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1 Introduction

One of the main points of interest of the theory of random matrices is universality, i.e. the question
to what extent the limiting objects appearing in the theory are common for various random matrix
models. Recently a lot of progress has been achieved in this direction including e.g. the proof of the
circular law in a general form [36] as well as significant weakening of the assumptions leading to
the Tracy-Widom distribution for the operator norm [33, 30] or the sine law for local eigenvalues
statistics (see e.g. [15, 34]). Most of these results have been obtained for classical models of random
matrices, i.e. models in which all the entries (or all the entries above the diagonal) of the matrix
are independent random variables. Such models may be considered one of the cornerstones of the
theory of random matrices (the other one being the family of invariant ensembles, which we are not
going to discuss here).

There has been also some results concerning models in which the independence assumption is weak-
ened or completely abandoned. Already in the seminal paper by Marchenko and Pastur [26] one
considers rather independent rows than independent entries, compensating for the lack of indepen-
dence with some moment assumptions. One of important examples considered in [26] is a random
matrix with independent rows distributed uniformly on the unit sphere. This was generalized by
Yin and Krishnaiah [37] to spherically symmetric distributions. Quite recently Aubrun [6] obtained
the Marchenko-Pastur law for matrices with independent rows distributed uniformly on the `n

p ball,
which was subsequently generalized by Pajor and Pastur [27] to matrices with independent rows
distributed according to an arbitrary isotropic1 log-concave measure.

Among other interesting results of Wigner and Marchenko-Pastur type there are those by Götze
and Tikhomirov, dealing with matrices satisfying certain martingale like conditions, without any as-
sumptions on the independence of the entries ([18, 20]). On the other hand Anderson and Zeitouni
[4] constructed models of random matrices with locally dependent entries for which the limiting
spectral distribution is different from that of classical random matrices. Similar results have been
also obtained for structured random matrices (like Toeplitz or Hankel Matrices, see [12]).

As for the circular law, it is not our aim to list all the historical developments concerning this prob-
lem, so we will only mention that most of existing results concern random matrices with inde-
pendent entries (see e.g. [16, 17, 8, 7, 28, 19, 36]) and to our best knowledge, the only article
concerning nonindependent entries is [9] examining the case of random Markov matrices.

The aim of this paper is to provide some rather simple examples of random matrices with non-
independent entries for which classical limit theorems concerning the limiting spectral distribution
still hold. We will focus on the Marchenko-Pastur and circular laws.

The amount of dependence we allow for varies from one result to another. Sometimes, when deal-
ing only with the expected spectral distribution, we will not assume any independence, but only
martingale like conditions in the spirit of Götze and Tikhomirov, a weak law of large numbers and
sufficiently strong integrability. The proofs of these results follow the classical moment approach
and are completely elementary.

For the almost sure limit theorems we will assume independence of rows or columns of the matrix
(these types of results will be easy corollaries from the results for the expected spectral distribution
and well known facts on the concentration of the Stieltjes transform).

1The term isotropic is used in this paper in the meaning of Definition 2.1, i.e. mean zero, covariance identity, which
should not be confused with the meaning in [37], where this term denotes rotational invariance
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Finally for the circular law we will assume that the rows are independent and distributed according
to an unconditional isotropic log-concave measure (which is needed in the proof to ensure good
concentration and bounds on the smallest singular value of the matrix). In this case again our
results will follow easily from the results on the expected spectral distribution with use of the Tao–
Vu replacement principle and recent general results on log-concave measures.

The organisation of the paper is as follows. In Section 2 we discuss limit theorems for symmetric
nonnegative definite random matrices. The main results of this section are gathered in Subsection
2.2 (Theorems 2.3, 2.4).

In Section 3 we apply some of the results of Section 2 to prove the circular law for random matrices
with independent log-concave unconditional rows (Theorem 3.4).

For simplicity we restrict our attention to matrices with real-valued entries (even for the circular
law). However straightforward modifications of our arguments lead to counterparts of all the results
in the complex case.

Acknowledgement The author would like to thank Sasha Sodin for valuable comments concern-
ing an early version of the paper and the anonymous Referees whose comments helped improve the
presentation of results.

2 Symmetric matrices

2.1 Probabilistic assumptions

Let (Nn)n≥1 be a sequence of positive integers such that limn→∞ n/Nn = y ∈ (0,∞) and for each n≥
1 consider random matrices An = [X

(n)
i j ]1≤i≤n,1≤ j≤Nn

. Let us assume that the following assumptions
are satisfied

(A1) for every k ∈ N , supn maxi≤n, j≤Nn
E|X (n)i j |

k <∞,

(A2) for every n, i, j, E(X (n)i j |Fi j) = 0, where Fi j is the σ-field generated by {X (n)kl : (k, l)
6= (i, j)},

(A3) for every ε > 0,

lim
n→∞

1

n

∑

i≤n

P
�
�

�

�

Nn
∑

j=1

(X (n)i j )
2− Nn

�

�

�≥ εNn

�

= 0,

and

lim
n→∞

1

Nn

∑

j≤Nn

P
�
�

�

�

n
∑

i=1

(X (n)i j )
2− n

�

�

�≥ εn
�

= 0.

Remark Note that the assumption (A3) may be read as ’the Euclidean norm of a random row of
the matrix An, normalized by

p

Nn and the Euclidean norm of a random column, normalized by
p

n
both converge in probability to 1’. It is obviously implied by the condition
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(A3’)

lim
n→∞

max
i≤n

P
�
�

�

�

Nn
∑

j=1

(X (n)i j )
2− Nn

�

�

�≥ εNn

�

= 0,

and

lim
n→∞

max
j≤Nn

P
�
�

�

�

n
∑

i=1

(X (n)i j )
2− n

�

�

�≥ εn
�

= 0.

Examples and discussion of the assumptions We would now like to list some examples of ran-
dom matrices satisfying assumptions (A1)–(A3) and to relate these conditions to other assumptions
considered in the literature.

Let us first recall the following definition.

Definition 2.1. An n-dimensional random vector X is called isotropic if it is centered and its covariance
matrix is equal to identity.

1. Obviously if the entries of the matrix are independent with mean zero, variance one and uni-
formly bounded moments of all orders, then the assumptions (A1)–(A3) are satisfied (the assump-
tion (A3) follows e.g. from Chebyshev’s inequality). This example is not of particular interest from
our point of view as the convergence of spectral distributions of matrices generated by independent
random variables is well known under much weaker integrability assumptions.

2. If the law of An in RnNn (which we will identify with the space of n× Nn matrices in a natural
way) is log-concave (see Definition 3.2 below) and isotropic (with respect to the standard basis),
then the assumptions (A1), (A3) are satisfied. If one also assumes unconditionality (see Definition
3.1) with respect to the standard basis, one obtains assumption (A2), although obviously (A2) is
weaker than unconditionality.

Assumption (A1) follows from the so called Borell’s lemma (see [11]), which states that log-concave
variables are exponentially integrable, Assumption (A3) (or even the stronger condition (A3’)) from
Klartag’s concentration results (see Theorem 3.5 in Section 3.2) and the fact that marginals of
isotropic log-concave measures are also isotropic and log-concave.

In particular this class of examples includes matrices sampled from the `p balls in RNnn in isotropic
position, i.e. from the sets Bp = {M = (x i j)i≤n, j≤Nn

: (
∑

i j |x i j|p)1/p ≤ cp,Nn,n}. Here cp,k,n are con-

stants of order (kn)1/p. Another class of matrices covered by this case is matrices with independent
log-concave unconditional rows.

We would like to note that the Marchenko-Pastur theorem has been recently proven by Pajor and
Pastur in the case of general matrices with independent log-concave isotropic rows or columns
(not necessarily unconditional). With our approach we will be able to show that the expected
spectral measure of 1

Nn
AnAT

n converges to the Marchenko-Pastur distribution even if the rows are not
independent (however we additionally have to assume (A2)).
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3. The above examples of vectors with independent entries and with independent log-concave
rows/columns have one common feature. Namely, the convergence of spectral distribution of
1

Nn
AnAT

n can be proven by means of the Stieltjes transform and the bound of the form

Var (〈MX,X〉)≤ o(n2), (1)

where X is any row of An and M is any matrix with ‖M‖`2→`2
≤ 1. In the case of independent

entries this bound is straightforward, for log-concave rows it has been proven by Pajor and Pastur
in [27]. It lies also at the core of the original proof by Marchenko and Pastur. The importance of
concentration of measure for quadratic forms for the limit theorems for spectra of random matrices
of sample covariance type has been also recently emphasized by El Karoui [14].

