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Abstract

We consider an urn model, whose replacement matrix has all entries nonnegative and is bal-
anced, that is, has constant row sums. We obtain the rates of the counts of balls corresponding
to each color for the strong laws to hold. The analysis requires a rearrangement of the colors
in two steps. We first reduce the replacement matrix to a block upper triangular one, where the
diagonal blocks are either irreducible or the scalar zero. The scalings for the color counts are
then given inductively depending on the Perron-Frobenius eigenvalues of the irreducible diago-
nal blocks. In the second step of the rearrangement, the colors are further rearranged to reduce
the block upper triangular replacement matrix to a canonical form. Under a further mild tech-
nical condition, we obtain the scalings and also identify the limits. We show that the limiting
random variables corresponding to the counts of colors within a block are constant multiples
of each other. We provide an easy-to-understand explicit formula for them as well. The model
considered here contains the urn models with irreducible replacement matrix, as well as, the
upper triangular one and several specific block upper triangular ones considered earlier in the
literature and gives an exhaustive picture of the color counts in the general case with only pos-
sible restrictions that the replacement matrix is balanced and has nonnegative entries.

Key words: Urn model, balanced triangular replacement matrix, Perron-Frobenius eigenvalue,
irreducible matrix.
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1 Introduction

Consider an urn with balls of D colors. The colors will be labeled by natural numbers as 1,2, . . . , D.
We start with an initial configuration of balls of different colors, where count of each color is strictly
positive and add up to one. Note that the term “count” is an abuse of notation and it need not
be an integer, but can be any positive real number. The fact here and later that “count” may not
be integers does not cause much problem, as these numbers are used to define certain selection
probabilities only in the sequel. The word “count” allows us to use the more picturesque language
of “drawing a ball”. Let the row vector C0, which we assume to be a probability vector with all
components positive, denote the initial count of balls of each color. The composition of the urn
evolves by adding balls of different colors at times n = 1,2, 3, . . . as follows. The evolution of the
composition of the urn will be governed by a replacement matrix R.

Throughout this article, we shall assume that the replacement matrix R = ((ri j)) is a D × D non-
random balanced (that is, each row sum is same and hence, without loss of generality, one) matrix
with nonnegative entries. Again note that the entries ri j need not be integers, but real numbers. Let
C N denote the row vector of the counts of balls of each color after the N -th trial, N = 1,2, . . .. We
describe the evolution of C N inductively. At the N -th trial, a ball is drawn (or a color is selected)
at random from the urn with the current composition C N−1, so that the i-th color appears with
probability CN−1,i/N , i = 1, . . . , D. If the i-th color appears, then, for j = 1, . . . , D, ri j balls of j-
th color are added to the urn before the next draw, together with the drawn ball, that is CN , j =
CN−1, j + ri j , for j = 1, . . . , D, when i-th color appears in the N -th draw. It is of interest to study the
stochastic behavior of C N as N →∞.

If the replacement matrix is balanced with the common row sum 1 and has nonnegative entries,
then it can be viewed as a transition matrix of a Markov chain on a finite state space of size D and it
will be meaningful to talk about the reducibility or irreducibility of the matrix. However, the notion
of irreducibility can easily be extended to any matrix with all entries nonnegative, see, for example,
Chapter 1.3 of Seneta (2006).

Definition 1.1. A D × D matrix R with all entries nonnegative is called irreducible if for each 1 ≤
i, j ≤ D, there exists n≡ n(i, j) such that the (i, j)-th entry of Rn is strictly positive. A matrix, which
is not irreducible, will be called reducible.

Note that, for an irreducible matrix, there may not exist a common n such that Rn has all entries
strictly positive. As an example, for the matrix

�

01
10

�

, the (1,1)-th entry of all odd powers and
(1,2)-th entry of all even powers will be zero. Any irreducible matrix has a positive eigenvalue
of algebraic multiplicity one, which is larger than or equal to all other eigenvalues in modulus.
Such an eigenvalue is called the Perron-Frobenius eigenvalue of the irreducible matrix. Since no
other eigenvalue equals the Perron-Frobenius eigenvalue, which is real and positive, the Perron-
Frobenius eigenvalue is strictly larger than the real part of any other eigenvalue. The left and the
right eigenvectors corresponding to the Perron-Frobenius eigenvalue have all entries strictly positive.
The Perron-Frobenius eigenvalue will be contained in the interval formed by the smallest and the
largest row sum. The Perron-Frobenius eigenvalue will be in the interior of the interval unless the
matrix is balanced. For a discussion on the Perron-Frobenius eigenvalues of irreducible matrices, we
refer to Chapter 1.4 of Seneta (2006).

In case the replacement matrix R is irreducible, its Perron-Frobenius eigenvalue will be 1, as it is
balanced with common row sum 1. Let πR be the left eigenvector of R, normalized so that the sum of
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the coordinates is 1, corresponding to the Perron-Frobenius eigenvalue. Then πR is also the unique
stationary distribution satisfying πRR = πR and will have all coordinates strictly positive. Then (see,
for example, Gouet 1997) C N/(N + 1)→ πR almost surely. This strong law for the color counts in
the irreducible case has been studied in more general setups and further strong/weak laws, central
and functional central limit theorems for linear combinations of color counts are well known. We
refer to Bai and Hu (1999) for the martingale approach and to Janson (2004) for the branching
process approach; both papers also contain detailed references to the literature.

However, when the replacement matrix is not irreducible or balanced, the balls of different colors
may increase at different rates and strong/weak limits for C n are not known in full generality. Fla-
jolet et al. (2006); Janson (2006); Bose et al. (2009a, b) and the references in these papers contain
some results in these directions which are relevant in this context. The case of upper triangular R
has been studied in these papers, sometimes under suitable assumptions.

Actually some strong laws are also available for more general case of reducible R. For example, the
case of balanced block triangular R with irreducible diagonal blocks have been identified in Gouet
(1997) as an important class among the reducible ones. The assumption of balanced rows leads to
convenient application of martingale techniques. More precisely, let us assume that R is balanced
and upper block triangular with K + 1 blocks, like

















Q1 · · · · · · · · · · · ·
0 Q2 · · · · · · · · ·
...

. . . . . . · · · · · ·
0 · · · 0 QK · · ·
0 · · · 0 0 P

















where Q1, . . . ,QK are irreducible (but not necessarily balanced) matrices with Perron-Frobenius
eigenvalue less than 1 and P is irreducible and obviously balanced with Perron-Frobenius eigenvalue
1. Let πP satisfy πP = πP P. Then Proposition 4.3 of Gouet (1997) says that for such an R, C N/(N+
1)→ (0,0, . . . ,0,πP) almost surely, that is the vectors of color counts corresponding to the first K
blocks are killed if scaled by N . This raises the question whether the rates of the vectors of color
counts corresponding to the first K blocks can be identified.

Janson (2006) has studied a two color urn model with reducible replacement matrix. He took the
matrix to be lower triangular, but did not put any further restrictions. The matrix was allowed to
have different row sums, as well as, possibly negative entries. The asymptotic behavior of the color
counts were discussed in details using branching process techniques.

The above two urn models inspired Bose et al. (2009b) to consider the urn model with triangular
replacement matrix and, under some technical assumptions, the rates of individual color counts
were identified. It is clear that the triangular model, where one deals with blocks of size one, is
a special case of block triangular models with irreducible diagonal blocks. Section 1.2 of Seneta
(2006) sketches an arrangement which reduces a matrix with nonnegative entries to a block lower
triangular one. By further rearranging the states in a reverse order, the matrix can be made into
a block upper triangular one. In fact, any balanced replacement matrix can be reduced to a block
upper triangular one where the diagonal blocks are either irreducible or the scalar zero through
a rearrangement of the colors. It should be stressed that the result is true for any matrix with
nonnegative entries and the equality of row sums is not important. The states can be identified with
colors. Note that any rearrangement of colors is same as a similarity transform by a permutation

1726



matrix. Here the nonzero irreducible diagonal block need not be balanced. The rearrangement is
quite simple in nature, but we have not come across any detailed ready reference in the literature.
So we quickly outline a proof of the rearrangement in the following lemma.

Lemma 1.2. Any matrix R, with all entries nonnegative, is similar to a block upper triangular matrix,
whose diagonal blocks are either irreducible or the scalar zero, via a permutation matrix.

Proof. As already explained, we shall explain the proof through a rearrangement of colors, which is
equivalent to a similarity transform through a permutation matrix.

We shall say a color i leads to a color j, if for some n, the (i, j)-th entry of Rn is positive. The colors
i and j are said to communicate if both i leads to j and conversely. The class of i is defined as
Ci = { j : i communicates with j}. Note that either Ci is empty or contains i. The colors with empty
classes will be called lone colors. For two different colors i and j, either their classes coincide or
they are disjoint. Further note that the submatrices of R corresponding to each nonempty class is
irreducible. Next, make singleton classes of each lone color. The collection of all distinct classes
(including the singleton classes of the lone color) forms a partition of the collection of all colors and
they will form the required blocks after a permutation. A class C is said to lead to another class C ′

if some color in C leads to another color in C ′ and we shall write C �C ′. It is easy to see that “�”
is a well-defined, transitive and anti-symmetric relation and hence is a partial order on the collection
of distinct classes. So the collection of distinct classes can be rearranged in a non-decreasing order.
The corresponding rearrangement of colors will have the replacement matrix in the required block
upper triangular form with zero or irreducible diagonal blocks. The diagonal blocks corresponding
to nonempty classes of some color will give the irreducible ones, while the lone colors will give the
scalar zero diagonal blocks.

