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Abstract

Using Monte-Carlo simulations, we estimate numerically disconnection exponents for planar
Brownian motions. These simulations tend to confirm conjectures by Duplantier and Mandel-
brot.

1 Introduction

In recent years, non-intersection exponents for two-dimensional random walks have received a
lot of attention. These critical exponents measure the asymptotic probability that the paths
of random walks (or Brownian motions) in two dimensions do not intersect up to a large time.
One of the tantalizing features of these exponents is that they have been conjectured (see [7],
[6]) to take rational values, some of which can be found in Kac’s table of unitary highest-weight
representation of the Virasoro algebra (see, e.g., Chapter 4 in [8] for a compilation of papers
on this subject). For instance, Duplantier and Kwon [6] have conjectured that the critical
exponents ξk (for k ≥ 2) measuring the asymptotics of the probability that k planar random
walks starting from distinct points avoid intersection are

ξk =
4k2 − 1

12
(1)

(or half of these values, depending on the convention.) These conjectures have been confirmed
by simulations (only) for k = 2, 3 (see Li-Sokal [16], Duplantier-Kwon [6] and Burdzy-Lawler-
Polaski [3]).
Similarly, one can define disconnection exponents for two-dimensional paths. These exponents
ηn characterize the asymptotic behavior of the probability that the union of n independent
random walks (or Brownian motions) does not disconnect some fixed point from infinity. In
other words, this union contains no closed loop around the fixed point.
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Note that the value ξ1 = 1/4 for k = 1 in the formula (1) does not correspond to a non-
intersection exponent. In an attempt to interpret this non-trivial value, Duplantier [7] has
conjectured that the disconnection exponent η1 for one path is in fact equal to η1 = 1/4. If
true, this would support the general conjecture (1). One of the aims of the present paper is
to see whether simulations rule out or tend to confirm this conjecture for η1 (we will see that
the latter is the case).
Lawler [11] has recently shown that the disconnection exponent for two Brownian motions η2

is closely related to the Hausdorff dimension h of the “frontier of planar Brownian motion”
(also called “self-avoiding Brownian motion” by Mandelbrot [17]; this is the boundary of the
unbounded connected component of the complement of the planar Brownian path on a finite
time-interval) and that

h = 2− η2. (2)

Mandelbrot [17] has conjectured by analogy with conjectures on self-avoiding random walks
that h = 4/3, which would imply that η2 = 2/3. We will also see that simulations support
this conjecture. See also [4], [10] for other applications and features of the connection between
critical exponents and fine properties of the planar Brownian path.
We will also give some new conjectures on disconnection exponents and non-intersection ex-
ponents between packs of Brownian motions. These conjectures formally link the number of
Brownian motions allowed to intersect each other (the number of Brownian motions in each
pack) with the central charge of the considered Virasoro algebra.
The paper is organized as follows. We first concentrate on the disconnection exponent for one
random walk. We recall some relevant facts on η1 in section 2, and we present some simulations
and Monte-Carlo estimates in section 3. In section 4, we focus on η2 and then give a brief
statement of results from simulations for three random walks. Finally, in section 5, we give
some further conjectures.

Notation

We will often identify IR2 and the complex plane IC. The real and imaginary parts of a complex
number z will be denoted <(z) and =(z) respectively. For all r > 0, Cr will denote the circle
{z ∈ IC : |z| = r}. We will say that a compact set K ⊂ IC disconnects a point a ∈ IC from
infinity if and only if it contains a closed loop around a.
S will denote the simple random walk on the lattice ZZ2 starting from 0. We also define the
associated continuous function Ŝ as follows: Ŝ(n) = S(n) for all non-negative integer n, and
for all t ∈ [0, 1], we put

Ŝ(n+ t) = tS(n + 1) + (1− t)S(n).

We will say that S[0, n], the path of the random walk from time 0 to time n, disconnects a ∈ IC
from infinity if Ŝ[0, n] = ∪n−1

j=0 [S(j), S(j + 1)] disconnects a from infinity.

2 The Disconnection Exponent for One Walk

Let us first recall the definition of η1 and some rigorous results. Let B = {Bt : t ≥ 0} denote
a complex Brownian motion started from 1 under the probability measure IP and let

Tr = inf{t > 0 : Bt ∈ Cr}
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for r > 0. Then η1 describes the asymptotics of the probability

pr = IP{B[0, Tr] does not disconnect 0 from infinity}

when r → ∞. More precisely, a straightforward subadditivity argument (see, e.g., [9]) shows
that the limit

η1 = lim
r→∞

− ln pr
ln r

exists and is finite and strictly positive. Lawler [13] has recently shown that in fact the
following stronger result holds for some constant c ∈ (0,∞):

lim
r→∞

rη1 pr = c.