Here we would like to present a simple class of random matrices with independent rows, which
satisfy assumptions (A1)–(A3) but do not satisfy the above bound.

Choose k ∈N and assume for simplicity that for all n, Nn is divisible by k. Divide the set {1, . . . , Nn}
into k disjoint sets of equal cardinality (say I1, . . . , Ik). Let µn, n = 1,2, . . . be isotropic probability
measures on RNn/k, satisfying (A1) and (A2), with Euclidean norm concentrated around

p

Nn/k

(i.e. µn({x : ||x |−
p

Nn/k|> ε})→ 0 for all ε > 0). Let us also identify RNn with RI1× . . .×RIk . Let
δn be a random variable distributed uniformly on {1, . . . , k} and Yn a random vector independent
of δn, distributed according to µn. Finally let X (n) =

p
k(X1{δn=1}, X1{δn=2}, . . . , X1{δn=k}). In other

words we select the set of nonzero coordinates of X (n) uniformly among I1, . . . , Ik, distribute the
nonzero coordinates according to µn and finally rescale the vector to make it isotropic in RNn . Now
define the rows of An, X (n)1 , . . . , X (n)n as independent copies of X (n).

By construction, the matrix An with rows X (n)1 , . . . , X (n)n satisfies (A1)–(A3) (the condition (A1) fol-
lows from the fact that k is fixed). However if we let M be the matrix of the orthogonal projection
on (say) I1, we get

Var (〈MX(n), X(n)〉) = E(
∑

i∈I1

(X(n)i )
2)2− (E

∑

i∈I1

(X(n)i )
2)2

'
1

k
(k(Nn/k))

2− (
1

k
kNn/k)

2 = N2
n /k− N2

n /k
2,

which is of the order n2. Thus in this case (1) is not satisfied.

Let us also mention that matrices with non-necessarily independent entries, satisfying assumption
(A2) have recently been considered by Götze and Tikhomirov (see [18, 20]). Their results, con-
cerning convergence of the expected spectral measure were obtained with use of the Stein method
and work under the assumption of finiteness of the second moments of the entries, which is much
milder than our assumption (A1). Nevertheless, the other assumptions introduced in their paper
are much more technical, martingale like conditions (although still rather natural in view of the CLT
theory for martingales). In particular it may be checked that the example constructed above does
not satisfy the assumptions (1.11) and (1.12) of Theorem 1.1. in [20]. It is also relatively easy to
construct examples of matrices which satisfy (A1)-(A3) but fail the assumption (1.10) of [20]. From
this point of view, some of the results we present may be seen as compliments of the theorem by
Götze and Tikhomirov. It would be interesting to find a theorem covering both results.
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4. Obviously assumptions of the type (A3’), which are just a quantitative version of the weak law
of large numbers, have been studied in the literature. It is classical and goes back to Khintchine that
it is enough to assume that (X (n)i j )

2 are negatively correlated and have uniformly bounded second
moment (which would follow from (A1)), one can also consider matrices satisfying all sorts of
mixing conditions (see e.g. [22, 32]). Let us finally notice that if we have random matrices An =
[X i j] satisfying (A1) and (A3), then the matrices (A(n)i j εi j), where εi j are independent Rademacher
variables, independent of An will satisfy (A1)–(A3). If many cases, under stronger regularity of An,
we may multiply X (n)i j by more general sequences of independent mean zero variables. It is not our
aim to go into details here, but rather to argue that assumptions (A1)–(A3) are satisfied by many
models when independence is replaced by weaker conditions of partial independence, so we will
leave the details to the Reader.

2.2 Main results for the symmetric case

Marchenko-Pastur Law Recall that the spectral measure of an n × n symmetric matrix H is a
probability measure on the real line defined as

LH =
1

n

n
∑

i=1

δλi
,

where λ1 ≤ . . .≤ λn are eigenvalues of A and δx stands for the Dirac mass at x .

Recall also the following

Definition 2.2. The Marchenko-Pastur distribution with parameter y > 0 is the probability measure
on [0,∞), given by the density

py(x) =
1

2πx y

p

(b− x)(x − a)1[a,b](x)

with an additional point mass of 1− 1/y at 0 for y > 1, where a = (1−py)2, b = (1+py)2.

Theorem 2.3. Let An be a sequence of random matrices satisfying the assumptions (A1)–(A3). Assume
also that limn→∞ n/Nn = y ∈ (0,∞). Let Mn =

1
Nn

AnAT
n . Then for any k ∈N,

lim
n→∞

1

n
EtrM k

n =
k−1
∑

r=0

1

r + 1

�

k

r

��

k− 1

r

�

y r . (2)

In consequence, if Ln is the spectral measure of the matrix Mn, then the (non-random) measure ELn
converges weakly as n→∞ to the Marchenko-Pastur law with parameter y.

Remark If one additionally assumes that the rows (or columns) of the matrix are independent, by
concentration properties of the Stieltjes transform of the spectral distribution (which for the Reader’s
convenience we formulate in the Appendix) one can strengthen the above results to an almost sure
convergence of Ln. In the sequel we will not need the stronger version, however we will need a
corresponding statement for a related model of random matrices described below, for which we will
present a detailed proof.
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Square matrices shifted by a multiple of identity We will now consider the case Nn = n and the
empirical spectral distribution of the matrix

Hn = Hn(z) =
� 1
p

n
An− zId

�� 1
p

n
An− zId

�∗
,

where z is a complex number (note that for z = 0 the problem of spectral distribution of Hn reduces
to the Marchenko-Pastur theorem).

The interest in this type of random matrices stems from the fact that they play an important role in
the proof of the circular law. In the second part of the article we will use the facts established in this
section to prove the circular law for random matrices with independent log-concave unconditional
rows.

Theorem 2.4. Assume that Nn = n and a sequence of random matrices An satisfies assumptions (A1)
– (A3). Then for any k ∈N,

lim
n→∞

1

n
EtrHk

n = µk(|z|2),

where µk(|z|2) is a function depending only on |z|2 and not on the distribution of Hn.

Corollary 2.5. Assume that Nn = n, and An is a sequence of random matrices with independent rows
satisfying assumptions (A1) – (A3). Let Ln(z) be the spectral measure of the matrix Hn(z). For every
z ∈ C, with probability one, Ln(z) converges weakly to a non-random measure which does not depend on
the distribution of the rows of An (in particular is the same as for the case of matrices with independent
standard Gaussian entries).

Remark Note that (as already mentioned) one half of the assumption (A3) follows from the inde-
pendence of the rows and boundedness of moments of the entries.

2.3 Combinatorial facts

2.3.1 Trees

Let T = (V, E, r) be a rooted tree. Divide the set V into two disjoint classes U and D, where U is the
set of vertices whose distance from the root is even, while D is the set of vertices whose distance
from the root is odd. Thus each edge e ∈ E joins a vertex from D (call it v) with a vertex from U
(call it u). We will denote such an edge by e = (u→ v).

Consider the set In
T of functions i= (iv)v∈V : V → {1, . . . max(n, Nn)} such that

• if A is one of the sets D, U then

∀u,v∈A u 6= v⇒ iu 6= iv ,

• if v ∈ D then iv ∈ {1, . . . , Nn},

• if v ∈ U then iv ∈ {1, . . . , n}.
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Finally define
ζn(T ) = n−|U |N−|D|n E

∑

i∈In
T

∏

e=(u→v)∈E

(X (n)iu iv
)2.

We will prove the following easy proposition.

Proposition 2.6. Assume that limn→∞ n/Nn = y ∈ (0,∞). Then for every rooted tree T = (V, E, r)
and every sequence of random matrices satisfying (A1) and (A3), one has

lim
n→∞

ζn(T ) = 1.

Proof. In the course of the proof we will allow all the constants to depend on the constants in
assumption (A1) and y without stating it explicitly. Thus if we write e.g. Oa(1), we mean that the
implicit constant depends only on y , the constants in (A1) and the parameter a.