It should be noted that the eigenvalues together with multiplicities remain unchanged under simi-
larity transforms. Also, as the similarity transform is done by a permutation matrix, this will result
in the eigenvectors being rearranged correspondingly. In this article, without loss of generality, we
only consider the case of balanced block triangular R with scalar zero or irreducible diagonal blocks.
Note that, for irreducible replacement matrix, we have only one block. A special case of two irre-
ducible diagonal blocks, both of which are balanced, was treated in Bose et al. (2009a). The strong
law there is given in Proposition 4.2(iii) and the proof follows from the proof of Theorem 3.1(iv) of
the same article. The proof essentially used the strong law for the irreducible case mentioned earlier
along with the introduction of a stopping time. However, when the irreducible diagonal blocks are
not balanced, we require new techniques to handle the strong convergence of the vectors of color
counts corresponding to the diagonal blocks. This article presents these new techniques along with
a simplification of earlier proofs using Kronecker’s lemma. The limits are identified later in the ar-
ticle after a further rearrangement and an extra technical assumption is made. The limits involve
suitably normalized left and right eigenvectors of the appropriate irreducible diagonal blocks corre-
sponding to their Perron-Frobenius eigenvalues. The initial zero diagonal blocks identified after this
rearrangement give a different type of limits.

As a consequence of the rearrangement mentioned in Lemma 1.2, the D× D balanced, block upper
triangular replacement matrix R with nonnegative entries is assumed to have K + 1 blocks, where
the diagonal blocks are either irreducible or the scalar zero and none but last of which need to be
balanced. The k-th block contains dk many colors with d1 + · · ·+ dK+1 = D. We shall denote the
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blocks by Qkl , where k, l = 1,2, . . . , K + 1. Thus, Qkl will be of dimension dk × dl and Qkl = 0,
whenever k > l. We shall generally denote the diagonal block Qkk by Qk.

Let χN be the row vector called the incidence vector whose m-th entry will be 1 and all other entries
0, if m-th color is drawn at the N -th draw. The subvectors of C N and χN corresponding to k-th block
of colors will be denoted by C (k)N and χ (k)N respectively. Let FN denote the σ-field generated by the
collection of random vectors {χ1, . . . ,χN}. We have the following evolution equation:

C N+1 = C N +χN+1R. (1)

We shall show that the rates of growth of the color count subvector will be constant in each block
and the rate for the k-th block will be of the form Nαk logβk N .

Definition 1.3. If the color count subvector corresponding to the k-th block grows at the rate
Nαk logβk N , that is, C (k)N /(N

αk logβk N) converges almost surely and in L2, then we shall denote
the rate by the rate pair (αk,βk).

The ordering of the rates of growth induces an ordering on the rate pairs, which is the lexicograph-
ical ordering, that is, the color count subvector of the k-th block grows at a rate faster than that of
the k′-th block if and only if either αk > αk′ or αk = αk′ and βk > βk′ .

One of the goals of this article is to obtain the rate pairs of the count subvectors corresponding to all
the blocks, which we do in Theorem 3.1. The rate pairs depend on the Perron-Frobenius eigenvalues
of the diagonal block matrices, whenever it is irreducible. This introduces another important notion
of this article.

Definition 1.4. For a square matrix Q with nonnegative entries, which is either irreducible or zero,
we define its character µ as the Perron-Frobenius eigenvalue, if Q is irreducible, and as 0, if Q = 0.

For an upper triangular matrix R formed by nonnegative entries with K + 1 diagonal blocks
{Qk}1≤k≤K+1, which are either irreducible or zero matrices, the character of the k-th block will
be denoted by µk.

We shall show that the rate pair of the first block (α1,β1) = (µ1, 0). The rate pairs of the later blocks
will be defined inductively. The rate pair of the k-th block will be determined by the (lexicographi-
cally) largest among the rate pairs (αm,βm) with m = 1, . . . , k− 1 satisfying Qmk 6= 0. If the largest
such pair is denoted by (α,β), then αk = max{α,µk} and βk will be β , β + 1 or 0 according as
α is greater than, equal to or less than µk. This shows the crucial role played by the character in
determining the rates.

In Section 2, we bring in some notations and prove some results which are useful for obtaining
the rates of growth of the color counts. Using these results, we prove the rates, as defined above,
in Section 3. We introduce further notions, the rearrangement to the increasing order and the
assumption (A) in Section 4. Finally, in Section 5, we identify the limits for the replacement matrix
in the increasing order under the extra technical assumption (A). Suitably normalized left and
right eigenvectors corresponding to the Perron-Frobenius eigenvalues of the irreducible diagonal
blocks play an important role in identifying the limits. Thus, we obtain the rate of the color count
subvectors for all urn models with only possible restrictions of nonnegativity of the entries and the
balanced condition on the matrix. We identify the limits as well, but under the extra technical
assumption (A). In the process, we identify the very important role played by the characters of
all the diagonal blocks and suitably normalized left and right eigenvectors of certain irreducible
diagonal blocks corresponding to their Perron-Frobenius eigenvalues.
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2 Notations and some auxiliary results

We begin this section by recalling the notion of Jordan canonical form of a matrix. We need to
introduce the square matrix F for that purpose. The order of the matrix will be clear from the
context. The matrix F will have all entries zero except the ones in the diagonal just above the main
diagonal, namely,

fi j =

(

1, if j = i+ 1,

0, otherwise.

If the order of the matrix is 1, then the corresponding scalar is defined as 0. The matrix F is
nilpotent. In particular, if F has order d, then F d = 0. Further, for any 1 ≤ i < d, F i has all entries
zero except the i-th diagonal above the main one, which has all entries one. If ν is an eigenvalue
of a matrix R, then, define the Jordan block corresponding to ν as Dν = ν I + F . We also have a
matrix Ξν of full column rank, whose columns are Jordan vectors corresponding to ν . In fact, the
first column of Ξν is a right eigenvector of R corresponding to ν and Ξν satisfies RΞν = ΞνDν . In the
Jordan decomposition of R, given by RΞ= DΞ, the matrix D is block diagonal with diagonal blocks
given by Dν corresponding to some eigenvalue ν . The total number of blocks (possibly of different
dimensions), that an eigenvalue ν contributes to D equals its geometric multiplicity and the sum of
the dimensions of the blocks corresponding to ν equals its algebraic multiplicity. The matrix Ξ is
obtained by concatenating the matrices Ξν in the corresponding order.

If z is a non-zero complex number, we denote by T z an upper triangular matrix, which has (i, j)-th
entry is z−( j−i+1), for j ≥ i. As F is a nilpotent matrix, we have

T z =
1

z



I +
∞
∑

i=1

�

1

z
F
�i


=
1

z

�

I −
1

z
F
�−1

= (zI − F)−1.

Now, if λ is a positive number larger than the absolute value of any eigenvalue of a matrix R, then
(λI − R) is invertible. If ν is an eigenvalue of R with the corresponding Jordan decomposition
RΞν = ΞνDν = Ξν(ν I + F), then we have (λI −R)Ξν = Ξν((λ− ν)I − F) = ΞνT−1

λ−ν and hence

ΞνTλ−ν = (λI −R)−1Ξν . (2)

We further use the following notation, defined for all complex numbers z, except for the negative
integers,

ΠN (z) =
N−1
∏

n=0

�

1+
z

n+ 1

�

,

which satisfies Euler’s formula for the Gamma function,

ΠN (z)∼ N z/Γ(z+ 1). (3)

For a vector ξ, the vectors |ξ|2 and ξ2 will denote the vectors whose entries are squares of the
moduli and squares of the entries of the vector ξ respectively. For two real vectors ξ and ζ of same
dimension, inequalities like ξ≤ ζ will correspond to the inequalities for each coordinate.

For a complex number z, we shall denote its real and imaginary parts by ℜz and ℑz respectively.
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We are now ready to do the analysis for obtaining the rates of the color counts for each block. The
presence of diagonal blocks as matrices with possibly complex eigenvalues introduces additional
complications compared to the triangular case. Also in the block triangular case, it is not wise to
study the individual color counts directly. We consider the linear combinations of color counts in
each block with respect to eigenvectors and Jordan vectors. Before obtaining the rates for each color
count, we state some auxiliary results in this section, which will be useful later in proving the rates.
The first result concerns a simple observation regarding (possible complex valued) martingales,
which follows from two simple applications of Kronecker’s lemma.

Lemma 2.1. Let {MN} be a (possibly complex valued ) martingale with the martingale difference
sequence ∆MN = MN+1 − MN satisfying E[|∆MN |2] = O(cN ) for some sequence of positive num-
bers {cN}. If for some other sequence of positive numbers {aN}, which diverges to infinity, we have
∑∞

n=1(cn−1/a
2
n)<∞, then MN/aN → 0 almost surely, as well as, in L2.

Proof. Observe that E[|∆MN/aN |2] = O(cN/a
2
N ), which is summable. Thus,

∑N−1
n=0 ∆Mn/an forms

an L2-bounded martingale, which converges almost surely. Then both the real and the imaginary
parts of this martingale will also converge almost surely. Further, as aN → ∞, using Kronecker’s
lemma, both ℜMN/aN and ℑMN/aN converge to 0 almost surely. Thus MN/aN → 0 almost surely.

Further, since aN diverges to infinity and {cN−1/a
2
N} is summable, we have, again using Kro-

necker’s lemma,
∑N

n=1 cn−1/a
2
N converges to zero. Further, E[|MN |2] = M2

0 +
∑N−1

n=0 E[|∆Mn|2] =
O
�

∑N−1
n=0 cn

�

. Thus, E[|MN |2]/a2
N → 0.