The best current rigorous bounds are

1

2π
≤ η1 < .469.

See Werner [19], [18] and Burdzy-Lawler [2]. Lawler and Puckette [15] have shown that the
analogous exponent for the nearest neighbor random walk in ZZ2 exists and is in fact also equal
to η1. This allows us to confidently identify the estimated exponent obtained via random walk
simulations with an approximation of η1. Furthermore, from well-known estimates such as

IP{Tr > r2+ε or Tr < r2−ε} ≤ ce−ar

for all r > 1 and for some fixed a, c > 0, one can show that the probabilities

p′t = IP{B[0, t] does not disconnect 0 from infinity}

and

q′n = IP{S[0, n] does not disconnect 0 from infinity}

satisfy

lim
t→∞

− ln p′t
ln t

= lim
n→∞

− ln q′n
lnn

=
η1

2
(3)

(see [9], [15]). The factor 1/2 has lead to various definitions of these disconnection exponents
(with, for instance, η1/2 instead of η1). Note that (3) implies that

q′n = L(n)n−η1/2, (4)

where limn→∞ lnL(n)/ lnn = 0. The methods developed in Lawler [14] suggest that

0 < lim inf
n→∞

L(n) ≤ lim sup
n→∞

L(n) <∞.

3 Monte-Carlo Simulations for η1

We considered the events

En = {S[0, n] disconnects (1/2,1/2) from infinity}.
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Let D denote the smallest integer for which ED holds. It is not hard to see that

lim
n→∞

ln IP{D > n}
ln q′n

= 1,

and so our consideration of D will produce estimates of η1 via equation (3).
Let Nn denote the “algebraic winding number” of S around a = (1/2, 1/2) defined as follows:
N0 = 0 and for all n ≥ 0,

• Nn+1 = Nn − 1 if <(Sn) ≤ 0, =(Sn) = 0 and =(Sn+1) = 1,

• Nn+1 = Nn + 1 if <(Sn) ≤ 0, =(Sn) = 1 and =(Sn+1) = 0,

• Nn+1 = Nn otherwise.

In other words, Nn+1 = Nn − 1 or Nn+1 = Nn + 1 if S jumps up or down, respectively, across
the half-line {(x, 1/2) : x ∈ (−∞, 1/2)} between the times n and n+ 1. We note that:

Lemma 1

D = inf{n > 0 : ∃p < n where Sn = Sp and Nn 6= Np}.

Proof Put

D′ = inf{n > 0 : ∃p < n where Sn = Sp and Nn 6= Np}.

It is clear that D′ ≥ D, because if p < n, Np 6= Nn and Sn = Sp, then (Ŝu, u ∈ [p, n]) is a
closed loop, and the index of that loop around a is Nn −Np 6= 0.

Now, suppose that D′ > D. In other words, for all (s, t) ∈ [0, D]2 such that Ŝs = Ŝt, one has∫ t

s

dŜu

Ŝu − a
= 0. (5)

But as S[0, D] contains a closed loop around a, it is easy to see that for some finite family
(s0, t0, s1, t1, . . . , sk, tk) ∈ [0, D]2k+2, such that St0 = Ss1 , St1 = Ss2 , . . . , Stk−1 = Ssk and
Stk = Ss0 , one has

k∑
j=0

∫ tj

sj

dŜu

Ŝu − a
6= 0. (6)

But (5) implies that, for all j ∈ {0, . . . , k − 1},∫ sj+1

tj

dŜu

Ŝu − a
= 0

and that
∫ tk
s0
dŜu/(Ŝu − a) = 0. Combined with (6), this implies that

0 =

∫ tk

s0

dŜu

Ŝu − a
=

k∑
j=0

∫ tj

sj

dŜu

Ŝu − a
+
k−1∑
j=0

∫ sj+1

tj

dŜu

Ŝu − a
6= 0.