We will proceed by induction with respect to the size of the tree. If |V | = 1 then clearly ζn(T ) = 1
for all n. Let us thus assume that |V | > 1 and that the proposition holds for all trees of size smaller
than |V |. Let us consider an arbitrary leaf w of the tree T , distinct from the root. Let x be the unique
neighbour of w. We will consider in detail only the case when w ∈ D, the other case is similar. Let
T̃ = (Ṽ , Ẽ, r) be the tree obtained from T by deleting the vertex w together with the adjacent edge
e = (x → w). Let Ĩn be the set of multi-indices iṼ : Ṽ → {1, . . . ,max(n, Nn)} which can be extended
to a multi-index iV = (iṼ , iw) ∈ In

T . Denote also U(iṼ ) =
∏

e=(u→v)∈Ẽ(X
(n)
iu iv
)2.

We have

ζn(T ) = n−|U |N−|D|n

∑

iṼ∈ Ĩn

∑

iw :
(iṼ ,iw )∈In

T

E((X (n)ix iw
)2U(iṼ )).

For n large enough (depending on T) In
T̃
= Ĩn, and there are only |D| − 1 choices of iw such that

(iṼ , iw) /∈ In
T . Moreover, by the generalized Hölder inequality and the assumption (A1), for every

such iw , E((X (n)ix iw
)2U(iṼ )) is bounded by a number independent of n. Therefore for large n,

ζn(T ) = n−|U |N−|D|n

∑

iṼ∈In
T̃

�

Nn
∑

iw=1

E
�

(X (n)ix iw
)2U(iṼ )

�

+OT (1)
�

= n−|U |N−|D|n

∑

iṼ∈In
T̃

Nn
∑

iw=1

E
�

(X (n)ix iw
)2U(iṼ )

�

+ oT (1), (3)

where in the last inequality we used the fact that |In
T̃
|= n(n−1) · · · (n−|U |+1)Nn · · · (Nn−|D|+2) =

OT (n|U |+|D|−1).

Now

�

�

�n−|U |N−|D|n

∑

iṼ∈In
T̃

Nn
∑

iw=1

E
�

(X (n)ix iw
)2U(iṼ )

�

− ζn(T̃ )
�

�

�

≤ n−|U |N−|D|+1
n

∑

iṼ∈In
T̃

E
�

|N−1
n

Nn
∑

iw=1

(X (n)ix iw
)2− 1|U(iṼ )

�

. (4)
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For every ε > 0 and every iṼ ∈ In
T̃

we have

E
�

|N−1
n

Nn
∑

iw=1

(X (n)ix iw
)2− 1|U(iṼ )

�

≤ εEU(iṼ ) +




|N−1
n

Nn
∑

iw=1

(X (n)ix iw
)2− 1|U(iṼ )







2
P
�
�

�

�

Nn
∑

j=1

(X (n)ix j )
2− Nn

�

�

�≥ εNn

�1/2
.

By assumption (A1), the triangle inequality in Lp and generalized Hölder’s inequality

EU(iṼ ) and




|N−1
n

Nn
∑

iw=1

(X (n)ix iw
)2− 1|U(iṼ )







2

are bounded by a constant CT , depending only on T and the constants in (A1). In consequence, by
(3) and (4), we get that for large n,

|ζn(T )− ζn(T̃ )| ≤ ε+ CT n−|U |N−|D|+1
n

∑

iṼ∈In
T̃

�

ε+P
�
�

�

�

Nn
∑

j=1

(X (n)ix j )
2− Nn

�

�

�≥ εNn

�1/2�

.

Now, by the formula for cardinality of In
T̃

and the fact that for each ix there are at most n|U |−1N |D|−1
n

multi-indices iṼ\{x}, such that iṼ = (iṼ\{x}, ix) ∈ In
T̃
, we have

|ζn(T )− ζn(T̃ )| ≤ (CT + 1)ε+ CT
1

n

n
∑

i=1

P
�
�

�

�

Nn
∑

j=1

(X (n)i j )
2− Nn

�

�

�≥ εNn

�1/2
.

Note that by the Cauchy-Schwarz inequality,

1

n

n
∑

i=1

P
�
�

�

�

Nn
∑

j=1

(X (n)i j )
2− Nn

�

�

�≥ εNn

�1/2
≤
�1

n

n
∑

i=1

P
�
�

�

�

Nn
∑

j=1

(X (n)i j )
2− Nn

�

�

�≥ εNn

��1/2

and thus by (A3) we get
|ζn(T )− ζn(T̃ )|= oT (1),

which in combination with the induction assumption proves that ζn(T )→ 1 as n→∞.

The other case to consider, when w ∈ U , is analogous, one simply uses the other part of assumption
(A3) to show that ζn(T ) and ζn(T̃ ) are close.

2.3.2 Γ-trees

For the purpose of proving Theorem 2.4 it will be convenient to consider a special class of trees,
which we introduce below in an abstract form together with a theorem on the asymptotic behaviour
of counterparts of quantities ζn investigated in the previous section. The proofs will be very similar
to those for ζn, the main difficulty being a slightly more involved notation.
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Definition We define a Γ-tree as a rooted tree T = (V, E, r) possessing the following additional
structure

1. The set V is partitioned into two sets S and O. The elements of S (resp. O) will be called
special (resp. ordinary) vertices

2. Each edge adjacent to a special vertex is given an orientation in such a way that

• For any special vertices u, w such that on the path u= v0v1 . . . vm = w joining them there
are no special vertices besides u and w,

– if m is odd then the orientations of the first and the last edge on this path are the
same (i.e. we have (u→ v1 and vm−1→ w) or (v1→ u and w→ vm−1)),

– if m is even then the orientation of the first and the last edge on this path are
opposite,

• if r ∈ O then for any special vertex u such that u is the only special vertex on the path
r = v0v1 . . . vm = u from r to u, we have vm−1→ u iff m is odd.

Partition The orientation of paths between elements of S allows us to further partition O into two
sets U and D in the following way.

Let u ∈ O and let r = v0v1 . . . vm = u be the path from the root to u.

• If r ∈ O and v1, . . . , vm−1 ∈ O, then u ∈ D iff m is odd (otherwise u ∈ U),

• if vl is the last special vertex on the path then u ∈ D iff (m− l is odd and vl → vl+1) or (m− l
is even and vl+1→ vl).

Notice that every edge e with both ends in O has one end v in D and the other end u in U . We will
assign to such edges the orientation u→ v. This way we have given orientation to all the edges of
T . Whenever we want to stress the orientation of the edge with ends u, v we will write e = (u→ v).

Definition of ξn(T ) For a fixed sequence of random n×n matrices An = [X
(n)
i j ]i, j≤n and any Γ-tree

T we define a number ξn(T ) in the following way.

Consider the set In
T of functions i = (iv)v∈V : V → {1, . . . n} such that if A is one of the sets D ∪ S,

U ∪ S then
∀u,v∈A u 6= v⇒ iu 6= iv

and for every e = (u→ v) ∈ E, iu 6= iv .

Set
ξn(T ) = n−|E|−1E

∑

i∈In
T

∏

e=(u→v)∈E

(X (n)iu iv
)2.
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Example Consider a tree T on four vertices 1, 2,3, 4, in which 1 is the root, S = {1, 2}, O = {3, 4}
and the edges are 2→ 1, 4→ 2, 2→ 3. Then D = {3}, U = {4} and

ξn(T ) =
1

n4

∑

1≤i1,i2,i3,i4≤n
i1 6=i2,i1 6=i3,i1 6=i4

i2 6=i4,i2 6=i3

E(X (n)i2 i1
)2(X (n)i4 i2

)2(X (n)i2 i3
)2.

Proposition 2.7. Assume that Nn = n and the sequence of random matrices An satisfies the assumptions
(A1) and (A3). Then for every Γ-tree T ,

lim
n→∞

ξn(T ) = 1.

Proof. Since the argument is very similar to the proof of Proposition 2.6, we will present only a
sketch. We proceed by induction with respect to the number of vertices in T . For V = 1, we have
ξn(T ) = 1 for all n. If |V | > 1, we consider an arbitrary leaf v of T different from the root. Let
us notice that by removing this vertex together with the adjacent edge, we obtain a new tree T̃
endowed with a structure of a Γ-tree, inherited from T . By arguments very similar to those given
for Proposition 2.6 one can show that γn(T ) = γn(T̃ )+ oT (1), which ends the induction step (again
one has to consider two cases depending on the orientation of the edge adjacent to v and for each
of them use one of the assertions given in assumption (A3)).