For the second result, we consider a block upper triangular replacement matrix with three blocks.

Lemma 2.2. Consider an urn model with the replacement matrix

R =







Q1 Q12 q13
0 Q2 q23
0 0 1






, (4)

which is balanced and has all entries nonnegative, with d1, d2 and 1 colors in three blocks respectively.
None of the submatrices need to be balanced and, except for Q2, none of the submatrices need to be
irreducible either. However, Q2 is assumed to be irreducible with the Perron-Frobenius eigenvalue µ and
the corresponding right eigenvector ζ. Let ν be another eigenvalue of Q2 with Jordan decomposition
given by Q2Ξν = ΞνDν . The rows of Q12 are {q l}1≤l≤d1

, some of which may be the zero row vectors.
The color count vector and its subvectors are denoted as before.

Also assume that there exists α ≥ µ and an integer β ≥ 0, such that, for all l = 1, . . . , d1, satisfying
q l 6= 0, we have,

CN ,l

Nα logβ N
→ ul almost surely and in L2, (5)

where ul is nonnegative, but can be random. Further assume that

C (2)N ζ/(N
α logβ N) converges almost surely and in L2

to a nondegenerate random variable. Then

C (2)N

Nα logβ N
Ξν →

∑

1≤l≤d1
l:q l 6=0

ulq lΞνTα−ν almost surely and in L2. (6)
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Proof. Let FN denote the σ-field generated by the collection {χ1, . . . ,χN} as before. The incidence
vector and its subvector are defined as before. Let ξ1, . . . ,ξt be the columns of Ξν with t ≥ 1. Define
ξ0 = 0. By the definition of Tλ−ν , it is equivalent to prove that, for i = 1, . . . , t,

C (2)N ξi

Nα logβ N
→

∑

1≤l≤d1
l:q l 6=0

ulq l

�

1

(α− ν)i
ξ1+

1

(α− ν)i−1ξ2+ · · ·+
1

(α− ν)
ξi

�

almost surely and in L2,

(7)
which we shall do by induction.

Now, from the Jordan decomposition, for i = 1, . . . , t, we have Q2ξi = ξi−1 + νξi = eξ. Further,
using the evolution equation (1), we have

C (2)N ξi = C (2)N−1ξi +
∑

1≤l≤d1
l:q l 6=0

χN ,lq lξi +χ
(2)
N
eξ.

From this, we obtain the martingale

MN =
C (2)N ξi

ΠN (ν)
−

N−1
∑

n=0

1

(n+ 1)Πn+1(ν)











∑

1≤l≤d1
l:q l 6=0

Cn,lq lξi +C (2)n ξi−1











(8)

having martingale difference

∆MN =
1

ΠN+1(ν)











∑

1≤l≤d1
l:q l 6=0

�

χN+1,l −
1

N + 1
CN ,l

�

q lξi +
�

χ (2)N+1−
1

N + 1
C (2)N

�

eξ











.

Since,ζ is a right eigenvector corresponding to the Perron-Frobenius eigenvalue of Q2, it has all
coordinates positive and hence, for some c > 0, we have |eξ|2 ≤ cζ. Hence, using Euler’s formula (3)
and the fact that at most one of χN+1,l for l = 1, . . . , d1 and χ (2)N+1 can be nonzero simultaneously,
we have,

E
�

|∆MN |2
�

= O

�

N−(1+2ℜν)

�

E

�

∑

1≤l≤d1
l:q l 6=0

CN ,l |q lξi|
2

�

+ E
h

C (2)N ζ
i

��

.

Hence, by the assumptions made on the rates of convergence of CN ,l for l = 1, . . . , d1 with q l 6= 0,

and C (2)N ζ, we obtain E[|∆MN |2] = O(logβ N/N1+2ℜν−α). Next, we apply Lemma 2.1 with cN =
logβ N/N1+2ℜν−α and aN = Nα−ℜν logβ N . Since α ≥ µ > 0 and ℜν < µ ≤ α, Lemma 2.1 applies
and MN/(Nα−ℜν logβ N) and hence MN/(Nα−ν logβ N) converges to zero almost surely and in L2.

Thus, from Euler’s formula (3) and the definition of the martingale MN in (8), we have,

lim
N→∞

C (2)N ξi

Nα logβ N
= lim

N→∞

1

Nα−ν logβ N

∑

1≤l≤d1
l:q l 6=0

N−1
∑

n=0

(n+ 1)ν

Πn+1(ν)Γ(ν + 1)
logβ(n+ 2)
(n+ 1)1+ν−α

Cn,lq lξi

(n+ 1)α logβ(n+ 2)
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+ lim
N→∞

1

Nα−ν logβ N

N−1
∑

n=0

(n+ 1)ν

Πn+1(ν)Γ(ν + 1)
logβ(n+ 2)
(n+ 1)1+ν−α

C (2)n ξi−1

(n+ 1)α logβ(n+ 2)
,

where the limits are both in almost sure and in L2 sense and we use (5) in the last step.

Since α ≥ µ > ℜν , the first term above simplifies to 1
α−ν

∑′ulq lξi , where the sum is over all

l = 1, . . . , d1, such that q l 6= 0. If for some i ≥ 1, limN→∞C (2)N ξi−1/(N
α logβ N) exists almost surely

and in L2, then

lim
N→∞

C (2)N ξi

Nα logβ N
=

1

α− ν

∑

1≤l≤d1
l:q l 6=0

ulq lξi +
1

α− ν
lim

N→∞

C (2)N ξi−1

Nα logβ N

almost surely and in L2. For i = 1, since ξ0 = 0, we immediately have (7). Assuming the induction
hypothesis for i− 1, (7) can now easily be extended to i as well.

Remark 2.3. If q l = 0 for all l = 1, . . . , d1, the argument of the above proof still goes through with
the obvious modification that any sum over the indices l = 1, . . . , d1 such that q l 6= 0 will be zero,
and the limit in (6) will also be zero.

Finally, we obtain some moment bounds for the color counts in the block upper triangular model,
as reduced by Lemma 1.2. We first obtain the expectation of the linear combination of the count
vector of a block.

Lemma 2.4. Consider an urn model with balanced, block upper triangular replacement matrix R
formed of nonnegative entries, where the k-th diagonal block Qk is either irreducible or the scalar zero
with the character µk. If Qk is irreducible, let ζ be a right eigenvector corresponding to the Perron-
Frobenius eigenvalue, which is also the character, µk. If Qk is the scalar zero, let ζ be the scalar one.
Then

E
h

C (k)N ζ
i

= ΠN (µk)











C (k)0 ζ+
∑

1≤m≤k−1
m:Qmk 6=0

N−1
∑

n=0

1

(n+ 1)Πn+1(µk)
E
�

C (m)n Qmkζ
�











. (9)

Proof. From the evolution equation (1), we get C (k)N ζ = C (k)N−1ζ+
∑k

m=1χ
(m)
N Qmkζ. Taking condi-

tional expectation, we have

E
h

C (k)N ζ|FN−1

i

=
�

1+
µk

N

�

C (k)N−1ζ+
∑

1≤m≤k−1
m:Qmk 6=0

1

N
C (m)N−1Qmkζ. (10)

Taking further expectation and iterating, the result follows.

Next, we define a martingale and obtain a bound on the square moments of the martingale differ-
ence.

Lemma 2.5. Consider an urn model with balanced, block upper triangular replacement matrix R
formed of nonnegative entries, where the k-th diagonal block Qk is either irreducible or the scalar zero
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with the character µk. If Qk is irreducible, let ζ be a right eigenvector corresponding to the Perron-
Frobenius eigenvalue, which is also the character, µk. If Qk is the scalar zero, let ζ be the scalar one.
Then

MN =
C (k)N ζ

ΠN (µk)
−

∑

1≤m≤k−1
m:Qmk 6=0

N−1
∑

n=0

C (m)n Qmkζ

(n+ 1)Πn+1(µk)
(11)

is a martingale and, for the martingale difference ∆MN = MN+1 − MN , we have, for some constant
c > 0,

E
�

(∆MN )
2
�

≤
c

(N + 1)(ΠN+1(µk))2
∑

1≤m≤k
m:Qmk 6=0

E
h

C (m)N 1
i

, (12)

where Qkk = Qk. When Qk is the scalar zero or equivalently µk = 0, the above bound (12) simplifies to

E
�

(∆MN )
2
�

≤
c

(N + 1)

∑

1≤m≤k−1
m:Qmk 6=0

E
h

C (m)N 1
i

. (13)

Proof. The fact that MN is a martingale follows from the expression for the conditional expectation
in (10). We also have

∆MN =
1

ΠN+1(µk)











µk

�

χ (k)N+1−
1

N + 1
C (k)N

�

+
∑

1≤m≤k−1
m:Qmk 6=0

�

χ (m)N+1−
1

N + 1
C (m)N

�

Qmk











ζ.

Since χ (m)N+1 cannot be nonzero simultaneously for two distinct values of m, taking conditional ex-
pectation and ignoring the negative terms, we have,

E
�

(∆MN )
2|FN

�

≤
1

(N + 1)(ΠN+1(µk))2











µ2
kC (k)N ζ

2+
∑

1≤m≤k−1
m:Qmk 6=0

C (m)N

�

Qmkζ
�2











. (14)

Since 1 has all coordinates equal to one, and hence, positive, we have, for some constant c > 0,
ζ2 ≤ c1 and for m = 1, . . . , k− 1 satisfying Qmk 6= 0,

�

Qmkζ
�2
< c1. Putting these bounds and the

fact that µ2
k ≤ 1 in (14) and taking expectation, (12) follows.

