved by dominating the percolation cluster by a branching
random walk. This criterion is useful for proving non-uniqueness in “large” graphs.

Numerous open problems and conjectures are presented, probably of variable difficulty. The
main questions are about the relation between geometric or topological properties of the graph,
on the one hand, and the value of pc, uniqueness and structure of the infinite cluster, on the
other. It seems that there are many interesting features of percolation on planar graphs.
One proposed conjecture is that a planar graph which has infinite clusters for p = 1/2 site
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percolation has infinitely many such clusters. This is proved for graphs that are locally finite
in IR2 and are disjoint from the positive x axis.
In a forthcoming paper, we shall discuss a Voronoi percolation model. A principle advantage
of this model is its generality, which allows to extend various percolation questions beyond
IRd, to arbitrary Riemannian manifolds. In this model, the cells of a Voronoi tiling generated
by a point Poisson process are taken to be open with probability p, independently. It turns
out that this model is advantageous for the study of the conformal invariance conjecture for
critical percolation, introduced in Langlands et al (1994). See Benjamini-Schramm (1996).
Additionally, we currently study Voronoi percolation in the hyperbolic plane.
We wish to express thanks to Uriel Feige, Rick Kenyon, Ronald Meester, Yuval Peres, and
Benjamin Weiss for helpful conversations, and the anonymous referee, for a very careful review.

2 Notations and Definitions

The graphs we shall consider will always be locally finite, that is, each vertex has finitely many
neighbors.

Cayley Graphs, Given a finite set of generators S = 〈g±1
1 , . . . , g±1

n 〉 for a group Γ, the
Cayley graph is the graph G(Γ) = (V, E) with V = Γ and {g, h} ∈ E iff g−1h is a generator.
G(Γ) depends on the set of generators. Note that any two Cayley Graphs of the same group
are roughly isometric (quasi-isometric). (See Magnus et al (1976) or Ghys et al (1991)).

Almost Transitive Graphs, A Graph G is transitive iff for any two vertices u, v in G,
there is an automorphism of G mapping u onto v. In particular, Cayley graphs are transitive
graphs. G = (V, E) is almost transitive, if there is a finite set of vertices V0 ⊂ V such that any
v ∈ V is taken into V0 by some automorphism of G.
For example, the lift to IR2 of any finite graph drawn on the torus IR2/ZZ2 is almost transitive.

Percolation, We assume throughout that the graph G is connected. In Bernoulli site per-
colation, the vertices are open (respectively closed) with probability p (respectively 1 − p)
independently. The corresponding product measure on the configurations of vertices is de-
noted by IPp. Let C(v) be the (open) cluster of v. In other words, C(v) is the connected
component of the set of open vertices in G containing v, if v is open, and C(v) = ∅, otherwise.
We write

θv(p) = θvG(p) = IPp
{
C(v) is infinite

}
.

When G is transitive, we may write θ(p) for θv(p). If C(v) is infinite, for some v, we say that
percolation occurs. Clearly, if θv(p) > 0, then θu(p) > 0, for any vertices v, u. Let

pc = sup
{
p : θv(p) = 0

}
be the critical probability for percolation. See Grimmett (1989).
Throughout the paper, site percolation is discussed. Except when dealing with planar graphs,
the results and questions remain equally valid, with only minor modifications, for bond per-
colation.

Uniqueness of the infinite open cluster, In ZZd, when θ(p) > 0, there exists with proba-
bility one a unique infinite open cluster. See Grimmett (1989), the charming proof in Burton
and Keane (1989), and Meester’s (1994) survey article. As was shown by Grimmett and New-
man (1990), this is not the case for percolation on (some regular tree) × ZZ. For some values
of p, uniqueness holds and for others, there are infinitely many infinite disjoint open clusters.
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Therefore, it is natural to define

pu = inf
{
p : IPp{there is exactly one infinite open cluster} = 1

}
.

Cheeger’s constant, Let G be a graph. The Cheeger constant, h(G), of G is

h(G) = inf
S

|∂S|
|S| ,

where S is a finite nonempty set of vertices in G, and ∂S, the boundary of S, consists of all
vertices in V \ S that have a neighbor in S.

3 The percolation critical probability pc

The starting point of the study of percolation on groups is the following “obvious” conjecture.

Conjecture 1 If G is the Cayley graph of an infinite (finitely generated) group, which is not
a finite extension of ZZ, then pc(G) < 1.

