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Abstract

The validity of an approximation formula for European option prices under a general stochastic
volatility model is proved in the light of the Edgeworth expansion for ergodic diffusions. The
asymptotic expansion is around the Black-Scholes price and is uniform in bounded payoff func-
tions. The result provides a validation of an existing singular perturbation expansion formula
for the fast mean reverting stochastic volatility model.
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1 Introduction

In the last decade, many results on asymptotic expansions of option prices for stochastic volatility
models appeared in the literature. Such an expansion formula gives an approximation to theoret-
ical price of option and sheds light to the shape of theoretical implied volatility surface. See e.g.,
Gatheral [13] for a practical guide. The primary objective of this article is not to introduce a new
expansion formula but to prove the validity of an existing one which was introduced by Fouque et
al. [8]. We suppose that the log price process Z satisfies the stochastic differential equation

dZt =
�

rt −
1

2
ϕ(X t)

2
�

dt +ϕ(X t)
h

ρ(X t)dW 1
t +

p

1−ρ(X t)2dW 2
t

i

dX t = b(X t)dt + c(X t)dW 1
t

(1)

under a risk-neutral probability measure, where (W 1, W 2) is a 2-dimensional standard Brownian
motion, r = {rt} stands for interest rate and is assumed to be deterministic, and b, c, ϕ, ρ are Borel
functions with |ρ| ≤ 1. Under mild conditions on the ergodicity of X , we validate an approximation

DE[ f (ZT )]≈ DE[(1+ p(N)) f (Z0− log(D)−Σ/2+
p
ΣN)] (2)

for every bounded Borel function f , where N ∼N (0,1), Σ = Π[ϕ2]T and

Π(dx) =
dx

ε2s′(x)c(x)2
,

s′(x) = exp

¨

−2

∫ x

0

b(w)
c(w)2

dw

«

,

ε2 =

∫ ∞

−∞

dx

s′(x)c2(x)
,

D = exp

(

−
∫ T

0

rsds

)

,

p(z) = α
�

1− z2+
1
p
Σ
(z3− 3z)

�

,

α=−
∫ ∞

−∞

∫ x

−∞

¨

ϕ(v)2

Π[ϕ2]
− 1

«

Π(dv)
ϕ(x)ρ(x)

c(x)
dx .

(3)

Note that s(x) =
∫ x

0
s′(y)dy is the so-called scale function of X and thatΠ coincides with the ergodic

distribution of X . In particular, we have a simple formula

DE[(K − exp(ZT ))+]≈ PBS(K ,Σ)−αd2(K ,Σ)DKφ(d2(K ,Σ))

for put option price with strike K , where PBS(K ,Σ) is the Black-Scholes price of the put option

PBS(K ,Σ) = DKΦ(−d2(K ,Σ))− exp(Z0)Φ(−d2(K ,Σ)−
p
Σ),

d2(K ,Σ) =−
log(K)− Z0+ log(D)

p
Σ

−
p
Σ

2
,
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and Φ and φ are the standard normal distribution function and density respectively. Notice that
if α = 0 then the right hand side of (2) coincides with the Black-Scholes price for the European
payoff function f ◦ log with volatility Π[ϕ2]1/2. The term with p is small if c is large, so that in
such a case it should be regarded as a correction term to the Black-Scholes approximation. The right
hand side of (2) is an alternative representation of the so-called fast mean reverting or singular
perturbation expansion formula and its validity has been discussed by Fouque et al. [9][10], Conlon
and Sullivan [5], Khasminskii and Yin [15] and Alòs [1] under restrictive conditions on the payoff
function f or on the coefficients of the stochastic differential equation (1). Recently, Fukasawa [12]
gave a general framework based on Yoshida’s theory of martingale expansion to prove the validity
of such an asymptotic expansion around the Black-Scholes price for a general stochastic volatility
model with jumps, which in particular incorporates the fast mean reverting case with (1). This
paper, on the other hand, concentrates on the particular standard model to improve the preceding
results mainly in the following points:

i. conditions on the integrability of 〈Z〉 are weakened,

ii. precise order estimate of approximation error is given.

The framework of Fukasawa [12] is too general to give such a precise estimate of order of error. A
PDE approach taken by Fouque et al. [9][10] gave order estimates which depend on the regularity
of the payoff f . The order given in this article is more precise and does not depend on the regularity
of f . We require no condition on the smoothness of f and a weaker condition on the coefficients ϕ,
ρ, b and c. We exploit Edgeworth expansion for ergodic diffusions developed by Fukasawa [11].