When Qk is the scalar zero or equivalently µk = 0, then (13) follows from the simple observations
that ΠN+1(0) = 1 and the first term within the bracket in (14) is absent.

Remark 2.6. If Qmk = 0 for all m = 1, . . . , k− 1, then the results and the arguments of Lemmas 2.4
and 2.5 will still go through with obvious modifications. The last sum within the bracket on the
right side of (9) and the last term in the definition of the martingale in (11) will be absent. The sum
on the right side of (12) will reduce to E[C (k)N 1]. If further Qk = 0, then C (k)N = C (k)0 for all N and
the martingale defined in (11) will be a constant, as µk = 0 as well. This will give E[(∆MN )2] = 0
in (13).
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3 Rates of color counts

We are now ready to give an inductive method to obtain the rates of the color count subvectors
corresponding to each block.

Theorem 3.1. Consider an urn model with a balanced, block upper triangular replacement matrix R
formed by nonnegative entries and with blocks {Qml}1≤m,l≤K+1, where the diagonal blocks Qkk = Qk
are either the scalar zero or an irreducible matrix, for k = 1, . . . , K + 1. Let the characters of the
diagonal blocks be {µk}1≤k≤K+1. The color count vector and its subvectors are defined as before. Then,
for k = 1, . . . , K + 1, there exists nonnegative real numbers αk and nonnegative integers βk, such that
(αk,βk) are the rate pairs for C (k)N , that is, C (k)N /(N

αk logβk N) converges almost surely, as well as, in
L2. The pairs {(αk,βk)}1≤k≤K+1 are defined inductively as follows: For k = 1, α1 = µ1 and β1 = 0.
Having defined (α1,β1), . . . , (αk−1,βk−1), let (α,β) be the (lexicographically) largest rate pair in the
set {(αm,βm) : 1≤ m≤ k−1,Qm,k 6= 0}. If the set is empty, declare (α,β) = (−∞, 0). Then, we define

αk =max{α,µk}

and

βk =







0, if µk > α,

β + 1, if µk = α,

β , if µk < α.

Proof. We use induction on the number of blocks k. For the case k = 1, if µ1 = 0, then the first color
count remains constant and hence converges without scaling. If µ1 > 0, then Q1 is irreducible with
Perron-Frobenius eigenvalue µ1 and a corresponding right eigenvector ζ. Since ζ has all coordinates
positive, choose c > 0 such that ζ2 ≤ c ζ. It is then easy to see that M ′N = C (1)N ζ/ΠN (µ1) is a
martingale with the martingale difference

∆M ′N =
µ1

ΠN+1(µ1)

�

χ (1)N+1−
1

N + 1
C (1)N

�

ζ.

Since 0< µ1 ≤ 1, we get, using Euler’s formula (3), E[
�

∆M ′N
�2
]≤ c E

�

M ′N
�

/((N + 1)ΠN+1(µ1)) =
O
�

N−(1+µ1)
�

, which is summable. Hence M ′N is an L2-bounded martingale, which converges to a

nondegenerate random variable almost surely and in L2, and thus, by Euler’s formula (3), C (1)N ζ/N
µ1

also converges to a nondegenerate random variable Y1 almost surely and in L2.

Next consider any eigenvalue ν of Q1 other than the Perron-Frobenius one, µ1. Let the correspond-
ing Jordan decomposition be Q1(ξ1 : · · · : ξt) = (ξ1 : · · · : ξt)Dν , for some t ≥ 1. Note that
Q1ξi = ξi−1+ νξi , for i = 1, . . . , t, where ξ0 = 0. We define the martingale

M ′′N =
C (1)N ξi

ΠN (ν)
−

N−1
∑

n=0

C (1)n ξi−1

(n+ 1)Πn+1(ν)

as in the proof of Lemma 2.2 and arguing similarly, we get E[
�

∆M ′′N
�2
] = O(N−(1+2ℜν−µ1)). Then,

again applying Lemma 2.1 with cN = N−(1+2ℜν−µ1) and aN = Nµ1−ℜν and arguing as in the proof
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of Lemma 2.2, we have M ′′N/N
µ1−ν → 0 almost surely and in L2. Again, simplifying using Euler’s

formula (3), we have,

lim
N→∞

1

Nµ1
C (1)N ξi = lim

N→∞

1

Nµ1−ν

N−1
∑

n=0

(n+ 1)ν

Πn+1(ν)Γ(ν + 1)
1

(n+ 1)1−µ1+ν

C (1)n ξi−1

(n+ 1)µ1
,

where the limits are both in almost sure and in L2 sense. As ξ0 = 0, the limit is zero for i = 1 and

then inductively, it can be shown that the limits are zero for all i = 1, . . . , t. This gives C (1)N Ξν/N
µ1 →

0 almost surely and in L2. Finally, consider RΞ = ΞD, the Jordan decomposition of R, where ζ is
the first column of Ξ. Then C (1)N Ξ/N

µ1 → Y1(1, 0, . . . , 0) and hence

C (1)N /N
µ1 → Y1π almost surely and in L2, (15)

where π is the first row of Ξ−1 and is a left eigenvector (normalized so that πζ = 1) of Q1 cor-
responding to the Perron-Frobenius eigenvalue of Q1. Hence π has all coordinates positive. This
shows the rate pair (α1,β1) = (µ1, 0) = (µ1,κ1). This technique of handling nonzero characters
will be repeated for the later blocks as well. For a block with a nonzero character, which is then the
Perron-Frobenius eigenvalue of the corresponding irreducible diagonal block, we first find out the
rate of the linear combination of the corresponding count subvector with respect to a right eigenvec-
tor corresponding to the Perron-Frobenius eigenvalue. The limit will be a nondegenerate random
variable, which will be a function of previous such random variables, unless the block is the leading
block of its cluster with the order of the corresponding leading character zero. We then obtain the
limits of the linear combinations corresponding to the Jordan vectors as well with the same rate and
combine them to get the final result for the count subvector.

Assume that the rate pairs have been obtained for the first k−1 blocks. We define (α,β) and (αk,βk)
as in the statement of the theorem and show that (αk,βk) is the required rate pair for the k-th block.
If α = −∞, then Qmk = 0 for all m < k. If we further have µk = 0, that is, Qk = 0, then C (k)N = C (k)0
for all N and the rate pair will be (αk,βk) = (0, 0) as required. So assume either α 6=−∞ or µk 6= 0.
Equivalently we have

Qmk 6= 0 for some m= 1, . . . , k. (16)

First consider the case µk = 0, that is, Qk is the scalar zero. Hence, from (16), we have Qmk 6= 0 for
some m = 1, . . . , k− 1. Then the set {(αm,βm) : 1 ≤ m ≤ k− 1,Qmk 6= 0} is nonempty and αk is a
nonnegative real and βk is a nonnegative integer. Define the martingale MN as in Lemma 2.5 with
ζ as the scalar one, since µk = 0. Then using (13) and the choice of (α,β), we have

E
�

(∆MN )
2
�

= O
�

N−(1−α) logβ N
�

. (17)

Then we apply Lemma 2.1 with cN = N−(1−α) logβ N and aN = Nαk logβk N . Since µk = 0 and α is
nonnegative, we have only two possibilities, α > µk = 0 and α= µk = 0. Observe that

cN−1

a2
N

∼







1

N logβ+2 N
, if α= µk = 0, or equivalently, αk = 0 and βk = β + 1,

1

N1+α logβ N
, if α > µk = 0, or equivalently, αk = α and βk = β
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and thus
∑

N (cN−1/a
2
N ) <∞. So, from Lemma 2.1, we have MN/(Nαk logβk N)→ 0 almost surely

and in L2. Simplifying using Euler’s formula (3), the definition of the martingale, the choice of
(α,β) and the facts that ζ is the scalar one and Nαk logβk N →∞, we have

lim
N→∞

C (k)N

Nαk logβk N
=



























∑

1≤m≤k−1
m:Qmk 6=0

1

β + 1
lim

N→∞

C (m)N

logβ N
Qmk, if α= µk = 0,

∑

1≤m≤k−1
m:Qmk 6=0

1

α
lim

N→∞

C (m)N

Nα logβ N
Qmk, if α > µk = 0,

(18)

where the limits are almost sure, as well as, in L2. Also, all the limits are nonnegative and as (α,β)
is the largest rate pair, at least one of them is nondegenerate. So the limit above is nondegenerate
and we have the rate pair (αk,βk) as suggested in the statement of the theorem. The limit in (18)
will be denoted by Yk.

Next consider the case µk > 0. Then Qk is irreducible with the Perron-Frobenius eigenvalue µk.
Choose ζ as a right eigenvector of Qk corresponding to µk. Since ζ has all coordinates positive,
choose c > 0, such that 1≤ cζ.

If α = −∞, that is, Qmk = 0 for all m = 1, . . . , k − 1, we shall apply Lemmas 2.4 and 2.5 keeping

Remark 2.6 in mind. In this case αk = µk and βk = 0. From Lemma 2.4, we have E
h

C (k)N ζ
i

=

O (Nµk). Defining the martingale MN as in Lemma 2.5, we have E[(∆MN )2] = O(N−(1+µk)), which is
summable. Thus, MN and hence, by Euler’s formula (3), C (k)N ζ/N

µk = C (k)N ζ/(N
αk logβk N) converges

almost surely and in L2 to nondegenerate limits and the limit of the second sequence will be denoted
as Yk.