Lyons (1994) covers the case of groups with Cayley graphs of exponential volume growth.
Babson and Benjamini (1995) covers finitely presented groups with one end. Note that if a
group Γ contains as a subgroup another group Γ′ for which pc(G(Γ′)) < 1 then pc(G(Γ)) < 1.
By results mentioned below, if a group admits a quotient with pc smaller than 1 for its Cayley
graphs, then the same is true for Cayley graphs of the group itself. Thus, the conjecture holds
for any group that has a ZZ2 quotient.
Suppose that Γ is a group of automorphisms of a graph G. The quotient graph G/Γ is the
graph whose vertices, V (G/Γ), are the equivalence classes V (G)/Γ =

{
Γv : v ∈ V (G)

}
, or

Γ-orbits, and an edge {Γu,Γv} appears in G/Γ if there are representatives u0 ∈ Γu, v0 ∈ Γv
that are neighbors in G, {u0, v0} ∈ E(G). The map v → Γv from V (G) to V (G/Γ) is called
the quotient map. If every γ ∈ Γ, except the identity, has no fixed point in V (G), then G is
also called a covering graph of G/Γ, and the quotient map is also called a covering map.
The following theorem follows from Campanino-Russo (1985). We bring an easy proof here,
since it introduces a method which will also be useful below. The proof is reminiscent of the
coupling argument of Grimmett and Wierman, which was used by Wierman (1989) in the
study of AB-percolation.

Theorem 1 Assume that G2 is a quotient graph of G1, G2 = G1/Γ. Let v′ ∈ G1, and let v
be the projection of v′ to G2. Then for any p ∈ [0, 1],

θv
′

G1
(p) ≥ θvG2

(p),

and consequently,
pc(G1) ≤ pc(G2).

Proof:
We will construct a coupling between percolation on G2 and on G1. Consider the following
inductive procedure for constructing the percolation cluster of v ∈ V (G2). If v is closed, set
C2
n = ∅ for each n. Otherwise, set C2

1 = {v} and W 2
1 = ∅. Now let n ≥ 2. If ∂C2

n−1 is
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contained in W 2
n−1, set C2

n = C2
n−1, W 2

n = W 2
n−1. Otherwise, choose a vertex wn ∈ V (G2)

which is not in C2
n−1 ∪W 2

n−1, but is adjacent to a vertex zn ∈ C2
n−1. If wn is open, then

let C2
n = C2

n−1 ∪ {w} and W 2
n = W 2

n−1, if closed, let C2
n = Cn−1 and W 2

n = W 2
n−1 ∪ {wn}.

C2 =
⋃
n C

2
n is C(v) the percolation cluster of v.

We will now describe the coupling with the percolation process in G1. Let f be the quotient
map from G1 to G2. Recall that f(v′) = v. If v is closed, let v′ be closed. Otherwise, let v′

be open, and let C1
1 = {v′}, W 1

1 = ∅. Assume that n ≥ 2 and C1
n−1, W 1

n−1 were defined, and
satisfy f(C1

n−1) = C2
n−1, f(W 1

n−1) = W 2
n−1. If the construction of C(v) in G2 stopped at stage

n, that is, if C2
n = C2

n−1, W 2
n = W 2

n−1, then let C1
n = C1

n−1, W 1
n = W 1

n−1. Otherwise, let z′n be
some vertex in f−1(zn)∩C1

n−1, and let w′n be some vertex in f−1(wn) that neighbors with z′n.
Let w′n be open iff wn is open, and define C1

n and W 1
n accordingly. Then

⋃
n C

1
n is a connected

set of open vertices contained in the percolation cluster C(v′) of v′. Hence, f
(
C(v′)

)
⊃ C(V ),

and the theorem follows.

Question 1 When does strict inequality hold? We believe that if both G1 and G2 are connected
almost transitive graphs, G1 covers but is not isomorphic to G2 and pc(G2) < 1, then pc(G1) <
pc(G2).

Compare with Men’shikov (1987) and Aizenman-Grimmett (1991). Other conjectures regard-
ing pc for graphs:

Conjecture 2 Assume that G is an almost transitive graph with ball volume growth faster
then linear. Then pc(G) < 1.

Let G be a graph, define the isoperimetric dimension,

Dim(G) = sup

{
d > 0 : inf

S

|∂S|
|S| d−1

d

> 0

}
,

where S is a finite nonempty set of vertices in G.