2.4 Proof of Theorem 2.3

Since the Marchenko-Pastur distribution is determined by its moments, which are given by the right
hand side of (2), it is enough to prove the first part of the theorem. A major part of the proof will
follow the classical approach for matrices with independent entries, which will be complemented by
Proposition 2.6.

Definition of ∆ graphs We will work with the class of ∆ graphs, following the definition given in
[7] but slightly changing the formalism to better suit our needs.

1. For two sequences i = (i1, . . . , ik) and j = ( j1, . . . , jk) of integers (not necessarily distinct) we
define a ∆-graph G(i, j) as a bipartite graph (Ii, Ij, E), such that Ii = {i1, . . . , ik} (upper indices),
Ij = { j1, . . . , jk} (lower indices) and the set E of edges consists of k directed edges from iu to ju
(u = 1, . . . , k) and k directed edges from ju to iu+1 (u = 1, . . . k), where we set ik+1 = i1. We will
also label the edges from 1 to 2k in the order (i1, j1),( j1, i2),(i2, j2),...,(ik, jk), ( jk, i1) (which clearly
allows for the reconstruction of the indices i, j from the graph G(i, j)). We stress that Ii and Ij may
not be disjoint, but their common elements will be nevertheless treated as different objects when
considered as upper and lower vertices of the graph.

2. An edge (iu, ju) will be called a down-edge, an edge ( ju, iu+1) an up-edge.

Let us also define for any edge e in G(i, j), u(e) and d(e) to be the upper and lower vertices of e
(more formally, if e = (v, w) and e is labeled by an odd number then u(e) = v, d(e) = w, whereas if
e is labeled by an even number then u(e) = w, d(e) = v).
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3. Following the classical approach we will now introduce an equivalence relation on the pairs of
indices (i, j).

We will say that two pairs (i, j) and (i′, j′) are isomorphic if there exist injective functions f , g from
Ii, Ij onto Ii′ , Ij′ respectively such that for u= 1, . . . , k,

f (iu) = i′u, g( ju) = j′u.

4. We will call graphs G(i, j) and G(i′, j′) isomorphic (which we will denote by G(i, j)∼ G(i′, j′)) iff
(i, j) and (i′, j′) are isomorphic.

5. Let ∆(k) be the set of representatives for the isomorphism classes of ∆ graphs G(i, j) such that
i = (i1, . . . , ik), j = ( j1, . . . , jk) and il ∈ {1, . . . , k}, jl ∈ {k + 1, . . . , 2k}. Note that any graph based
on two sequences of length k is isomorphic to a graph in ∆(k) (it is enough to properly relabel the
vertices).

We will also define for ∆ ∈ ∆(k), In
∆ to be the set of all indices i: V (∆) → {1, . . . ,max(n, Nn)}

(where V (∆) is the set of all vertices of ∆)), such that

• for any two upper vertices v, w, iv 6= iw ,

• for any two lower vertices v, w, iv 6= iw ,

• for any upper vertex v, iv ∈ {1, . . . , n},

• for any lower vertex v, iv ∈ {1, . . . , Nn}.

With the above notation we can write

1

n
EtrM k

n =
1

nN k
n

n
∑

i1,...,ik=1

Nn
∑

j1,..., jk=1

EX (n)i1 j1
X (n)i2 j1

X (n)i2 j2
X (n)i3 j2

. . . X (n)ik jk
X (n)i1 jk

=
1

nN k
n

∑

∆∈∆(k)

∑

i,j∈{1,...,max(n,Nn)}k :
G(i,j)∼∆

EX (n)i1 j1
X (n)i2 j1

X (n)i2 j2
X (n)i3 j2

. . . X (n)ik jk
X (n)i1 jk

=
∑

∆∈∆(k)

1

nN k
n

∑

i∈In
∆

E
∏

e∈E(∆)

X (n)iu(e) id(e)
,

where E(∆) is the set of edges of ∆.

Now, still following [7], we can divide ∆(k) into three classes ∆i(k), i = 1,2, 3, where

• ∆1(k) is the class of graphs, in which to each down edge there corresponds exactly one up
edge with the same vertices and after merging the corresponding up and down edges and
disregarding the orientation, one obtains a tree with k+ 1 vertices,

• ∆2(k) is the class of graphs in which after disregarding the orientation of edges there is an
edge of multiplicity one,

• ∆3(k) = ∆(k) \ (∆1(k)∪∆2(k)).
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Note that by assumption (A2) for ∆ ∈∆2(k) and every i ∈ In
∆,

E
∏

e∈E(∆)

X (n)iu(e) id(e)
= 0.

Moreover, using connectedness, it is easy to see that each ∆ ∈ ∆3(k) has at most k vertices and
therefore |In

∆|= O(nk). Since by Hölder’s inequality E
∏

e∈E(∆) X
(n)
iu(e) id(e)

is bounded by a constant de-
pending only on k and the constants in (A1), this implies that graphs from∆3(k) have no asymptotic
contribution to 1

n
EtrM k

n .

Thus, just as in the classical case of independent entries, we are left with the analysis of the contri-
bution coming from ∆1(k). This is where we will apply Proposition 2.6.

For r = 0, . . . , k−1 let ∆1(k, r) be the class of those graphs in ∆1(k) which have exactly r+1 upper
vertices (which implies that there are k − r lower vertices). It is well known (see e.g. Lemma 3.3
in [7]) that |∆1(k, r)| = 1

r+1

�k
r

��k−1
r

�

. For each ∆ ∈ ∆1(k, r) let T (∆) be the rooted tree obtained
from ∆ in a way described when introducing the class ∆1(k) (we choose the vertex i1 to be the
root). We have

1

n
EtrM k

n =
k−1
∑

r=0

∑

∆∈∆1(r,k)

1

nN k
n

∑

i∈In
∆

E
∏

e∈E(∆)

X (n)iu(e) id(e)
+ o(1)

=
k−1
∑

r=0

∑

∆∈∆1(r,k)

� n

Nn

�r 1

nr+1N k−r
n

∑

i∈In
∆

E
∏

e∈E(∆)

X (n)iu(e) id(e)
+ o(1)

=
k−1
∑

r=0

∑

∆∈∆1(r,k)

� n

Nn

�r
ζn(T (∆)) =

k−1
∑

r=0

1

r + 1

�

k

r

��

k− 1

r

�

y r + o(1),

where in the last line we used Proposition 2.6. This ends the proof of Theorem 2.3.

2.5 Proofs of Theorem 2.4 and Corollary 2.5

Theorem 2.4 will also be proved with use of ∆-graphs. Let us remark that the proof of the corre-
sponding theorem for matrices with independent entries given in [16] or [7], as well as its gener-
alization in [13], use Stieltjes transform. However in [7] the authors mention that a combinatorial
proof is possible and leave the details to the Reader as an exercise. Many of the formalities intro-
duced below may be seen as a solution to this (rather involved) exercise and one of many possi-
ble ways to formalize the underlying combinatorics. We are not aware of any description of this
particular problem in the literature (for specific models of random matrices the result may follow
from general facts in free probability), but obviously in view of well known proofs of Wigner or
Marchenko-Pastur theorems the methodology is rather standard and we do not claim any novelty
here. Our main contribution is the observation given in Proposition 2.7 and its implications for the
proof of Theorem 2.4 available beyond the case of independent random variables.

The combinatorial construction below will be introduced in full generality, however to illustrate it
we provide two concrete examples which, while being relatively simple, capture the essential part
of the argument. So as not to obscure the general idea we present these examples after the proof of
Theorem 2.4.
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1. For the proof of Theorem 2.4 let us again consider the bipartite graphs G(i, j) as introduced in
point 1 of Section 2.4. Although the basic definition of G(i, j) remains the same, because of the
shift of the random matrices by zId we are forced to consider different combinatorial structure on
the family of graphs, in particular to distinguish a special class of perpendicular edges (as in [7],
Chapter 10) and to change the notion of isomorphism (in a way which will preserve perpendicular
edges).

2. Additionally to the partition of edges into the classes of up and down edges we will call an edge
perpendicular if its two end-vertices are equal (i.e. have equal labels) or skew if they are distinct.
We will denote the set of perpendicular up (resp. down) edges by U P(∆) (resp. DP(∆)) and the
set of skew edges by S(∆).