Finally consider the possibility that α 6= −∞ and µk > 0. Then α is a nonnegative real and β is a
nonnegative integer. From Lemma 2.4, we have,

E
�

1

ΠN (µk)
C (k)N ζ

�

= C (k)0 ζ+
∑

1≤m≤k−1
m:Qmk 6=0

N−1
∑

n=0

logβ(n+ 2)
(n+ 1)1+µk−α

(n+ 1)µk

Πn+1(µk)
E





C (m)n Qmkζ

(n+ 1)α logβ(n+ 2)



 .

By the choice of (α,β), the expectations in the sum of the right side above are bounded. Hence,
using Euler’s formula (3), we have

E
h

C (k)N 1
i

≤ c E
h

C (k)N ζ
i

=







O(Nµk), if µk > α,

O(Nµk logβ+1 N), if µk = α,

O(Nα logβ N), if µk < α

= O(Nαk logβk N).

Observe that the rate pair (αk,βk) is lexicographically larger than or equal to (α,β) and hence
(αk,βk) gives the highest rate, giving,

∑

1≤m≤k
m:Qmk 6=0

E
h

C (m)N 1
i

= O
�

Nαk logβk N
�

.
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Then define the martingale MN as in Lemma 2.5 and we have from (12),

E
�

(∆MN )
2
�

= O
�

N−(1+2µk−αk) logβk N
�

.

We then apply Lemma 2.1 with cN = N−(1+2µk−αk) logβk N and aN = Nαk−µk logβk N . Observe that
cN−1/a

2
N ∼ N−(1+αk) log−βk N . Now αk = max{α,µk} ≥ µk > 0 and hence

∑

N (cN−1/a
2
N ) < ∞.

So, again from Lemma 2.1, we have MN/(Nαk−µk logβk N) → 0 almost surely and in L2. Further
simplifying using Euler’s formula (3), the definition of the martingale and the choice of (α,β), we
have

lim
N→∞

C (k)N ζ

Nαk logβk N

= lim
N→∞

1

Nαk−µk logβk N

∑

1≤m≤k−1
m:Qmk 6=0

N−1
∑

n=0

logβ(n+ 2)
(n+ 1)1+µk−α

(n+ 1)µk

Πn+1(µk)Γ(µk + 1)
C (m)n Qmkζ

(n+ 1)α logβ(n+ 2)
, (19)

where the limits are almost sure, as well as, in L2. Again, all the limits are nonnegative and as
(α,β) is the largest rate pair, at least one of them is nondegenerate. So the limit above is nonde-
generate and will be denoted by Yk. If µk < α = αk and um denotes the almost sure and L2 limit of
C (m)N /(Nα logβ N) for m= 1, . . . , k− 1 with Qmk 6= 0, then the limit in (19) can be further simplified
to

lim
N→∞

C (k)N ζ

Nαk logβk N
=

1

αk −µk

∑

1≤m≤k−1
m:Qmk 6=0

umQmkζ=
∑

1≤m≤k−1
m:Qmk 6=0

umQmk(αk I −Qk)
−1ζ. (20)

Thus, C (k)N ζ/(N
αk logβk N) converges to a nondegenerate limit Yk both almost surely and in L2 and

for µk < α, the limit is given by the right side of (20).

Next consider an eigenvalue ν of Qk other than the Perron-Frobenius eigenvalue with the corre-
sponding Jordan decomposition QkΞν = ΞνDν . Then club all the colors after the k-th block into
a single one and make the first k − 1 blocks into one group and the k-th block into another. This
gives us the replacement matrix in the form (4). Also, by the choice of (α,β), (5) holds with the
rate pair (α,β) and hence (αk,βk). (Note that 0 is a possible limit in (5).) We also have that
C (k)N ζ/(N

αk logβk N) converges to a nondegenerate random variable Yk almost everywhere, as well
as in L2. Thus, by Lemma 2.2, we have

C (k)N Ξν
Nαk logβk N

→
∑

1≤l≤d1+···+dk−1
l:q l 6=0

ulq lΞνTαk−ν almost surely and in L2, (21)

where ul is the almost sure and L2 limit of C N ,l/(Nαk logβk N) for any index l allowed in the sum. If
α = −∞, that is, q l = 0 for all l = 1, . . . , d1 + · · ·+ dk−1, then, by Remark 2.3, the limit in (21) still
holds with the interpretation that the limit is zero.

If µk ≥ α (this includes the case α=−∞), then observe that the rate pair (αk,βk) gives a higher rate
than (α,β) and thus the limits um in (21) are all zero, which gives C (k)N Ξν/(N

αk logβk N)→ 0 almost
surely and in L2. If µk < α, then µk < α = αk, then from (2), we have ΞνTαk−ν = (αk I −Qk)−1Ξν .
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Also, observe that, by the induction hypothesis, the rates are same within a block. Thus, if any index
l is included in the sum on the right side of (21), we can include any other index l ′ in the same
block with q l ′ = 0, as C N ,l ′/(Nαk logβk N) will also converge to ul ′ almost surely and in L2, but will
not contribute anything extra. Further, for the m-th block, the limit vector um in (20) consists of
such ul ’s only. So we can rewrite (21) as

lim
N→∞

C (k)N Ξν
Nαk logβk N

=
∑

1≤m≤k−1
m:Qmk 6=0

umQmk(αk I −Qk)
−1Ξν .

Finally, consider QkΞ= ΞD, the Jordan decomposition of Qk, where the first column of Ξ is ζ. Then,
we have

lim
N→∞

C (k)N Ξ

Nαk logβk N
=







Yk(1, 0, . . . , 0), if µk ≥ α,
∑

1≤m≤k−1
m:Qmk 6=0

umQmk(αk I −Qk)−1Ξ, if µk < α.

Observing, as in the case k = 1, that Ξ−1 has the first row as π, a left eigenvector (normalized so
that πζ = 1) of Qk corresponding to the Perron-Frobenius eigenvalue, which has all coordinates
positive, we conclude that

lim
N→∞

C (k)N

Nαk logβk N
=







Ykπ, if µk ≥ α,
∑

1≤m≤k−1
m:Qmk 6=0

umQmk(αk I −Qk)
−1, if µk < α. (22)

This shows that (αk,βk) is the rate pair for the k-th block and completes the induction step.

4 Rearrangement to the increasing order

To identify the limits when the color counts are scaled as in Theorem 3.1, we need to first rearrange
the colors further and reduce the replacement matrix to the increasing form (see Definition 4.3)
and make a technical assumption (A). The rearrangement to the increasing order is an extension of
Proposition 2.4 of Bose et al. (2009b). Before going into the rearrangement, we need to introduce
some notions in analogy to Section 2 of Bose et al. (2009b).

Note that, in Lemma 1.2, we have required the zero diagonal blocks to be scalar. However, we do
not impose any such condition here. We shall require zero diagonal blocks of higher dimensions for
the rearrangement to the increasing order in Lemma 4.4. Also, if Q is irreducible, then the character
µ is its Perron-Frobenius eigenvalue, and hence all its eigenvalues are smaller than or equal to µ in
modulus. If Q = 0, then all its eigenvalues are zero. Thus, in either case, all the eigenvalues of Q is
smaller than or equal to its character in modulus.

Definition 4.1. For a block upper triangular matrix R formed by nonnegative entries with K + 1
characters {µk}1≤k≤K+1, let 1 ≤ i1 < i2 < · · · < iJ < iJ+1 ≤ K + 1 be the indices of the running
maxima of the characters, that is, µ1 = µi1 ≤ µi2 ≤ · · · ≤ µiJ ≤ µiJ+1

and for i j < k < i j+1 with
j = 1, . . . , J or i j < k ≤ K + 1 with j = J + 1, we have µk < µi j

.
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Since the replacement matrix R is assumed to be balanced, we necessarily have QK+1 is balanced
and µK+1 = 1. Also, the row sums of all other diagonal blocks are less than or equal to one and
hence µk ≤ 1 for k = 1, . . . , K . So we necessarily have iJ+1 = K + 1.

Definition 4.2. In a balanced block upper triangular matrix R formed by the nonnegative entries
with characters {µk}1≤k≤K+1 and their indices of running maxima {i j}1≤ j≤J+1, the blocks indexed
by i j , i j + 1, . . . , i j+1 − 1 form the j-th cluster for j = 1, . . . , J and the iJ+1-th block alone forms the
(J + 1)-th cluster. For j = 1, . . . , J + 1, the i j-th block is called the leading block of the j-th cluster.

We shall define the leading character as λ j = µi j
for j = 1, . . . , J + 1 and the order of the leading

character as, for j = 1, . . . , J + 1,

κ j = #{ j′ < j : λ j′ = λ j}= #{k < j : µk = µi j
}, (23)

which counts the number of earlier occurrences of the character of a leading block.

The concepts of clusters and the leading blocks are to be viewed in comparison to the notions of
the blocks and the leading colors in Bose et al. (2009b). Since the characters are nonnegative, if
λ j = 0 for some j = 1, . . . , J + 1, then we must have λ1 = · · · = λ j = 0, i1 = 1, . . . , i j = j and
κ1 = 0, . . . ,κ j = j−1. Thus, if there are zero diagonal blocks at the beginning, all of them will form
clusters of size one and these are the only leading zero diagonal blocks.

Any balanced block upper triangular matrix R, formed by nonnegative entries and reduced to the
form where all diagonal blocks are either irreducible matrices or the scalars zero, can be further
reduced to a form which we describe next.

Definition 4.3. A balanced block upper triangular matrix R, formed by nonnegative entries and
blocks {Qkl}1≤k,l≤K+1, which are either irreducible or zero matrices, with indices of running maxima
of characters {i j}J+1

j=1 and leading characters {λ j}J+1
j=1 , is said to be in the increasing order if

i. All non-leading zero diagonal blocks are scalar.

ii. For index k of any non-leading block, that is, i j < k < i( j+1) with j = 1, 2, . . . , J , we have

k−1
∑

m=i j

Qmk 6= 0.

iii. If λ j = 0 and κ j > 0 for some j = 2, . . . , J , then each column of the submatrix Qi j−1,i j
must be

nonzero.