Question 2 Does Dim(G) > 1 imply pc(G) < 1?

Conjecture 3 Assume that G is a (bounded degree) triangulation of a disc. Any of the
following list of progressively weaker assumptions should be sufficient to guarantee pc(G) ≤ 1/2:

(1) Dim(G) ≥ 2,

(2) Dim(G) > 1,

(3) for any finite set A of vertices in G the inequality |∂A| ≥ f
(
|A|
)

log |A| holds, where f
is some function satisfying limn→∞ f(n) =∞.

Moreover, if h(G) > 0, then pc(G) < 1/2. The latter might be easier to establish under the
assumption of non-positive curvature, that is, minimal degree ≥ 6.

The statement that (1) is sufficient to guarantee pc ≤ 1/2 would generalize the fact that
pc = 1/2 for the triangular lattice. See Wierman (1989).
So far, we can only show that pc < 1 for graphs with positive Cheeger constant.

Theorem 2

pc(G) ≤ 1

h(G) + 1
.
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Remark 1 For a degree k regular tree, pc(Tk) = (k − 1)−1 =
(
h(Tk) + 1

)−1
, because h(Tk) =

k − 2. So the theorem is sharp.

Proof:
Let Cn and Wn be defined as C2

n,W
2
n were in the proof of Theorem 1, and let C =

⋃
n Cn.

If C is finite (and nonempty), then there is some smallest N such that the boundary of
CN is WN . By the definition of the Cheeger constant |WN | = |∂CN | ≥ h(G)|CN |. That
is, we flipped N independent (p, 1 − p)-coins and |WN | ≥ Nh(G)/

(
h(G) + 1

)
turned out

closed. But if p > 1 − h(G)/
(
h(G) + 1

)
, then, with positive probability, a random infinite

sequence of independent Bernoulli(p, 1− p) variables does not have an N such that at least

Nh(G)
(
h(G) + 1

)−1
zeroes appear among the first N elements. In particular, with positive

probability we have percolation.

Remark 2 Suppose that G = (V, E) is a finite graph, which is an α-expander; that is, |∂A| ≥
α|A| for any A ⊂ V with |A| < |V |/2. Then the above proof shows that with probability bounded
away from zero, the percolation process on G with p > 1 − α/(α+ 1) will have a cluster with
at least half of the vertices of G.

It has been one of the outstanding challenges of percolation theory to prove that critical
percolation in ZZd (d > 2) dies at pc, that is, θ(pc) = 0. This has been proved for d = 2
by Kesten (1980) and Russo (1981), and for sufficiently high d by Hara and Slade (1989). It
might be beneficial to study the problem in other settings.

Conjecture 4 Critical percolation dies in every almost transitive graph (assuming pc < 1).

It is not hard to construct a tree where critical percolation lives, compare Lyons (1996). This
shows that the assumption of almost transitivity is essential.

4 Uniqueness and non-uniqueness in almost transitive
graphs

In this section, the number and structure of the infinite clusters is discussed, and conditions
that guarantee pc < pu or pu < 1, are given.

Definition 1 Let G be a graph. An end of G is a map e that assigns to every finite set
of vertices K ⊂ V (G) a connected component e(K) of G \ K, and satisfies the consistency
condition e(K) ⊂ e(K′) whenever K′ ⊂ K.

It is not hard to see that if K ⊂ V (G) is finite and F is an infinite component of G \K, then
there is an end of G satisfying e(K) = F .

Definition 2 The percolation subgraph of a graph G is the graph spanned by all open vertices.

By Kolmogorov’s 0-1 law, the probability of having an infinite component in the percolation
subgraph is either 0 or 1. Following is an elementary extension of this 0-1 law in the setting
of almost transitive graphs.
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Theorem 3 Let G be an almost transitive infinite graph, and consider a percolation process
for some fixed p ∈ (0, 1). Then precisely one of the following situations occurs.

(1) With probability 1, every component of the percolation graph is finite.

(2) With probability 1, the percolation graph has exactly one infinite component, and has
exactly one end.

(3) With probability 1, the percolation graph has infinitely many infinite components, and
for every finite n there is some infinite component with more than n ends.

The proof is virtually identical to the proof of a similar theorem for dependent percolation in
ZZd, by Newman-Schulman (1981); it is therefore omitted.