3. The pairs (i, j) and (i′, j′) are said to be isomorphic if there exist injective functions f , g from
Ii, Ij onto Ii′ , Ij′ respectively such that for u= 1, . . . , k,

• f (iu) = i′u, g( ju) = j′u,

• f (iu) = g( ju) iff iu = ju,

• f (iu+1) = g( ju) iff iu+1 = ju.

3. We will call two graphs G(i, j) and G(i′, j′) isomorphic iff the pairs (i, j), (i′, j′) are isomorphic in
the above sense.

4. Let ∆(k) be the set of representatives for the isomorphism classes of ∆ graphs G(i, j) where
i = (i1, . . . , ik), j = ( j1, . . . , jk) and il , jl ∈ {1, . . . , 2k}. Similarly as in the previous section any graph
based on two sequences of length k is isomorphic to a graph in ∆(k).

We will also define for ∆ ∈∆(k), In
∆ to be the set of all indices i: V (∆)→ {1, . . . , n} such that

• for any two upper indices v, w, iv 6= iw ,

• for any two lower indices v, w, iv 6= iw ,

• for any edge iu(e) = id(e) iff e is perpendicular.

Finally let us denote Wn = n−1/2An − zId = (wi j)i, j≤n. Note that to simplify the notation we have
suppressed the superscript (n) denoting the dependence of the random coefficients on n. In what
follows we will keep the same convention and write X i j instead of X (n)i j . We have
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n−1EtrHk
n = n−1

n
∑

i1,...,ik=1

n
∑

j1,..., jk=1

Ewi1 j1 w̄i2 j1 wi2 j2 w̄i3 j2 · · ·wik jk w̄i1 jk

= n−1
∑

∆∈∆(k)

∑

i,j∈{1,...,n}k :
G(i,j)∼∆

Ewi1 j1 w̄i2 j1 wi2 j2 w̄i3 j2 · · ·wik jk w̄i1 jk

=
∑

∆∈∆(k)

n−1
∑

i∈In
∆

E
�
∏

e∈S(∆)

wiu(e) id(e)

∏

e∈U P(∆)

w̄iu(e) id(e)

∏

e∈DP(∆)

wiu(e) id(e)

�

=
∑

∆∈∆(k)

n−1−|S(∆)|/2
∑

i∈In
∆

E
�
∏

e∈S(∆)

X iu(e) id(e)

∏

e∈U P(∆)

w̄iu(e) id(e)

∏

e∈DP(∆)

wiu(e) id(e)

�

.

For a fixed ∆ let ∆′ be a graph obtained from ∆ by replacing each pair of vertices connected with a
perpendicular edge by one vertex and removing corresponding perpendicular edges (while keeping
all the skew edges). Then ∆′ has |S(∆)| edges and is connected. For fixed ∆ all the summands in
the internal sum over i on the right hand side above are bounded by a constant depending only on
k and z. Moreover |In

∆| ≤ n|V (∆
′)|. Thus graphs ∆ such that ∆′ has fewer than |S(∆)|/2+ 1 vertices

have no asymptotic contribution to n−1EtrHk
n . On the other hand let us notice that if for a skew

edge e = (v, w) of multiplicity 1, (w, v) is not an edge of ∆, then the corresponding variable X iu(e) iv(e)
appears in the product above exactly once and by (A2), the expectation of the product vanishes.
Thus the only graphs with nonzero asymptotic contribution are those ∆’s for which each skew edge
e treated as an undirected edge appears at least twice and ∆′ has at least |S(∆)|/2 + 1 vertices.
But the former condition means that the number a of edges of the graph ∆′′ obtained from ∆′ by
identifying corresponding up and down edges (i.e. edges with the same end points in ∆) is at most
|S(∆)|/2. Thus together with the number b of vertices of ∆′′ it satisfies the inequality b ≥ a + 1.
Since ∆′′ is also connected, this means that it is a tree (and b = a+ 1 = |S(∆)|/2+ 1). Moreover,
since the cycle in ∆′ inherited from ∆ corresponds to a walk in ∆′′ which visits all vertices and
returns to the vertex of departure, it means that all skew edges in ∆ appear exactly twice, once as
an up edge and once as a down edge.

One can also see that among the perpendicular edges connecting any two vertices of ∆ there are
equal numbers of up-edges and down-edges. Therefore we have

n−1EtrHk
n =

∑

∆∈∆(k):
∆′′ is a tree

|z|2|U P(∆)|n−1−|S(∆)|/2
∑

i∈In
∆

E
∏

e∈S(∆)

X iu(e) id(e) + ok,z(1),

as can be seen by expanding the product over e ∈ U P(∆)∪ DP(∆) into a sum.

By assigning to each∆, such that∆′′ is a tree, a Γ-tree T (∆) in a natural way (the special vertices are
the vertices obtained by merging vertices of∆ connected by perpendicular edges and the orientation
of edges is always from the up-end to the down-end), we may rewrite the above formula as

n−1EtrHk
n =

∑

∆∈∆(k):
∆′′ is a tree

|z|2|U P(∆)|ξn(T (∆))+ ok,z(1)

=
∑

∆∈∆(k):
∆′′ is a tree

|z|2|U P(∆)|+ ok,z(1),
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where in the last equality we used Proposition 2.7. Thus we can define µk(z) as

µk(|z|2) =
∑

∆∈∆(k):
∆′′ is a tree

|z|2|U P(∆)|,

which ends the proof of the theorem.

Examples Let us illustrate the above proof with two examples for k = 5. Consider first
i = (1,2, 1,2, 3) and j = (1, 2,1, 2,2). Then the corresponding graph ∆ = G(i, j) has upper
vertices 1, 2,3 and lower vertices 1,2 (we use the underline to stress that we are dealing with
lower indices labelled by the same numbers as some upper indices). The consecutive edges are
(1,1), (1, 2), (2, 2), (2,1), (1,1), (1, 2), (2, 2), (2,3), (3,2), (2, 1). We thus have two pairs of perpen-
dicular edges and after merging the corresponding vertices (1 with 1 and 2 with 2) we obtain
a graph ∆′ with vertices 1, 2,3, five up-edges (1,2), (1,2), (2, 1), (2, 1), (2,3) and one down-edge
(3,2). By identifying corresponding edges (according to their end-vertices in the original graph ∆)
we obtain a graph ∆′′ with three vertices 1,2, 3 and three edges: a double-edge between 1 and 2
and a single edge between 2 and 3. This graph is not a tree and has no asymptotic contribution to
n−1EtrH5

n (the number of vertices is too small with respect to the number of edges).

Let us now consider another choice of i and j by setting i = (1,2, 2,4, 2) and j = (1,3, 2,2, 1). Then
∆= G(i, j) has three upper vertices 1, 2,4 and three lower vertices 1, 2, 3. The consecutive edges are
(1,1), (1,2), (2,3), (3,2), (2,2), (2,4), (4,2), (2,2), (2,1), (1,1). After merging vertices joined by
perpendicular edges, we obtain a graph ∆′ with vertices 1,2, 3,4, up-edges (1, 2), (3, 2), (2,4) and
down-edges (2,1), (2,3), (4, 2). By identifying corresponding edges (according to their end-points
in ∆) we obtain the graph ∆′′ with four vertices 1,2, 3,4 three edges: between 1 and 2, between 2
and 4, between 2 and 3. The graph ∆′′ is a tree and it can be endowed with a structure of a Γ-tree
induced by the original structure from ∆. Indeed, the vertices 1 and 2 are special as obtained by
merging vertices joined by perpendicular edges in ∆. The orientation of edges is 2 → 1, 4 → 2,
2 → 3, which reflects the fact that they correspond respectively to pairs of edges {(1,2), (2,1)},
{(2, 4), (4, 2)} and {(2,3), (3, 2)} in ∆. The Γ-tree T (∆) obtained with this procedure is the one
that served as an example in Section 2.3.2. Asymptotically ∆ contributes to n−1EtrHk

n the value
|z|4ξn(T (∆))' |z|4.

Proof of Corollary 2.5. Let L̄n = ELn. By Theorem 2.4, for any k ∈ N we have the convergence
∫

xk L̄n(z) → µk(|z|2). This already implies tightness of L̄n and existence of a probability measure
L∞ with moments µk(|z|2) together with a subsequence L̄nk

converging to L∞. Since in the special
case of i.i.d. Gaussian entries the measure L̄n is known to converge to a compactly supported
measure, we conclude that the sequence of moments µk(|z|2) determines the measure L and in fact
the whole sequence L̄n converges to L∞.