The condition (ii) holds for any non-leading block. In fact, the condition (ii) in the above definition
implies that at least one entry of the submatrices Qmk for m= i j , . . . , k− 1 to be nonzero. However,
the condition (iii) extends the requirement to the leading blocks as well, when the leading character
is zero and has a positive order. Further, in this case, we not only have the submatrices as nonzero,
we indeed have each of the columns of the submatrices as nonzero. Note that the condition (iii) in
the above definition is vacuous if λ1 > 0.

It was shown in Proposition 2.4 of Bose et al. (2009b) that any balanced upper triangular matrix can
be reduced to another block upper triangular matrix satisfying the condition (ii) of Definition 4.3
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by a similarity transform using permutation matrices. As in Section 1, the similarity transform
using a permutation matrix will be viewed as a rearrangement of the states, will not change the
eigenvalues with their multiplicities and will rearrange any eigenvector accordingly. We extend that
rearrangement in the following result.

Lemma 4.4. Any balanced block triangular matrix R, with all entries nonnegative and diagonal blocks
either an irreducible matrix or the scalar zero, is similar to a matrix in increasing order via a permuta-
tion matrix.

Proof. As in the proof of Lemma 1.2, we shall describe the similarity transform by a permutation
matrix through a rearrangement of the states. We do it in two steps. In the first step, we obtain
a matrix satisfying condition (ii) in Definition 4.3 alone. The rearrangement is very similar to
Proposition 2.4 of Bose et al. (2009b), where we replace the diagonal entries by the characters of
the blocks, the leading colors by the leading blocks and the blocks by the clusters. We do not repeat
the proof here. By an abuse of notation, we shall use the same set of notations for the rearranged
matrix. Note that all the zero diagonal blocks remain scalar after this rearrangement.

If the first diagonal block is nonzero and hence all the leading characters are nonzero, the condi-
tion (iii) in Definition 4.3 becomes vacuously true and the proof is complete. Thus, without loss of
generality, assume that the first M(> 0) diagonal states are zero. They are the only leading blocks,
which are zero. In the second step, we shall rearrange the colors in these M states to satisfy the con-
dition (iii) in Definition 4.3. Thus the condition (ii) in Definition 4.3 will remain unaffected. Also
none of the non-leading zero diagonal blocks will be affected and they will remain scalar satisfying
the condition (i) in Definition 4.3. Note that this second step of rearrangement may coalesce some
of the initial zero diagonal states and hence the overall number of blocks may reduce. We shall
proceed by induction. The m-th step will produce a zero diagonal block (not necessarily scalar),
which is also a cluster, with the (leading) character zero and order m− 1. We shall show that after
m-th induction step with m ≥ 1, the rearranged matrix is block upper triangular, the first m blocks,
and thus clusters, have {dk}1≤k≤m states and satisfy the condition (iii) in Definition 4.3 and for the
remaining M−(d1+· · ·+dm) states, the columns have at least one entry corresponding to the blocks
after the first m−1 ones, that is, at least one entry with index more than d1+ · · ·+dm−1, as nonzero.

Observe that since λ1 = 0, the first column must be the zero vector. We first bring all states (which
includes the first state), whose columns are zero vectors, to the front and declare that they constitute
the first block, as well as the cluster. The order of the states within the block is not important.
Note that this rearrangement maintains the block upper triangular structure. The condition on the
remaining states among the first M ones also holds, since all zero columns have been collected.
Again, by abuse of notations, we shall use the same set of notations for the matrix thus rearranged.
If the size of the first block d1 = M , we are done. Otherwise, assume that we have obtained m ≥ 1
blocks of sizes {dk}1≤k≤m, which, except the first one, satisfy the condition (iii) in Definition 4.3 and
for the remaining M − (d1 + · · ·+ dm) states, the columns have at least one of the entries, indexed
more than d1 + · · ·+ dm−1, as nonzero. Also, the rearranged matrix is block upper triangular. As
before, by an abuse, we retain the notations. If d1+ · · ·+ dm = M , we are done.

Otherwise, we consider the remaining M−(d1+· · ·+dm) states among the first M ones. The columns
corresponding to all these states have at least one entry with index more than d1 + · · ·+ dm−1 as
nonzero, by the induction hypothesis. Thus, for any column having all entries with index more
than d1 + · · · + dm as zero, one of the entries indexed d1 + · · · + dm−1 + 1 through d1 + · · · + dm
must be nonzero. The (d1 + · · ·+ dm + 1)-th column satisfies this condition and thus the set of the
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states satisfying this condition is nonempty. We collect all the states satisfying this condition, that
is, with the corresponding columns having entries with index more than d1 + · · ·+ dm as zero and
bring them forward, after the m-th block, ahead of the rest, to form the (m+ 1)-th block, as well
as the cluster. The order of the states within the block is again not important. Since the columns
have all entries with index more than d1 + . . . + dm zero, the block upper triangular structure is
retained. Also, after rearrangement, this block satisfies the condition (iii) in Definition 4.3, as,
corresponding to each state, the column has at least one entry corresponding to m-th block, indexed
d1+ · · ·+ dm−1+1 through d1+ · · ·+ dm, as nonzero. Further, since we have collected all the states
with the corresponding columns having entries with index more than d1 + · · · + dm as zero, the
remaining states, if any, should have at least one of the entries with indices more than d1+ · · ·+ dm
as nonzero. This completes the induction step.

Thus, for the rest of this article, we shall, without loss of generality, assume that the balanced
replacement matrix R with all entries nonnegative has diagonal blocks zero or irreducible and is in
the increasing order.

Remark 4.5. The arguments in the proof of Theorem 3.1 can be repeated when the replacement
matrix is in the increasing order and it will be possible to identify the rate pairs more directly for the
replacement matrices in the increasing order. Note that the arguments in the proof of Theorem 3.1
assumed that Qk is the scalar zero, whenever µk = 0, whereas the increasing order allows some of
the leading zero diagonal blocks to be of higher dimension. However, we can break the leading zero
diagonal blocks into the blocks of single colors and obtain the rate pairs separately. It is then easy to
see that, if the k-th block is in the j-th cluster, that is, i j ≤ k < i j+1 for some j = 1, . . . , J or k = i j for
j = J + 1, then αk becomes the leading character of the cluster λ j . Further, if the leading character
of the cluster λ j or its order κ j is zero, then βk is the order of the leading character of the cluster,
κ j . It is not possible to identify βk in such a simple form, if both λ j and κ j are positive and we need
to make the further assumption (A), which we are going to make in the next paragraph, to complete
the identification. We obtain the complete identification of the rates and the limits in Theorem 5.3
under the assumption (A). Yet, it would be important to note that much of the identification of the
rate pairs for the replacement matrix in the increasing order in simple closed form is possible even
without the assumption (A).

To prove Theorem 5.3, as in Bose et al. (2009b), we need to extend the condition (ii) of Defini-
tion 4.3 to the leading block of the ( j + 1)-th cluster, if the order of the leading character of the
cluster is positive, that is κ j+1 > 0, or equivalently λ j = λ j+1. In particular, we make the following
assumption on a balanced, block upper triangular replacement matrix R in the increasing order,
formed by nonnegative entries, with blocks {Qml}1≤m,l≤K+1, indices of the running maxima of the
characters {i j}1≤ j≤J+1, the leading characters {λ j}1≤ j≤J+1 and their orders {κ j}1≤ j≤J+1:

A. Whenever λ j > 0 and κ j > 0, we have
∑i j−1

m=i j−1
Qmi j

6= 0.

This extension may not be possible in general. As a counterexample, consider the following upper
triangular replacement matrix

R =







0.5 0 0.5
0 0.5 0.5
0 0 1






.
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Note that we do not make the assumption (A) when λ j = 0, as, by Lemma 4.4, this extension is
possible if the character 0 is repeated.

To reiterate, we shall assume, for the rest of the article, that the balanced replacement matrix R,
with all entries nonnegative, has diagonal blocks zero or irreducible and is in the increasing order
and further that the assumption (A) holds. The assumption is made for the leading block of the j-th
cluster for j = 1, . . . , J +1, whenever the leading character of the cluster is positive and the order of
that leading character is also positive. Only (A) has to be assumed, while the rest of the form can be
obtained as a reduction from a general balanced replacement matrix with nonnegative entries using
Lemmas 1.2 and 4.4.

For ease of understanding, we present below the j-th cluster, as a typical one, containing blocks with
indices i j , i j + 1, . . . , i j+1− 1 (note that the block with index i j+1 actually goes to the next cluster):























Qi j
Qi j ,i j+1 · · · Qi j ,k · · · Qi j ,i j+1−1

0 Qi j+1 · · · Qi j+1,k · · · Qi j+1,i j+1−1
...

. . . . . .
...

...
0 · · · 0 Qk · · · Qk,i j+1−1
...

...
...

. . . . . .
...

0 · · · · · · · · · 0 Qi j+1−1























.

The characters λ j = µi j
,µk,λ j+1 = µi j+1

of the diagonal blocks Qi j
,Qk,Qi j+1

respectively, satisfy
µk < λ j ≤ λ j+1, for i j < k < i j+1. The index κ j counts number of times λ j has occurred as a
character before i j-th diagonal block.