Conjecture 5 Let G be a connected almost transitive graph, and fix a p ∈ (0, 1). Suppose
that a.s. there is more than one infinite component in the percolation subgraph. Then, with
probability 1, each infinite component in the percolation subgraph has precisely 2ℵ0 ends.

The conjecture is equivalent to saying that in the case of non-uniqueness, there cannot be an
infinite component with exactly one end. To demonstrate this, recall that the collection of
sets of the form {e : e(K) = F} is a sub-basis for a topology on the set of ends of a connected
graph, and the set of ends with this topology is a compact (totally disconnected) Hausdorff
space. A compact Hausdorff space with no isolated points has cardinality ≥ 2ℵ0 . Hence, the
conjecture follows if one shows that there are no isolated ends in the percolation subgraph.
It is easy to see, using the argument of Newman-Schulman (1981), that if there are isolated
ends, then there are also infinite clusters with just one end.
Häggström (1996) studies similar questions in the setting of dependent percolation on trees.

It is easy to verify that the proof by Burton and Keane (1989) of the uniqueness of the infinite
open cluster for ZZd works as well for almost transitive graphs with Cheeger constant zero.

Conjecture 6 Assume that the almost transitive graph G has positive Cheeger constant. Then
pc(G) < pu(G).

The conjecture, if true, gives a percolation characterization of amenability. We now present a
comparison between the connectivity function and hitting probabilities for a branching random
walk on G. This will be useful in showing that pc < pu, for some graphs. For background on
branching random walks on graphs, see Benjamini and Peres (1994).
Let G be a connected graph, and let pn(v, u) denote the n-step transition probability between
v and u, for the simple random walk on G.

ρ(G) = lim sup
n→∞

(
pn(v, u)

)1/n
is the spectral radius of G, and does not depend on v and u. By Dodziuk (1984), for a bounded
degree graph, ρ(G) < 1 iff the Cheeger constant of G is positive. We have the following

Theorem 4 Let G be an almost transitive graph, with maximal degree k. Let p be such that
percolation occurs at p, that is, θv(p) > 0 for some v. If, additionally,

ρ(G)kp < 1,

then IPp-almost surely there are infinitely many infinite open clusters. In particular, if ρ(G)kpc <
1, then pc < pu.



Percolation Beyond ZZd 77

Proof:

Given p ∈ [0, 1], consider the following branching random walk (BRW) on G. Start with a
particle at v at time 0. At time 1, at every neighbor of v, a particle is born with probability
p, and the particle at v is deleted. Continue inductively: if at time n we have some particles
located on G, then at time n + 1 each one of them gives birth to a particle on each of its
neighbors with probability p, independently from the other neighbors, and then dies. We
claim that

IPp{u ∈ C(v)} ≤ IP{the BRW starting at v hits u}.

Say that u ∈ G is in the support of the BRW if u is visited by a particle at some time. We
will show inductively that the support of the BRW dominates C(v). Consider the following
inductive procedure for a coupling of the BRW with the percolation process. Let C0 = v and
W0 = ∅. For each n ≥ 1, choose a vertex w, which is not in Cn−1 ∪Wn−1, but is adjacent to a
vertex z ∈ Cn−1. If, at least once, a particle located at z gave birth to a particle at w, then let
Cn = Cn−1∪w and Wn = Wn−1. Otherwise let Cn = Cn−1 and Wn = Wn−1 ∪{w}. It follows
that at each step, the new vertex w is added to Cn−1 with probability ≥ p. If at some point
there is no vertex w as required, the process stops and we have generated a cluster, which we
denote by C. If the process continues indefinitely, we set C =

⋃
n Cn. Note that C is contained

in the support of the BRW. Now view the process from a different perspective. Consider Cn
to be the set of open vertices and Wn to be the set of closed vertices in the percolation model.
Each vertex in

⋃
n(Wn ∪Cn) is tested only once, and added to C with probability ≥ p. Thus,

the cluster C dominates the open percolation cluster containing v.

The population size of the BRW is dominated by the population size of a Galton-Watson
branching process with binomial(p, k) offspring distribution. The mean number of offsprings
for that branching process is pk. Hence, by Borel-Cantelli, when pk < ρ(G)−1, the BRW is
transient, that is, almost surely only finitely many particles will visit v. (Compare Benjamini
and Peres (1994)).