Recall that the Stieltjes transform of a probability measure ν on R is the function Sν : C+→ C given
by the formula

Sν(z) =

∫

R

1

λ− z
d Ln(λ).

It is classical that for probability measures ν ,νn on R, the pointwise convergence Sνn
→ Sν implies

the weak convergence of νn to ν (see e.g. [7], Chapter 12).
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Let Sn : C+ → C be the Stieltjes transform of Ln. By Lemma 4.1 in the Appendix and the Borel-
Cantelli Lemma |Sn(α)−ESn(α)| → 0 almost surely. Thus with probability one Sn(α)−ESn(α)→ 0
for every α ∈ D, where D is a countable dense subset of C+. But ESn(α) is the Stieltjes transform of
L̄n and thus converges to SL∞(α) – the Stieltjes transform of L∞, which shows that with probability
one, for every α ∈ D, Sn(α) → SL∞(α). Since Sn’s are analytic on C+ and jointly bounded on
compact subsets of C+, a standard application of Montel’s theorem shows that with probability one
Sn(α) → S(α) for all α ∈ C+, which implies that with probability one, Ln converges weakly to
L∞.

3 The circular law for matrices with independent log-concave uncon-
ditional columns

3.1 The main result

Before we formulate the main theorem of this section let us recall the basic definitions.

Definition 3.1. An n-dimensional random vector X = (X1, . . . , Xn) is called unconditional if its dis-
tribution is invariant under reflections with respect to coordinate hyperplanes, or equivalently if it has
the same distribution as (ε1X1, . . . ,εnXn), where ε1, . . . ,εn are independent Rademacher variables, in-
dependent of X .

Log-concave measures are usually defined in terms of Brunn-Minkowski inequalities. However, as
proved by Borell (see [11] for general theory), log-concave measures not-supported on a proper
hyperplane can be equivalently characterized in terms of densities. Since we will deal only with
isotropic measures (see Definition 2.1) we will therefore use the following

Definition 3.2. An n-dimensional random vector X is called log-concave if it has density of the form
exp(−h(x)) where h: Rn→R∪ {∞} is convex.

Examples Several concrete examples of log-concave distribution have already appeared in Section
2. They were uniform distribution on properly normalized `n

p balls. This can be generalized to
uniform distributions on general convex bodies. Other important examples include e.g. Gaussian
random vectors.

For an n× n matrix A let µA denote the spectral measure of A defined as

µA =
1

n

n
∑

i=1

δλi
,

where λi are (complex) eigenvalues of A.

Recall now the classical circular law in its most general form, obtained recently by Tao and Vu [36].

Theorem 3.3. Let An = [X i j]i, j≤n, where (X i j)i, j<∞ is an infinite array of independent mean zero,
variance one random variables. Then with probability one, the spectral measure µ 1p

n An
converges weakly

to the uniform distribution on the unit disc in C.
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The main result of this section is the following version of the circular law which allows to replace
the independence assumption on the entries by a geometric condition of log-concavity and uncon-
ditionality.

Theorem 3.4. Let An be a sequence of n× n random matrices with independent rows X (n)1 , . . . , X (n)n

(defined on the same probability space). Assume that for each n and i ≤ n, X (n)i has a log-concave
unconditional isotropic distribution. Then, with probability one, the spectral measure µ 1p

n An
converges

weakly to the uniform distribution on the unit disc in C.

3.2 Preliminary facts on log-concave measures

In this section we will gather the results on log-concave measures which will be used in the proof of
Theorem 3.4 (some of them have been already briefly mentioned in Section 2 during the discussion
of assumptions (A1)–(A3)).

Let us start with the concentration result for the Euclidean norm (which we will denote by | · |)
obtained by Klartag [24], which will ensure that the condition (A3) is satisfied, allowing us to use
the results of Section 2.

Theorem 3.5. Let X be an isotropic log-concave random vector in Rn. There exist universal positive
constants C and c such that for all ε ∈ (0, 1),

P

 
�

�

�

�

�

|X |2

n
− 1

�

�

�

�

�

≥ ε

!

≤ C exp(−cεC nc).

The next theorem is a recent small ball inequality by Paouris [29, Theorem 6.2]

Theorem 3.6. Let X be an isotropic log-concave random vector inRn and let A be an n×n real nonzero
matrix. Then for y ∈Rn and ε ∈ (0, c1),

P(|AX − y| ≤ ε‖A‖HS)≤ ε
c1(‖A‖HS/‖A‖`2→`2 ),

where c1 > 0 is a universal constant.

Recall that singular values of an m × n matrix A are eigenvalues of
p

A∗A (denote them by σ1 ≥
. . . ≥ σn). In particular σ1 = supx∈Sn−1 |Ax | = ‖A‖`2→`2

(the operator norm of the matrix) and
σn = infx∈Sn−1

|Ax |.
Similarly as in the classical case of matrices with i.i.d. entries we will need control on the smallest
and the largest singular value of the matrix An. To control the latter we will use a recent result
from [3] specialized to square matrices (we would like to remark in passing that for the purpose of
proving the circular law, a weaker estimate following e.g. from Theorem 3.5 would be enough, we
state the strong estimate, since it gives the optimal bound on the operator norm).

Theorem 3.7. If An is an n× n matrix with independent log-concave isotropic rows, then with proba-
bility at least 1− exp(−c

p
n), ‖An‖`2→`2

≤ C
p

n, where C , c are universal constants.

1085



The smallest singular value of random matrices with independent entries has been thoroughly in-
vestigated e.g. in [31, 35, 25]. For random matrices with independent log-concave rows/columns
it has been considered in [2, 1]. For the purpose of proving the circular law, it is enough to have
a relatively crude bound on the smallest singular value of the matrix An − zId, which we provide
below. A similar argument in the case of matrices with independent heavy tailed entries can be
found e.g. in [10].

Proposition 3.8. If An is an n× n matrix with independent log-concave isotropic rows, and Mn is an
n× n deterministic complex matrix, then with probability at least 1− n−2, the smallest singular value
of An+Mn is greater than cn−3.5, where c is a universal constant.

Proof. Denote the smallest singular value of An + Mn by σn. Denote the rows of An by X i and the
rows of Mn by Yi (i = 1, . . . , n). It is classical (see e.g. [31, 10]) that

σn ≥
1
p

n
min
i≤n
(dist(X i + Yi , Hi)),

where Hi is the linear span of all the vectors X j + Yj except for the i-th one. Thus

P(σn ≤ cn−3.5)≤ P(∃i≤n dist(X i + Yi , Hi)≤ cn−3)

≤
n
∑

i=1

P(dist(X i + Yi , Hi)≤ cn−3). (5)

Consider any i ≤ n. Since Hi is independent of X i , by the Fubini theorem we have P(dist(X i +
Yi , Hi) ≤ cn−3) = E(X j) j 6=i

PX i
(dist(X i + Yi , Hi) ≤ cn−3). We will bound the probability PX i

(dist(X i +
Yi , Hi) ≤ cn−3). Let η = x + i y , where x , y ∈ Rn, be any unit vector perpendicular to Hi (selected
in a measurable way). Then

|〈X i + Yi ,η〉| ≤ dist(X i + Yi , Hi).

Since |x |2 + |y|2 = 1, at least one of the vectors x , y has the Euclidean norm not smaller than
1/
p

2. Without loss of generality assume that |x | ≥ 1/
p

2. If dist(X i + Yi , Hi)≤ cn−3 then |〈X i , x〉 −
Re〈Yi ,η〉| ≤ cn−3. But 〈X i , x〉 is a log-concave one-dimensional variable of variance at least 1/2. It
is well known that such variables have densities bounded from above by an absolute constant (see
[21]). Therefore PX i

(dist(X i + Yi , Hi) ≤ cn−3) ≤ PX i
(|〈X i , x〉 − Re〈Yi ,η〉| ≤ cn−3) ≤ Ccn−3 and

thus for c sufficiently small PX i
(dist(X i + Yi , Hi)≤ cn−3)≤ n−3, which together with (5) proves the

proposition.

3.3 Proof of Theorem 3.4

The proof will be based on the following replacement principle due to Tao and Vu [36, Theorem
2.1].