The Edgeworth expansion is a refinement of the central limit theorem and has played an impor-
tant role in statistics. There are three approaches to validate the Edgeworth expansion for ergodic
continuous-time processes. Global(martingale) and local(mixing) approaches which were devel-
oped by Yoshida [20] and [21] respectively are widely applicable to general continuous-time pro-
cesses. The third approach, which is called regenerative approach and was developed by Fuka-
sawa [11] extending Malinovskii [16], is applicable only to strong Markov processes but requires
weaker conditions of ergodicity and integrability. The martingale approach was applied to the val-
idation problem of perturbation expansions by Fukasawa [12] as noted above. The present article
is based on the regenerative approach that enables us to treat such an ergodic diffusion X that
is not geometrically mixing. An extension to this direction is important because empirical studies
such as Andersen et al. [2] showed that the volatility process appears “very slowly mean reverting”,
that is, the autocorrelation function decays slowly. Our model (1) under a condition of ergodicity
given later is a natural extension of the fast mean reverting model of Fouque et al. [8][9] but does
not necessarily imply a fast decay of the autocorrelation function. It admits a polynomial decay of
α-mixing coefficient.

It should be noted that our approach in this article utilizes the fact that X is one-dimensional in
(1). See Fukasawa [12] for multi-dimensional fast mean reverting stochastic volatility model with
jumps. In Section 2, we review the fast mean reverting expansion technique. The main result is
stated in Section 3 with examples. Basic results in the Edgeworth expansion theory are presented
in Section 4 and then, the proof of the main result is given in Section 5. The proof of an important
lemma used in Section 5 is deferred to Section 6.
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2 Fast mean reverting stochastic volatility

2.1 PDE approach

Here we review an asymptotic method introduced by Fouque et al. [8], where a family of the
stochastic volatility models

dSηt = rSηt dt +ϕ(Xηt )S
η
t dWρ

t ,

dXηt =

¨

1

η2 (m− Xηt )−
ν
p

2

η
Λ(Xηt )

«

dt +
ν
p

2

η
dWt

(4)

is considered, where W = (Wt) and Wρ = (Wρ
t ) are standard Brownian motions with correlation

〈W, Wρ〉t = ρt, ρ ∈ [−1, 1]. This is a special case of (1) with ρ(x) ≡ ρ, b(x) = (m− x)/η2 −
ν
p

2Λ(x)/η, c(x)≡ ν
p

2/η, where m, ν are constants and Λ is a Borel function associated with the
market price of volatility risk. For a given payoff function f and maturity T , the European option
price at time t < T defined as

Pη(t, s, v) = e−r(T−t)E[ f (SηT )|S
η
t = s, Xηt = v] (5)

satisfies
�

1

η2L0+
1

η
L1+L2

�

Pη = 0, Pη(T, s, v) = f (s)

where

L0 = ν
2 ∂

2

∂ v2 + (m− v)
∂

∂ v
,

L1 =
p

2ρνsϕ(v)
∂ 2

∂ s∂ v
−
p

2νΛ(v)
∂

∂ v
,

L2 =
∂

∂ t
+

1

2
ϕ(v)2s2 ∂

2

∂ s2 + r(s
∂

∂ s
− 1).

Notice that L0 is the infinitesimal generator of the OU process

dX 0
t = (m− X 0

t )dt + ν
p

2dWt (6)

and L2 is the Black-Scholes operator with volatility level |ϕ(v)|. By formally expanding Pη in terms
of η and equating the same order terms of η in the PDE, one obtains

Pη = P0+ηP1+ higher order terms of η (7)

for the Black-Scholes price P0 with constant volatilityΠ0[ϕ2]1/2, whereΠ0 is the ergodic distribution
of the OU process X 0, and

P0+ηP1 = P0− (T − t)

�

V2s2 ∂
2P0

∂ s2 + V3s3 ∂
3P0

∂ s3

�

(8)

with constants V2 and V3 which are of O(η).
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As a practical application, Fouque et al. [8] proposed its use in calibration problem. They derived
an expansion of the Black-Scholes implied volatility σBS of the form

σBS(K , T − t)≈ a
log(K/S)

T − t
+ b (9)

from (7), where K is the strike price, S is the spot price, T − t is the time to the maturity, a and b
are constants connecting to V2 and V3 as

V2 = σ̄((σ̄− b)− a(r +
3

2
σ̄2)), V3 =−aσ̄3, σ̄2 = Π0[ϕ

2]. (10)

The calibration methodology consists of (i) estimation of σ̄ from historical stock returns, (ii) estima-
tion of a and b by fitting (9) to the implied volatility surface, and (iii) pricing or hedging by using
estimated σ̄, a and b via (8) and (10). This approach captures the volatility skew as well as the
term structure. It enables us to calibrate fast and stably due to parsimony of parameters; we have
no more need to specify all the parameters in the underlying stochastic volatility model. The first
step (i) can be eliminated because the number of essential parameters is 2 in light of (2); by using
Πη[ϕ2]1/2 instead of Π0[ϕ2]1/2 for σ̄, where Πη is the ergodic distribution of Xη, we can see that
the right hand side of (8) coincides with that of (2) with V3 =−αΠη[ϕ2] and V2 = 2V3.

It should be explained what is the intuition of η → 0. To fix ideas, let Λ = 0 for brevity. Then
X̃ t := Xη

η2 t
satisfies

dX̃ t = (m− X̃ t)dt + ν
p

2dW̃t ,

where W̃t = η−1Wη2 t is a standard Brownian motion, and it holds

dSηt = rSηt dt +ϕ(X̃ t/η2)Sηt dWρ
t .