Hence, D′ ≤ D.
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Using this remark, it is easy for a computer to work out the value of D from a simulation of
S. With an elementary C-program, we can obtain an approximation of η1 via methods used
for the non-intersection exponent simulations (see [3], [6] and [16]). Our aim here is not to
derive high-precision estimates but rather to see whether the conjecture η1 = 1/4 is ruled out
by simulations or not.
Let us fix m < M . Suppose we simulate W random walks. Define A(n) to be the number
of random walks (out of W ) which do not disconnect a before the n-th step. The empirical
exponent η̃1(m,M) is defined as

η̃1(m,M) =
2 ln(A(m)/A(M))

ln(M/m)
. (7)

Note that we consider m < M (just as in [3], [6] and [16]) in order to avoid any difficulties
that, for example, the values of L(n) for large n’s (see (4)) might cause.
When W →∞, η̃1(m,M) converges almost surely towards

η1(m,M) =
2 ln(q′m/q

′
M )

ln(M/m)
.

Of course, when M →∞, m→∞ and m�M , η1(m,M) converges towards η1.

We simulated W = 9×106 walks of length 50000, which produced the following values of A(n)
which are plotted in the graph below.

n 5000 10000 15000 20000 25000
A(n) 4722973 4345105 4136541 3993170 3885387

n 30000 35000 40000 45000 50000
A(n) 3799862 3729841 3670014 3617394 3570793
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3.8e+06

4e+06
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5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
(n

)

n



54 Electronic Communications in Probability

From these values of A(n), we calculate values of η̃1(m,M). We also determine confidence
intervals for our estimates of η1. To do this, we define p = p(m,M) = p′M/p

′
m and let

p̄ = A(M)/A(m) be our estimator of p. Then an approximate 95% confidence interval for p
would be given by [p̄−, p̄+] where

p̄± = p̄± 2

[
p̄(1 − p̄)
A(m)

]1/2

.

This in turn produces an approximate 95% confidence interval for η1(m,M) with bounds given
by

η̃±1 = η̃±1 (m,M) = 2
log(p̄∓)

log(m/M)
.

We now present the results obtained for M = 50000 with a plot of the three functions
η̃−1 (m, 50000), η̃1(m, 50000) and η̃+

1 (m, 50000).

m× 10−3 η̃1(m, 50000) Confidence interval
5 .242902 [.242448, .243356]
10 .243889 [.243334, .244444]
15 .244312 [.243661, .244962]
20 .244022 [.243271, .244774]
25 .243628 [.242759, .244497]
30 .243437 [.242420, .244455]
35 .244356 [.243131, .245582]
40 .245717 [.244158, .247278]
45 .246130 [.243850, .248410]

Table of values for η̃1(m, 50000)
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Plot of η̃1(m, 50000) with confidence intervals

The estimated values for η1(m,M) where M 6= 50000 are presented in the appendix. Here is
a three-dimensional plot of this function:
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It is striking that η1(m,M) is roughly increasing in m and M (see also Appendix 1). It is
therefore not surprising that the simulations yield slightly smaller estimates than the conjec-
tured value. Just as for non-intersection exponents, it is probably just a consequence of the
fact that

f1(r) = − logpr/ log r

is increasing in r. Note also that the big oscillations near the diagonal (when M and m are
close) correspond to a domain where the confidence intervals are larger.



56 Electronic Communications in Probability

4 The Disconnection Exponent for More Than One Walk

One can define disconnection exponents for several Brownian motions in a very similar way.
Let n ≥ 2, and consider n independent planar Brownian motions B1, . . . , Bn starting from
x1, . . . , xn under the probability measure IPX (where X = (x1, . . . , xn) ∈ ICn). For all r > 0
and i = 1, . . . , n, we define

T ir = inf{t > 0 : Bit ∈ Cr}.

We consider the probability

pnr = sup
X∈(C1)n

IPX

 ⋃
1≤j≤n

Bj [0, T jr ] does not disconnect 0 from infinity

 .

Arguments similar to those above (see, e.g., [18]) show that

ηn = lim
r→∞

− ln pnr
ln r

exists and is finite and strictly positive. See again [2], [18] for rigorous bounds. There is (up
to now) no proof of the fact that the same exponent for simple random walks exists and is
equal to ηn. It is however believed to be true. The methods used in [1] or in [15] to show
equivalence between other exponents do not seem to generalize smoothly.
We focus on η2 because of the connection (2) with the Hausdorff dimension of the ‘frontier’
of planar Brownian motion derived by Lawler [12]. Consider two independent random walks
S1 and S2 in Z2 starting from 0. We define the winding numbers N1 and N2 of S1 and S2,
respectively, just as N was defined in section 3. Again, if

En = {S1[0, n] ∪ S2[0, n] disconnects (1/2, 1/2) from infinity},

and if D denotes the first disconnecting time

D = inf{n > 0 : En holds},

then (just as in the previous section)

D = inf{n > 0 : ∃p ≤ n, ∃(i, j) ∈ {1, 2}2 such that Sin = Sjp and N i
n 6= N j

p}.