Theorem 3.9. Suppose for each n that An, Bn ∈ Mn(C) are ensembles of random matrices defined on a
common probability space. Assume that

(i) the expression
1

n2 ‖An‖2HS +
1

n2 ‖Bn‖2HS

is bounded almost surely,
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(ii) for almost all complex numbers z,

1

n
log |det(

1
p

n
An− zId)| −

1

n
log |det(

1
p

n
Bn− zId)|

converges almost surely to zero.

Then µ 1p
n An
−µ 1p

n Bn
converges almost surely to 0.

To apply the above theorem, let Bn = (gi j)i, j≤n where (gi j)i, j is an infinite array of independent
standard Gaussian variables (we may assume that they are defined on the same probability space
as the vectors X (n)i defining the matrices An). We will prove that the hypotheses of Theorem 3.9 are
satisfied. To this end we will very closely follow the main steps of the proof given by Tao and Vu
for the independent case [36]. Due to lack of independence of all the entries, we cannot use their
tools verbatim, however at each step we will be able to replace them by appropriate counterparts
available in the log-concave setting (in fact given the ’log-concave toolbox’ of Section 3.2, all the
steps will be easier in our case) .

Once we check the assumptions of Theorem 3.9, the proof will be concluded since µ 1p
n Bn

converges

almost surely to the uniform measure on the unit disc.

The aim is thus to prove that for any z ∈ C, with probability one,

1

n
log |det(

1
p

n
An− zId)| −

1

n
log |det(

1
p

n
Bn− zId)| → 0. (6)

To simplify the notation from now on we will suppress the superscript (n) and denote the row
vectors of 1p

n
An− zId by Z1, . . . , Zn. Similarly, let Y1, . . . , Yn be the row vectors of 1p

n
Bn− zId. Since

1

n
log |det(

1
p

n
An− zId)|=

1

n

n
∑

i=1

logdist(Zi , Vi),

where Vi is the span of Z1, . . . , Zi−1 and similarly

1

n
log |det(

1
p

n
Bn− zId)|=

1

n

n
∑

i=1

logdist(Yi , Ui),

where Ui is the span of Y1, . . . , Yi−1, the goal is to prove that

1

n

n
∑

i=1

logdist(Zi , Vi)−
1

n

n
∑

i=1

logdist(Yi , Ui)→ 0

with probability one.

Let us now recall the following identity

Lemma 3.10 (Lemma A.4 in [36]). Let 1 ≤ n′ ≤ n and M be a full rank n′ × n matrix with singular
values σ1(M) ≥ . . . ≥ σn′(M) > 0 and rows X1, . . . , Xn′ ∈ Cn. For each 1 ≤ i ≤ n′ let Wi be the
hyperplane generated by the n′− 1 vectors X1, . . . , X i−1, X i+1, . . . , Xn′ . Then

n′
∑

j=1

σ j(M)
−2 =

n′
∑

j=1

dist(X j , Wj)
−2.
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Apply the above lemma to M = Mn =
1p
n
An − zId, (M = Mn =

1p
n
Bn − zId resp.). Note that by

Proposition 3.8 and the Borell-Cantelli lemma with probability one σi(Mn)≥ cn−4 for all sufficiently
large n and i ≤ n. Thus with probability one,

logdist(Zi , Vi), log dist(Yi , Ui)≥−C1 log n.

Moreover, by Theorem 3.5 with probability one for large n the vectors Zi , Yi have Euclidean lengths
of the order Oz(1), which yields that with probability one for large n and all i ≤ n,

logdist(Zi , Vi), log dist(Yi , Ui)≤ C2. (7)

To obtain (6) it is thus sufficient to prove that with probability one,

1

n

∑

1≤i≤n−n0.99

log dist(Zi , Vi)−
1

n

∑

1≤i≤n−n0.99

logdist(Yi , Ui)→ 0. (8)

Here we again follow Tao and Vu and divide the proof of the above convergence into two lemmas.

Lemma 3.11 (High-dimensional contributions). There exists a constant C, such that for every ε ∈
(0,1/4) and every δ ∈ (0,ε2), with probability one, for sufficiently large n,

1

n

∑

(1−δ)n<i≤n−n0.99

(| logdist(Zi , Vi)|+ | logdist(Yi , Ui)|)≤ Cε.

Lemma 3.12 (Low-dimensional contributions). There exists a constant C, such that for every ε ∈
(0,1/4) there exists δ0 > 0 such that for every δ ∈ (0,δ0) with probability one, for sufficiently large n,

�

�

�

1

n

∑

1≤i≤(1−δ)n

(logdist(Zi , Vi)− logdist(Yi , Ui))
�

�

�≤ Cε. (9)

3.3.1 Proof of Lemma 3.11

It is clearly enough to consider the part of the sum in question corresponding to Zi ’s. Let us first
notice that (7) implies that with probability one, for δ < ε,

1

n

∑

(1−δ)n<i≤n−n0.99

max(logdist(Zi , Vi), 0)≤ C2ε.

Thus it is sufficient to deal with the negative part of log dist(Zi , Vi). We will show that for any
i ≤ n− n0.99,

P(dist(
p

nZi , Vi)≤ c
p

n− i+ 1)≤ exp(−cnc) (10)

for some universal constant c > 0.

To this end we will demonstrate the following lemma which is a counterpart of Proposition 5.1. in
[36].

1088



Lemma 3.13. Let 1≤ d ≤ n− n0.99 and let W be a deterministic d-dimensional subspace of Cn. Then
for every i ≤ n and every ε ∈ (0, c1) (where c1 is the constant from Theorem 3.6) we have

P(dist(
p

nZi , W )≤ ε
p

n− d)≤ εc1
p

n−d .

Proof. Recall that
p

nZi = X i−
p

nzei . If we denote by P the orthogonal projection onto W⊥, we get

dist(
p

nZi , W ) = |PX i −
p

nzPei|.

Since W is of dimension d, we have rank P = n− d, hence ‖P‖HS =
p

n− d, whereas ‖P‖`2→`2
is

clearly equal to 1. The only difficulty in applying Theorem 3.6 with y =
p

nzPei and A= P is that the
matrix P and the vector

p
nzPei are complex. This can be however easily overcome by identifying

Cn with R2n, writing y = (Re
p

nzPei , Im
p

nzPei) and noticing that PX i = A(X i , X̃ i), where X̃ i is an
independent copy of X i and

A=

�

ReP 0
ImP 0

�

.

We have ‖A‖HS = ‖P‖HS =
p

n− d and ‖A‖`2→`2
≤ 1, which together with Theorem 3.6 ends the

proof of the lemma.

Since with probability one Vi is of dimension i− 1 and is independent of X (n)i , we can apply Lemma
3.13 conditionally on Vi to get (10). Thus by the Borell-Cantelli lemma, with probability one, for n
large enough and all 1≤ i ≤ n− n0.99 we have dist(Zi , Vi)≥ c

p

1− i/n and so for δ < ε2 we get

∑

(1−δ)n<i≤n−n0.99

max(− log(dist(Zi , Vi)), 0)≤ δn log c−1+
1

2

n−1
∑

i=n−dδne

log
n

n− i

≤ δn log c−1+
1

2
log

ndδne

dδne!
≤ δn log c−1+δn log

C

δ
≤ Cεn,

which ends the proof of Lemma 3.11.

Remark In fact for the purpose of proving the circular law instead of the small ball inequality by
Paouris one could use above Klartag’s thin shell inequality (however the argument in this case seems
to be slightly more technical).

3.3.2 Proof of Lemma 3.12

Let n′ = b(1 − δ)nc and let Ann′ (resp. Bnn′) be the matrix with rows
p

nZ1, . . . ,
p

nZn′ (resp.p
nY1, . . . ,

p
nYn′). Let L 1

n Ann′A
∗
nn′

(resp. L 1
n Bnn′B

∗
nn′

) be the spectral distribution of 1
n
Ann′A

∗
nn′ (resp.

1
n
Bnn′B

∗
nn′). Similarly as in [36], one can show that (9) is equivalent to

∫ ∞

0

log tdνn,n′(t) = O(ε), (11)

where νn,n′ = L 1
n Ann′A

∗
nn′
− L 1

n Bnn′B
∗
nn′

.

The proof of (11) consists in splitting the integral range into several regions.
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The region of very large t Note that

∫ ∞

0

td|νn,n′ |(t)≤
1

n′

n′
∑

i=1

�

(
1
p

n
σi(Ann′))

2+ (
1
p

n
σi(Bnn′))

2
�

=
1

n′

n′
∑

i=1

(|Zi|2+ |Yi|2).