Note that all the blocks have Perron-Frobenius eigenvalue less than or equal to 1. As observed
earlier, the last block is balanced with row sum 1 and has the Perron-Frobenius eigenvalue, and thus
the character, 1 and hence forms the last cluster. If possible, suppose some earlier block has the
character, and thus the Perron-Frobenius eigenvalue, 1, then it should also be balanced with row
sum 1. Thus it will be a leading block and all other blocks in the same row will be zero submatrices.
Hence, by the condition (ii) of Definition 4.3, the immediately succeeding diagonal block cannot
have the character less than 1. So the next block will also have the character 1 and will be a leading
block and now the assumption (A) will be violated for two successive leading blocks with the same
leading character. Thus, for a balanced block triangular matrix with all entries nonnegative, which
is in the increasing order and satisfies the assumption (A), except for the last block, no other block
will have the character, and thus the Perron-Frobenius eigenvalue, 1. Also, the last block will form
the last cluster in itself.

When Qk is irreducible, the left and right eigenvectors of Qk corresponding to the Perron-Frobenius
eigenvalue µk will be denoted as π(k) and ζ(k), which are normalized so that π(k)1 = 1 = π(k)ζ(k).
Then, π(k) and ζ(k) have all entries positive.

We now describe the main result to be presented in Theorem 5.3. Recall that the clusters with zero
as the leading character are formed by a single block and are at the very beginning and the cluster
with one as the leading character is the last one, that is, (J + 1)-th one and is formed by the last,
that is, (K + 1)-th block. If the leading character of the j-th cluster, λ j = 0, then

1

logκ j N
C
(i j)
N →

1

j!
C (1)0 Q12Q23 · · ·Qi j−1,i j

almost surely and in L2.
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If i j = 1, the continued product of the matrices above is interpreted as the identity matrix and

as C (1)0 is assumed to be nonzero, by the condition (iii) of Definition 4.3, we have the limit as a
nonzero constant vector for all the clusters, if any, with zero leading character. For the last cluster,
which contains only the (K+1)-th block, the scale is N and the limit random vector is π(K+1). In the
j-th cluster, with the leading character λ j ∈ (0, 1), corresponding to the leading block, we have a
non-degenerate random variable Vj such that

1

Nλ j logκ j N
C
(i j)
N → Vjπ

(i j) almost surely and in L2.

Recall that, since the leading character λ j is nonzero, the submatrix Qi j
is nonzero and irreducible

and has the Perron-Frobenius eigenvalue λ j and the corresponding left eigenvector π(i j) normalized
so that the sum of the entries is one. For other blocks in the j-th cluster, we use the same scaling
and the limit random vector is again constant vector multiple of Vj , where the constant vector is
obtained by multiplying π(i j) on right by a constant matrix. Further, if κ j > 0, then Vj is a constant
non-zero multiple of Vj−1. The matrix and the scalar multiples have been defined in (24) and (25)
respectively. Thus, within a cluster, the scale remains same. Further, in the clusters where the
leading characters are same, the scales change by powers of log N , but the limiting random vectors
continue to be constant vector multiples of one scalar random variable. The random variable is
degenerate, if the leading character is zero or one. Thus, the number of random variables involved
in the limit equals the number of distinct leading characters λ j in the open interval (0,1).

In the triangular case discussed in Bose et al. (2009b), the scaled count of the leading color of
a block converged to a random variable. In the block triangular case, we analogously consider the
scaled color count subvector corresponding to the leading block of a cluster. Here the limiting vector
still has one dimensional randomness, as it is a constant vector multiple of a scalar valued random
variable. Further, in the triangular case, the scaled count subvector for a block converged to a vector
which is a constant vector multiple of the limit random variable corresponding to the leading color.
Analogously, the scaled count vector for a cluster in the block triangular case converges to a vector
which is a constant matrix multiple of the limit vector corresponding to the leading block. Moreover,
in the triangular case, if the diagonal entries corresponding to two successive leading colors are
same, then the corresponding limiting random variables are multiples of each other. However, in
the block triangular case, the limit vectors corresponding to two successive leading blocks with the
same Perron-Frobenius eigenvalues are not scalar or matrix multiples of each other. Yet, the scalar
random variables associated with the limit vectors are multiples of each other.

5 Identification of the limits

For the purpose of this section, the replacement matrix R has nonnegative entries, is balanced, block
upper triangular, in the increasing order and satisfies the assumption (A). The notations for the
blocks, the characters, the leading characters and their orders, the eigenvalues and the eigenvectors
remain the same.

To identify the limits, we need to define a sequence of matrices {W k}K+1
k=1 corresponding to the

blocks and another sequence of constants {w j}J+1
j=1 corresponding to the clusters. Actually, these

matrices and constants are useful only when the corresponding characters and leading characters
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are positive, but we define them in all the cases. We define them inductively. We first define the
matrices W k ’s. For the definition of {W k}, we only require the replacement matrix R to be in the
increasing order but we do not need to assume (A), as follows:

i. If k corresponds to a leading block, that is, k = i j for some j = 1, . . . , J + 1 (this includes the
cases k = 1 and k = K + 1), define W k = I , the identity matrix of order dk, where, recall that
dk is the number of colors in the k-th block.

ii. If k corresponds to a non-leading block, that is, i j < k < i j+1 for some j = 1, . . . , J , define

W k =
k−1
∑

m=i j

W mQmk

�

λ j I −Qk

�−1
, (24)

a matrix of order di j
× dk.

Note that, for i j < k < i j+1, µk, the character, and hence the Perron-Frobenius eigenvalue, of Qk
satisfies µk < λ j . Hence the absolute values of all the eigenvalues of Qk, which are smaller than or
equal to µk, are strictly smaller than λ j , making (λ j I −Qk) invertible. Further,

�

λ j I −Qk

�−1
=

1

λ j



I +
∞
∑

i=1

�

1

λ j
Qk

�i


 ,

where the sum on the right side converges. Observe that all the matrices in the summation on
the right side have all entries nonnegative. Further, if µk > 0, or equivalently, Qk is irreducible,
for each element of the matrix on the left side, some power of Qk has the corresponding element
strictly positive. Thus, (λ j I −Qk)−1 has all elements strictly positive, whenever µk > 0. If µk = 0,
or equivalently, Qk is the scalar zero, then (λ j I −Qk)−1 = 1/λ j is a finite positive number too, as
λ j > 0.

The constants w j ’s are defined, when the replacement matrix R is in the increasing order and satisfies
the assumption (A), as follows:

w j =











1, if λ j = 0 or κ j = 0,

1

κ j
π(i j−1)

i j−1
∑

m=i j−1

W mQmi j
ζ(i j), otherwise.

(25)

Note that if κ j > 0 and λ j > 0, then λ j = λ j−1 > 0 as well. Thus, Qi j−1
and Qi j

are both irre-

ducible and it is meaningful to define the left and the right eigenvectors π(i j−1) and ζ(i j) respectively
corresponding to the respective Perron-Frobenius eigenvalues λ j−1 and λ j .

Next proposition shows that right multiplication of a vector with all coordinates positive by W k
keeps all coordinates of the resultant vector positive. This is important to show that the limit random
vector obtained by scaling the count vectors have all coordinates non-degenerate.

Proposition 5.1. Let π be a vector with all coordinates strictly positive and the replacement matrix R
be in the increasing order. Then, for all 1 ≤ k ≤ K + 1, the vector πW k has all coordinates strictly
positive.
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Proof. The proof is done through induction. For k = 1 = i1, we have W1 = I and hence πW1 = π
has all coordinates strictly positive. Then, assume πW m > 0 for all m< k. We consider two cases of
k separately.

For k = i j for some j = 1, . . . , J + 1, by definition W i j
= I and πW i j

= π has all coordinates strictly
positive.

Next consider k such that i j < k < i j+1 for some j = 1, . . . , J . Then, by (24),

πW k =
k−1
∑

m=i j

πW mQmk

�

λ j I −Qk

�−1
.

By induction hypothesis, for all i j ≤ m < k, πW m have all coordinates strictly positive. Next, we
consider two subcases separately according as µk is zero or positive.

First, we assume µk = 0. Since we are considering a non-leading block, the diagonal block must
be the scalar zero. Then πW k = λ

−1
j

∑k−1
m=i j
πW mQmk, where Qmk are dm-dimensional column

vectors. Since, πW m have all coordinates positive, for all i j ≤ m < k, and by the condition (ii) in
Definition 4.3, at least one of the column vectors Qmk with i j ≤ m < k must be nonzero, we must
have πW k is a nonzero scalar.

Next, we assume Qk is irreducible and then we have observed that (λ j I − Qk)−1 has all elements
strictly positive. Also, by the condition (ii) of Definition 4.3, we have, for some i j ≤ m < k, Qmk
must have at least one element strictly positive. Thus, for that m, πW mQmk(λ j I−Qk)−1 will have all
coordinates strictly positive. All other summands on the right side have all coordinates nonnegative.
Thus πW k has all coordinates positive.

This completes the induction step.

We next show that the constants w j ’s are positive. This will show that for a cluster with the Perron-
Frobenius eigenvalue of the leading block same as that of a previous cluster, the limit random vector
obtained from the scaled color counts is non-degenerate.

Corollary 5.2. Let the replacement matrix R be in the increasing order and satisfy the assumption (A).
Then, for all 1≤ j ≤ J + 1, we have w j > 0.