Now suppose that p satisfies θv(p) > 0 and ρ(G)pk < 1. We claim that the transience of
the corresponding BRW implies that the probability that two vertices x, y are in the same
percolation cluster goes to zero as the distance from x to y tends to infinity. Indeed, suppose
that there is an ε > 0 and a sequence of vertices xn, yn with the distance d(xn, yn) tending to
infinity, but the probability that they are in the same cluster is greater than ε. That would
mean that the BRW starting at xn has probability at least ε to reach yn and the BRW starting
at yn has probability at least ε to reach xn. Consequently, with probability at least ε2, the
BRW starting at xn will reach xn again at some time after d(xn, yn) steps. Since G is almost
transitive, by passing to a subsequence and applying an automorphism of G, we may assume
that all xn are the same. This contradicts the transience of the BRW.

Let r > 0, and consider m balls in the graph with radius r. If r is large, then with probability
arbitrarily close to 1 each of these balls will intersect an infinite open cluster. But the prob-
ability that any cluster will intersect two such balls goes to zero as the distances between the
balls goes to infinity. Hence, with probability 1, there are more than m infinite open clusters.
The theorem follows.

Suppose that G is not almost transitive, but has bounded degree. Then the above argument
can be modified to show that for p as above, the probability of having at least m infinite open

clusters is at least
(

infv θ
v(p)

)m
.

Grimmett and Newman (1990) showed that ZZ× (some regular tree) satisfies pc < pu < 1. We
now show that pc < pu for many products.
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Figure 1: The enhanced binary tree.

Corollary 1 Let G be an almost transitive graph. Then there is a k0 = k0(G) such that the
product G× Tk of G with the k-regular tree satisfies pc < pu whenever k ≥ k0.

Proof:
Let m be the maximal degree in G. Note that pc(G × Tk) ≤ pc(Tk) = (k − 1)−1, and the
maximal degree in G × Tk is m + k. Observe that ρ(G × Tk) → 0 as k → ∞. Hence, the
corollary follows from the theorem.

If one wishes to drop the assumption that G is almost transitive (but still has bounded degree),
then the above arguments show that for k sufficiently large, there is a p such that the probability
of having more than one infinite open cluster in G× Tk is positive.

Following is a simple example of a planar graph satisfying pc < pu < 1. The planarity will
make the analysis easy.

Example 1 Consider the graph obtained by adding to the binary tree edges connecting all
vertices of same level along a line (see Figure 1). To be more precise, represent the vertices of
the binary tree by sequences of zeros and ones in the usual way, and add to the binary tree an
edge between v, w if v and w are at level n and |0.v− 0.w| = 1/2n, where 0.v is the number in
[0, 1] represented by the sequence corresponding to v. Note that this graph is roughly isometric
to a sector in the hyperbolic plane.

Proposition 1 For this graph, pc < 1−pc ≤ pu(G) < 1, and for p in the range p ∈ (pc, 1−pc)
there are, with probability 1, infinitely many infinite open clusters.

Proof:
First note that G contains the graph G0, obtained by adding to the binary tree edges only
between vertices that neighbor in G and have the same grandmother. G0 is a “periodic
refinement” of the binary tree. By comparing the number of vertices in G0 that are the the
cluster of the root to a Galton-Watson branching process, it is easy to see that pc(G) ≤
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w

Figure 2: The infinite black clusters separate.

pc(G0) < pc(T3) = 1/2. Let p ∈ (pc, 1− pc). For such p, both the open and the closed clusters
percolate, and this is so in any subgraph of G spanned by the binary tree below any fixed
vertex, as it is isomorphic to the whole graph. Pick some finite binary word w. Suppose that
the vertices w,w0, w00, w1, w10 are closed, and each of w00, w10 percolates (in closed vertices)
in the subgraph below it (see Figure 2). This implies that the open clusters intersecting the
subgraph beloww01 will be disjoint from those below w11, which gives non-uniqueness, because
each of these subgraphs is sure to contain infinite open clusters. With probability 1, there is
some such w. Hence, for p ∈ (pc, 1− pc), there is no uniqueness, and pu ≥ 1− pc. It is easy to
see that for p ∈ (pc, 1−pc) there are, with probability 1, infinitely many infinite open clusters.
The proof is completed by the following lemma, which gives pu < 1.