By Theorem 3.5 (or Theorem 3.7) and the Borell-Cantelli Lemma with probability one, for suffi-
ciently large n and all i, |Zi|, |Yi| ≤ |z| + C and so the right hand side of the above inequality is
bounded by some constant C(z), from which (e.g. by Markov’s inequality and integration by parts)
it follows that for some Rε, depending only on z and ε,

∫ ∞

Rε

log t|dνn,n′ |(t)≤ ε.

The region of intermediate t Let k = n− n′ and recall the Cauchy interlacing property, which
says that σi(An−

p
nzId) ≥ σi(Ann′) ≥ σi+k(An−

p
nzId) for i = 1, . . . , n− k (and similarly for Bnn′

and Bn−
p

nzId).

Letψ be a continuous function equal to 1 on the interval [ε4, Rε], vanishing outside [ε4/2, 2Rε] and
linear on the intervals [ε4/2,ε4] and [Rε, 2Rε]. The interlacing inequalities imply that

�

�

�

∫ ∞

0

ψ(t) log tdνnn′(t)−
∫ ∞

0

ψ(t) log tdνnn(t)
�

�

�≤ Cε+ C(ε)δ,

for some constant C(ε) depending only on z and ε. By Corollary 2.5, the integral with respect to
νnn converges almost surely to 0. Thus for any δ ≤ δ0 (where δ0 depends only on ε and z) we have
with probability one,

�

�

�

∫ ∞

0

ψ(t) log tdνnn′(t)
�

�

�≤ Cε

for n large enough.

The regions of moderately small and very small t Arguing again as in [36] and replacing the
Proposition 5.1. therein by Lemma 3.13 we obtain first that the following two inequalities hold with
probability one for sufficiently large n,

1

n′

n′
∑

i=1

�

(
1
p

n
σi(An,n′))

−2+ (
1
p

n
σi(Bn,n′))

−2
�

≤ C/δ, (12)

1
p

n
σi(An,n′),

1
p

n
σi(Bn,n′)≥ c

n′− i

n
for all 1≤ i ≤ (1− 2δ)n, (13)

where C , c are absolute constants.

Both of the above inequalities are proved in the same way as in [36]. As an example let us demon-
strate the proof of (12). By Lemma 3.13, and the Borel-Cantelli lemma with probability one, for n
large enough and all i ≤ n′, we have

dist(Zi , span(Z1, . . . , Zi−1, Zi+1, . . . , Zn′))≥ c
p

δ,
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and analogously for Yi , which via Lemma 3.10 implies (12).

Now we can estimate
∫ ε4

δ2

| log t||dνn,n′(t)|

≤
2

n′

n′
∑

i=1

f (
1
p

n
σi(Ann′)) +

2

n

n′
∑

i=1

f (
1
p

n
σi(Bnn′)),

where f (t) = | log t|1{[δ2,ε4]}(t
2).

By symmetry it is obviously enough to bound the first summand on the right hand side. Since
f (t) ≤ | logδ|, if δ ≤ ε2 we can discard the contribution of all i ≥ (1− 2δ)n. Since by (13), for
i < (1− Cε2)n, 1p

n
σi(An,n′)> ε2, it is enough to estimate

1

n

∑

(1−Cε2)n≤i≤(1−2δ)n

| log(
1
p

n
σi(An,n′))|.

But again by (13) this is at most

Cn−1
∑

(1−Cε2)n≤i≤(1−2δ)n

log
n

n′− i

≤ Cn−1
∑

δn≤i≤Cε2n

log(
n

i
)≤ Cε2 log(

1

ε2 )≤ Cε.

It remains to show that with probability one, for n large enough

∫ δ2

0

| log t||dνn,n′(t)| ≤ Cε.

But for t ≤ δ2, we have |t log t| ≤ Cδ3/2 and thus by (12),

∫ δ2

0

| log t|d|νn,n′(t)| ≤ Cδ3/2

∫ δ2

0

t−1d|νn,n′(t)|

≤
Cδ3/2

n′

n′
∑

i=1

�

σi(
1
p

n
Ann′)

−2+σi(
1
p

n
Bnn′)

−2
�

≤ Cδ3/2δ−1 ≤ Cε

for δ ≤ ε2. This concludes the proof of Lemma 3.12.

3.3.3 Conclusion of the proof of Theorem 3.4

As already mentioned it is enough to check the assumptions of Theorem 3.9.

By Lemmas 3.11 and 3.12 we obtain (8), which implies (6), i.e. the assumption (ii). The assumption
(i) follows by Theorem 3.7 and the Borel-Cantelli lemma.

1091



3.4 Final remarks

We would like to point out that the assumption on unconditionality of rows of the matrix An was used
only in the proof of Corollary 2.5, all the other ingredients in the proof of the circular law work well
in the case of general isotropic log-concave vectors (in particular one can replace unconditionality
with assumption (A2)).

Finally let us mention that both the small ball inequality (Theorem 3.6), used by us to obtain (10),
and the condition (A3), necessary to apply Corollary 2.5, can be replaced e.g. by a Poincaré inequal-
ity, i.e. by the assumption that

Var f(X(n)i )≤ C|∇f(X(n)i )|
2

for all smooth functions f : Rn→R (see e.g. [5] for a general exposition) or some other sufficiently
strong concentration result for Lipschitz functions (it is a long standing conjecture that isotropic
log-concave measures satisfy the Poincaré inequality with a universal constant [23]). If we keep
the assumption of unconditionality and instead of log-concavity we assume that all one-dimensional
marginals of the row-vectors of the matrix An have densities bounded by a universal constant (or
just a constant depending polynomially on the dimension) we can obtain a suitable version of Propo-
sition 3.8 and repeat the whole proof of the circular law above to get the following

Theorem 3.14. Let An be a sequence of n×n random matrices with independent isotropic unconditional
rows X (n)i , s.t.

• the law of X (n)i satisfies the Poincaré inequality with a constant independent of n,

• there exists γ <∞ such that for all x ∈ Sn−1 and all n, i 〈X (n)i , x〉 has density upper-bounded by
nγ.

Then the empirical spectral distribution of An converges almost surely to the uniform measure on the
unit disk.

Remark After this paper was accepted for publication the author has been able to remove the
assumption of unconditionality from Theorems 3.4 and 3.14. The proof relies heavily on the Stieltjes
transform techniques (motivated by [13]) and will be presented in a separate article.

4 Appendix. Concentration of the Stieltjes transform for matrices with
independent rows

We will now present a concentration inequality for the Stieltjes transform of the spectral distribution
of random matrices of the form AA∗, where A is a random matrix with independent rows. The
argument is pretty standard and we include it here just for the sake of completeness. Its various
versions can be found e.g. in [7, p. 313] in the case of matrices with independent entries, however
(as noted in [14]) in fact just independence of rows is required.

Lemma 4.1. Let A be any n× N random matrix with independent rows and let S : C+ → C be the
Stieltjes transform of the spectral measure of H = AA∗. Then for any α= x + i y ∈ C+ and any ε > 0,

P(|Sn(α)−ESn(α)| ≥ ε)≤ C exp(−cε2ny2).
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Proof. Let Ek denote the expectation with respect to the last n− k rows of the matrix An and let Xk
be the k-th row of A, Wk the matrix consisting of the remaining n− 1 rows of A and Hk = WkW ∗

k .
Then, as one can easily check,

Sn(α)−ESn(α) =
1

n

n
∑

k=1

γk,

where

γk = Ektr(H −αId)−1−Ek−1tr(H −αId)−1

= (Ek −Ek−1)
1+ XkW ∗

k (Hk −αId)−2WkX ∗k
|Xk|2−α− XkW ∗

k (Hk −αId)−1WkX ∗k
.

We have

|1+ XkW ∗
k (Hk −αId)−2WkX ∗k | ≤ 1+ XkW ∗

k [(Hk − xId)2+ y2Id]−1WkX ∗k

=−
1

y
Im(|Xk|2−α− XkW ∗

k (Hk −αId)−1WkX ∗k),

which implies that |γk| ≤ 2y−1.

Note that γk form a sequence of martingale differences and thus, by the Azuma inequality, we get

P(|Sn(α)−ESn(α)| ≥ ε)≤ C exp(−cε2n2/ny−2) = C exp(−cε2ny2).
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