So, it is again easy to obtain D from simulations of S1 and S2.
We simulated W = 1.5× 106 pairs of walks of length 75000. Let A(n) represent the number
of pairs of walks (out of W pairs) that have not disconnected a = (1/2, 1/2) after n steps.

n 7500 15000 22500 30000 37500
A(n) 199569 158980 139230 126505 117438

n 45000 52500 60000 67500 75000
A(n) 110627 105139 100508 96737 93368
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Plot of A(n) for two walks and W = 1500000.

Considering the empirical probabilities of no disconnection p̃n = A(n)/W up to step n, we
compute the apparent exponent

η̃2(m,M) =
2 log(p̃m/p̃M)

log(M/m)

for m <M . We obtain the following values and 95% confidence intervals for η̃2(m, 75000):

m× 10−3 η̃2(m, 75000) Confidence interval
7.5 .659790 [.655653, .663947]
15 .661386 [.656172, .666622]
22.5 .663767 [.657538, .670019]
30 .662962 [.655663, .670287]
37.5 .661798 [.653261, .670361]
45 .664084 [.653975, .674219]
52.5 .665786 [.653519, .678080]
60 .660460 [.644837, .676109]
67.5 .672876 [.649704, .696077]

Table of values for η̃2(m, 75000)
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Plot of η̃2(m, 75000) with confidence interval.

The following is a three-dimensional plot of the estimated values for η2(m,M) where M 6=
75000.

Plot of η̃2(m,M).
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The corresponding values and confidence intervals are listed in Appendix 2. Note again that
the big oscillations near the diagonal correspond to a domain where the confidence interval is
larger.

In attempting to obtain an estimate for η3, we simulated 2 × 106 sets of three walks, each
of length 30000. Again A(n) represents the number of times no disconnection has occurred
before step n. The values of A(n) for some values of n are listed below :
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n 6000 12000 30000
A(n) 69608 47683 28929

The values of A(n) are (not surprisingly) small; it is therefore more difficult to obtain good
approximations using our primitive method, which we plan to improve. The apparent exponent
η̃3 for m = 6000 and M = 30000 computed as for η̃2 is

η̃3 = 1.091± .014

which is not very informative.

5 Other exponents and more conjectures

We did not resist the temptation of making conjectures on the exact value of disconnection
exponents. A conjecture, which fits with all simulations and estimates we know of is:

ηn =
n2

2(n+ 1)
. (8)

In particular, η1 = 1/4, η2 = 2/3, η3 = 9/8. One also has ηn < n/2, but limn→∞ ηn/n = 1/2
(see [20]).
It is also worthwhile considering the generalizations of the non-intersection exponents ξk,
where n Brownian motions start from each of k distinct points, and where one looks at the
probability of no intersection between any two Brownian motions starting from different points.
We call these exponents, denoted by π(k, n), the non-intersection exponents between packs
of Brownian motions. Let us define them rigorously: for 1 ≤ j ≤ k, 1 ≤ i ≤ n, Bi,j

will denote n × k independent planar Brownian motions starting from Bi,j0 = xi,j, where

X = (xi,j)1≤i≤n,1≤j≤k ∈ ICn×k under the probability measure IPX . We let:

T i,jr = inf{t > 0 : |Bi,jt | = r}.

Then for all r > 1, we consider the events F k,nr defined by

{Bi,j [0, T i,jr ] ∩Bi
′,j′[0, T i

′,j′

r ] = ∅ ∀i, i′ ∈ {1, . . . , n}, ∀j 6= j′ ∈ {1, . . . , k}},

and the probabilities:
pk,nr = sup

X∈(C1)n×k
IPX(F k,nr ).

Then, it is straightforward to check that for all r, r′ > 1,

pk,nrr′ ≤ p
k,n
r pk,nr′ .