Proof. If κ j = 0 or λ j = 0, then w j = 1 and the result holds. Thus, without loss of generality, we
can assume κ j > 0 and λ j > 0. Since π(i j−1) is a left Perron-Frobenius eigenvector of an irreducible
matrix Qi j−1

, it has all coordinates positive. So, by Proposition 5.1, for all i j−1 ≤ m < i j , π
(i j−1)W m

has all coordinates positive. Since ζ(i j) is the right Perron-Frobenius eigenvector of an irreducible
matrix Qi j

, it again has all coordinates positive. Since κ j > 0, by the assumption (A), we have,
for some i j−1 ≤ m < i j , Qmi j

must have at least one element strictly positive. Thus, for that m,

π(i j−1)W mQmi j
ζ(i j) > 0. Also, for i j−1 ≤ m< i j , Qmi j

have all elements nonnegative. Hence, w j > 0.

This completes the induction step.

Now, we are ready to identify the limits.

Theorem 5.3. Consider an urn model with a balanced, block upper triangular replacement matrix
R, formed by nonnegative entries, having K + 1 blocks, which is in the increasing order with J + 1
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clusters having the leading characters {λ j}1≤ j≤J+1 and their orders {κ j}1≤ j≤J+1. We further assume
that R satisfies the assumption (A). Then the color count subvector corresponding to the k-th block, for
k = 1, . . . , K, satisfying i j ≤ k < i j+1, for some j = 1, . . . , J, we have,

1

Nλ j logκ j N
C (k)N →







1

κ j!
C (1)0

i j−1
∏

m=1

Qm,m+1, if λ j = 0

Vjπ
(i j)W k, if λ j > 0

almost surely and in L2, where Vj is a nondegenerate random variable for j ≤ J. For λ1 = 0, the
continued product in the limit above is interpreted as I .

Furthermore, for the random variables Vj , j = 1, . . . , J, if κ j > 0, we also have

Vj = w jVj−1. (26)

Finally, for the last count subvector we have

1

N
C (K+1)

N → π(K+1) almost surely and in L2.

Proof. Note that the result for the (K + 1)-th block is in Gouet (1997). The rest we prove by
induction on k. Much of the argument has already been completed during the proof of Theorem 3.1.
We shall now use the special structure of the replacement matrix in the increasing order and the
assumption (A) to identify the limits. The rate pair (α,β) will mean same as in Theorem 3.1.

For k = 1, we are in the leading block of the first cluster. If λ1 = µ1 = 0, then clearly C (1)N = C (1)0
and we have the required limit. For λ1 = µ1 > 0, we use the argument given in the proof of
Theorem 3.1 and by choosing ζ = ζ(1) as the normalized right eigenvector, we obtain from (15),
C (1)N /N

µ1 → V1π
(1) almost surely and in L2, for the nondegenerate random variable V1 = Y1, as

required.

Next, we assume that the result holds for all blocks till (k − 1)-th block and we study the k-th
block. We first identify the rate pairs as obtained in Theorem 3.1 using the fact that the replacement
matrix is in the increasing order and the assumption (A) has been made. Recall that an intermediate
rate pair (α,β) was defined as the lexicographically largest one in the set {(αm,βm) : 1 ≤ m ≤
k− 1,Qmk 6= 0}. Then, we obtained αk =max{α,µk} and βk equaled 0, β + 1 or β according as µk
is larger than, equal to or smaller than α. We consider three cases separately, namely, k-th block is
the leading one of its cluster with the corresponding order 0 in the first case, positive in the second
case and the block is a nonleading one of its cluster in the third case. In the first case k = i j for
some j = 1, . . . , J + 1 and κ j = 0. Thus, for all 1 ≤ m ≤ k− 1, we have µm < µk and hence for all
j′ = 1, . . . , j−1, we have λ j′ < µk. So, by the induction hypothesis, for all m= 1, . . . , k−1, (αm,βm)
are, and as a consequence, (α,β) is lexicographically strictly smaller than (µk, 0). This gives α < µk
and (αk,βk) = (µk, 0) = (λ j ,κ j). In the second case k = i j for some j = 2, . . . , J and κ j > 0.
(Note that κ1 = 0 and the last (J + 1)-th cluster is the only cluster with the leading character 1 and
hence κJ+1 = 0.) Also µk = λ j = λ j−1 and κ j−1 + 1 = κ j in this case. If µk = λ j = 0, then using
the condition (iii) of Definition 4.3, and, if µk = λ j > 0, then using the assumption (A), we have
Qmi j

6= 0 for some m= i j−1, . . . , i j−1. Then, using the induction hypothesis, the (lexicographically)
largest rate pair (α,β) is attained at such a value of m and (α,β) = (λ j−1,κ j−1) = (λ j ,κ j − 1).
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Hence α = µk and (αk,βk) = (λ j ,κk). For the third case, i j < k < i j+1 for some j = 1, . . . , J . By
the condition (ii) of Definition 4.3, we have Qmk 6= 0 for some m = i j , . . . , k − 1. Then, using the
induction hypothesis, the (lexicographically) largest rate pair (α,β) is attained at such a value of m
and (α,β) = (λ j ,κ j). Since the k-th block is nonleading, we have µk < λ j and hence α > µk and
(αk,βk) = (λ j ,κ j). Thus, considering all the three cases, we have that the rate for the k-th block,
which is in the j-th cluster, is (αk,βk) = (λ j ,κ j). Also the three cases that α is less than, equal to or
greater than µk are equivalent to the cases that the k-th block is the leading block of its cluster with
the order of the leading character positive, the same with the order of the leading character zero or
the k-th block is a nonleading block of its cluster respectively.

Next, we identify the limits by simplifying the results obtained during the proof of Theorem 3.1
using the fact that the replacement matrix is in the increasing order and the assumption (A) has
been made. First observe that the situation that αk = −∞ and µk = 0 require that Qmk = 0 for all
m = 1, . . . , k and hence for all m, as the matrix is block upper triangular. However such colors have
been included in the first block by the construction in the proof of Lemma 4.4 and this situation
does not occur for k > 1. So we can assume (16) that Qmk 6= 0 for some m= 1, . . . , k.

First consider the case µk = 0. We shall assume that the k-th block is in the j-th cluster, for some
j = 1, . . . , J . As in the limit in (18), we have two subcases, namely, α = µk = 0 and α > µk = 0.
Recall that the subcase α = µk = 0 is equivalent to the fact that the k-th block is the leading
block of the j-th cluster with the order of the leading character being positive. Thus the leading
character is 0 and the k-th block is actually the k-th initial cluster with zero character and then
κk = k− 1 > 0. Also, using the induction hypothesis and the condition (iii) in Definition 4.3, only
m= k− 1 contributes to the limit in (18) and it simplifies to

1

k− 1

1

(k− 2)!
C (1)0

ik−2
∏

m=1

Qm,m+1Qk−1,k =
1

κk!
C (1)0

ik−1
∏

m=1

Qm,m+1.

The subcase α > µk = 0 is equivalent to the fact that the block is a non-leading block of the j-th
cluster and, by the condition (i) of Definition 4.3, contains a single color. Also the diagonal block
is the scalar zero, making λ j I − Qk the scalar λ j . Further, by the induction hypothesis and the
condition (ii) of Definition 4.3, only m = i j , . . . , k − 1 contributes to the limit in (18). Note that
some of the corresponding Qmk may be the zero matrix, but the corresponding extra terms will not
affect the limit. So the limit simplifies to, using (24),

1

λ j
Vjπ

(i j)
k−1
∑

m=i j

W mQmk =
1

λ j
Vjπ

(i j)W k(λ j I −Qk) = Vjπ
(i j)W k.

Finally consider the case µk > 0. We identify the limit for the blocks with positive character
from (22). We shall consider three subcases µk > α, µk < α and µk = α. The subcase µk > α

is equivalent to the fact that the k-th block is the leading block of the j-th cluster for some
j = 1, . . . , J + 1 with κ j = 0. Then, using ζ = ζ(i j) and hence π = π(i j) in the argument of the
proof of Theorem 3.1, we have the limit in the required form, where we declare Vj = Yi j

and use
the fact that W i j

= I . The second subcase µk < αis equivalent to the fact that the k-th block is a
nonleading block of its cluster. Also, by the induction hypothesis, the limit vectors um in (22) will be
nonzero only for m = i j , . . . , k− 1. If some m = i j , . . . , k− 1 has Qmk = 0, they still can be included
in the sum in (22), as they all contribute zero vectors. Then, by the induction hypothesis, the fact
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that αk = λ j and (24), the limit becomes

Vjπ
(i j)

k−1
∑

m=i j

W mQmk(λ j I −Qk)
−1 = Vjπ

(i j)W k.

At the end, we consider the subcase µk = α, which is equivalent to the fact that the k-th block is
the leading block of its cluster with the order of the leading character being positive. Thus, we
have k = i j for some j = 1, . . . , J and κ j > 0. As in the subcase µk > α, by considering ζ = ζ(i j)

and hence π = π(i j), together with the fact that W i j
= I and denoting Vj = Yi j

= Yk, we have,

from (22), the limit as Vjπ
(i j)W i j

. So, to complete the proof, we only need to check (26), which
is done by simplifying (19). Observe that for the subcase µk = α, we have α = αk = µk = λ j
and βk = β + 1 = κ j = κ j−1 + 1. Then, by the assumption (A) and the induction hypothesis, only
the terms corresponding to m = i j−1, . . . , k− 1 will contribute to the limit in (19). Also, the terms
corresponding to m = i j−1, . . . , k− 1 with Qmk = 0 can be included in the sum in the limit, as they
do not contribute anything extra. Thus, recalling the facts that ζ = ζ(i j) and k = i j and using (25),
the limit in (19) simplifies to

Yk = Vj =
1

κ j
Vj−1π

(i j−1)
k−1
∑

m=i j−1

W mQmi j
ζ(i j) = w jVj−1

and proves (26).
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