Lemma 1 Let G be a bounded degree triangulation of a disk, or, more generally, the 1-skeleton
of a (locally finite) tiling of a disk, where the number of vertices surrounding a tile is bounded.
Then, for p sufficiently close to 1, there is a.s. at most 1 infinite open cluster.

Proof:
Suppose that each tile is surrounded by at most k edges. Let G′ be the k’th power of G; that
is, V (G′) = V (G), and an edge appears in G′ if the distance in G between its endpoints is at
most k. Then G′ has bounded degree, and therefore, for some p∗ > 0 close to zero, there is no
percolation in G′. Hence, IPp∗ a.s., given any n > 0, there is a closed set of vertices in G′ that
separate a fixed basepoint from ‘infinity’, and all have distance at least n from the basepoint.
If one now thinks of these as vertices in G, they contain the vertices of a loop separating
the basepoint from infinity. The distance from this loop to the basepoint is arbitrarily large.
Taking p = 1 − p∗, then shows that a.s. for IPp on G there are open loops separating the
basepoint from infinity which are arbitrarily far away from the basepoint. Each infinite open
cluster must intersect all but finitely many of these loops. Hence there is at most one infinite
open cluster.

Question 3 Give general conditions that guarantee pu < 1. For example, is pu < 1 for any
transitive graph with one end?
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The proof of the proposition suggests the following conjecture and question.

Conjecture 7 Suppose G is planar, and the minimal degree in G is at least 7. Then at every
p in the range (pc, 1 − pc), there are infinitely many infinite open clusters. Moreover, we
conjecture that pc < 1/2, so the above interval is nonempty.

Such a graph has positive Cheeger constant, and spectral radius less than 1.

Conjecture 8 Let G be planar, set p = 1/2 and assume that a.s. percolation occurs. Then
a.s. there are infinitely many infinite open clusters.

It is not clear if there is any analogous statement in the setting of bond percolation.

There is a large class of graphs in which we can prove the conjecture.

Theorem 5 Let G be a planar graph, which is disjoint from the positive x axis,
{

(x, 0) : x ≥
0
}

. Suppose that every bounded set in the plane meets finitely many vertices and edges of G.
Set p = 1/2, and assume that almost surely percolation occurs in G. Then, almost surely,
there are infinitely many infinite open clusters.

Proof:

Let X be the collection of all infinite open or closed clusters. Suppose that X is finite,
and let R > 0 be sufficiently large so that the disk x2 + y2 < R2 intersects each cluster
in X. For any r > R, and A ∈ X, let t(A, r) be the least t ∈ [0, 2π] such that the point
(r cos t, r sin t) is on an edge connecting two vertices in A (or is a vertex of A). Let A,B ∈ X
be distinct. Suppose that R < r1 < r2, t(A, r1) < t(B, r1) and t(A, r2) < t(B, r2). Take
some r in the range r1 < r < r2. If t(B, r) < t(A, r), then it follows that B is contained in
the domain bounded by the arcs

{
(x, 0) : x ∈ [r1, r2]

}
,
{

(r1 cos t, r1 sin t) : t ∈ [0, t(A, r1)]
}

,{
(r2 cos t, r2 sin t) : t ∈ [0, t(A, r2)]

}
and by A. This is impossible, because B has infinitely

many vertices, and therefore, t(A, r) < t(B, r). Consequently, the inequality between t(A, s)
and t(B, s) changes at most once in the interval R < s <∞. So either t(A, s) > t(B, s) for all
s sufficiently large, or t(A, s) < t(B, s) for all s sufficiently large. In the latter case, we write
A < B. It is clear that this defines a linear order on X.

Because X is finite, it has a minimal element. Let E be the event that the minimal element
in X is an open cluster. By symmetry, IP{E} = 1/2. But Kolmogorov’s 0-1 law implies that
IP{E} is either 0 or 1. The contradiction implies that X is infinite. Consequently, a.s. there
are infinitely many open clusters, or there are infinitely many closed cluster. Consequently,
there are infinitely many open clusters, again by Kolmogorov’s 0-1 law.

Other questions regarding pu are

Question 4 Let G, G′ be two Cayley graphs of the same group (or, more generally, two
roughly isometric almost transitive graphs). Does pc(G) < pu(G) imply pc(G

′) < pu(G′)?

Question 5 Assume that G is an almost transitive graph. Is there uniqueness for every
p > pu? Is there uniqueness at p = pu?
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