Hence, by subadditivity (see, e.g., Lawler [9]):

π(k, n) = lim
r→∞

− ln pk,nr
ln r

exists and is strictly positive. On the other hand, it is easy to check that π(k, n) < ∞ by
considering, for instance, the probability that all Brownian motions stay in well-chosen cones
(see, e.g., [20]).
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Of course, π(k, 1) = ξk. By analogy with ξ1 = η1, we can expect that formally, π(1, n) = ηn.
A reasonable conjecture is

π(k, n) = n
((n+ 1)k)2 − 1

2(n+ 1)(n+ 2)
. (9)

This conjecture contains all previous conjectures, and if true, would link the central charge
of the considered Virasoro algebra with the number of Brownian motions started from each
point. Of course, this is tentative and may very well be ruled out by simulations in the near
future. We will be testing these conjectures shortly and plan to provide links to the results of
these simulations in the list of follow–up papers, or in the comment section that the electronic
support makes available.
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Appendix 1: Table of other values for η̃1

m× 10−3 M × 10−3 η̃1(m,M) Confidence interval

5 10 .240609 [.239826, .241392]
5 15 .241356 [.240726, .241987]
5 20 .242161 [.241593, .242729]
5 25 .242589 [.242058, .243120]
5 30 .242749 [.242243, .243255]
5 35 .242635 [.242147, .243123]
5 40 .242606 [.242132, .243081]
5 45 .242747 [.242284, .243210]
10 15 .242635 [.241572, .243698]
10 20 .243713 [.242891, .244535]
10 25 .244087 [.243367, .244808]
10 30 .244099 [.243438, .244761]
10 35 .243605 [.243134, .244378]
10 40 .243605 [.243012, .244199]
10 45 .243732 [.243160, .244305]
15 20 .245233 [.243937, .246528]
15 25 .245240 [.244261, .246219]
15 30 .244956 [.244111, .245800]
15 35 .244293 [.243526, .245060]
15 40 .244007 [.243292, .244722]
15 45 .244137 [.243459, .244815]
20 25 .245248 [.243755, .246743]
20 30 .244759 [.243646, .245873]
20 35 .243809 [.242859, .244760]
20 40 .243498 [.242641, .244355]
20 45 .243749 [.242953, .244544]
25 30 .242491 [.244160, .245830]
25 35 .242855 [.241624, .244087]
25 40 .242635 [.241590, .243681]
25 45 .243179 [.242240, .244189]
30 35 .241311 [.239487, .243135]
30 40 .241720 [.240379, .243062]
30 45 .242738 [.241601, .243875]
35 40 .242192 [.240212, .244173]
35 45 .243613 [.242160, .245066]
40 45 .245224 [.243086, .247362]
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Appendix 2. Table of other values for η̃2

m× 10−3 M × 10−3 η̃2(m,M) Confidence interval

7.5 15 .656085 [.649565, .662619]
7.5 22.5 .655432 [.650074, .660805]
7.5 30 .657693 [.652793, .662610]
7.5 37.5 .658925 [.654281, .663586]
7.5 45 .658566 [.654094, .663056]
7.5 52.5 .658691 [.654339, .663061]
7.5 60 .659718 [.655453, .664003]
7.5 67.5 .659163 [.654971, .663374]
15 22.5 .654316 [.645006, .663644]
15 30 .659302 [.651978, .666644]
15 37.5 .661074 [.654572, .667595]
15 45 .660132 [.654104, .666178]
15 52.5 .660133 [.654413, .665874]
15 60 .661535 [.656026, .667065]
15 67.5 .660581 [.655242, .665942]
22.5 30 .666329 [.654520, .678157]
22.5 37.5 .666438 [.657408, .675488]
22.5 45 .663533 [.665680, .671408]
22.5 52.5 .662917 [.655723, .670132]
22.5 60 .664519 [.657747, .671314]
22.5 67.5 .662893 [.656437, .669372]
30 37.5 .666578 [.652585, .680593]
30 45 .661550 [.651053, .672069]
30 52.5 .661163 [.652115, .670234]
30 60 .663768 [.655528, .672032]
30 67.5 .661674 [.653993, .669380]
37.5 45 .655395 [.639521, .671292]
37.5 52.5 .657571 [.645718, .669448]
37.5 60 .662434 [.652254, .672639]
37.5 67.5 .659813 [.650639, .669011]
45 52.5 .660145 [.642330, .677981]
45 60 .666895 [.653643, .680172]
45 67.5 .661799 [.650573, .673051]
52.5 60 .674687 [.654870, .694531]
52.5 67.5 .662814 [.648361, .677293]
60 67.5 .649353 [.649704, .696077]
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