Hence η stands for the volatility time scale. Note that

〈log(Sη)〉t =
∫ t

0

ϕ(X̃s/η2)2ds ∼ η2

∫ t/η2

0

ϕ(X 0
s )

2ds→ Π0[ϕ
2]t

by the law of large numbers for ergodic diffusions, where X 0 is a solution of (6). This convergence
implies that the log price log(Sηt ) is asymptotically normally distributed with mean r t −Π0[ϕ2]t/2
and variance Π0[ϕ2]t by the martingale central limit theorem. The limit is nothing but the Black-
Scholes model with volatility Π0[ϕ2]1/2. The asymptotic expansion formula around the Black-
Scholes price can be therefore regarded as a refinement of a normal approximation based on the
central limit theorem for ergodic diffusions.

2.2 Martingale expansion

Note that a formal calculation as in (7) does not ensure in general that the asymptotic expansion
formula is actually valid. A rigorous validation is not easy if the payoff f or a coefficient of the
stochastic differential equation is not smooth. See e.g. Fouque et al. [9]. A general result on the
validity is given by Fukasawa [12]. Here we state a simplified version of it. Consider a sequence of
models of type (1):

dZn
t =

�

rt −
1

2
ϕ(X n

t )
2
�

dt +ϕ(X n
t )
h

ρ(X n
t )dW 1

t +
Æ

1−ρ(X n
t )

2dW 2
t

i

dX n
t = bn(X

n
t )dt + cn(X

n
t )dW 1

t ,
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where bn and cn, n ∈N are sequences of Borel functions.

Theorem 2.1. Suppose that for any p > 0, the Lp moments of

∫ T

0

ϕ(X n
t )

2dt,

(

∫ T

0

ϕ(X n
t )

2(1−ρ(X n
t )

2)dt

)−1

(11)

are bounded in n ∈N and that there exist positive sequences εn, Σn with εn→ 0, Σ∞ := limn→∞Σn > 0
such that





M n
T

p

Σn

,
〈M n〉T −Σn

εnΣn



→N (0, V ) (12)

in law with a 2× 2 variance matrix V = {Vi j} as n→∞, where M n is the local martingale part of Zn.
Then, for every Borel function f of polynomial growth,

E[ f (Zn
T )] = E[(1+ pn(N)) f (Z0− log(D)−Σn/2+

p

ΣnN)] + o(εn) (13)

as n→∞, where N ∼N (0, 1), D is defined as in (3) and

pn(z) = εn
V12

2

n

−
p

Σn(z
2− 1) + (z3− 3z)

o

.

An appealing point of this theorem is that it gives a validation of not only the singular perturbation
but also regular perturbation expansions including the so-called small vol-of-vol expansion. It is
also noteworthy that the asymptotic skewness V12 appeared in the expansion formula is represented
as the asymptotic covariance between the log price and the integrated volatility. Our interest here
is however to deal with the singular case only. Now, suppose that bn and (1 + c2

n)/cn are locally
integrable and locally bounded on R respectively for each n ∈ N; we take R as the state space of
X n by a suitable scale transformation. Further, we assume that sn(R) =R for each n ∈N, where

sn(x) =

∫ x

0

exp

¨

−2

∫ v

0

bn(w)
cn(w)2

dw

«

dv

is the scale function of X n. This assumption ensures that there exists a unique weak solution of (1).
See e.g., Skorokhod [18], Section 3.1. It is also known that the ergodic distribution Πn of X n is, if
exists, given by

Πn(dx) =
dx

ε2
ns′n(x)c

2
n(x)

with a normalizing constant ε2
n:

ε2
n =

∫ ∞

−∞

dx

s′n(x)c
2
n(x)

.

Theorem 2.2. Suppose that

i. for any p > 0, the Lp boundedness of the sequences (11) holds,

ii. εn→ 0 as n→∞,
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iii. limn→∞ Πn[ϕ2] exists and is positive,

iv. limn→∞ Πn[ϕρψn] and limn→∞ Πn[ψ2
n] exist, where

ψn(x) = 2εncn(x)s
′
n(x)

∫ x

−∞
(ϕ(η)2−Πn[ϕ

2])Πn(dη),

v. the sequences
∫ X n

T

X n
0

ψn(x)
cn(x)

dx ,
1

T

∫ T

0

ψn(X
n
t )

2dt −Πn[ψ
2
n]

and
1

T

∫ T

0

ψn(X
n
t )ρ(X

n
t )ϕ(X

n
t )dt −Πn[ψnρϕ]

converge to 0 in probability as n→∞.

Then, the approximation (2) is valid in that (13) holds with Σn = Πn[ϕ2]T and pn = p defined as (3)
with b = bn, c = cn and Σ = Σn.

Proof: Let us verify (12) with Σn = Πn[ϕ2]T and

V12 =−2 lim
n→∞

Σ−3/2
n Πn[ϕρψn].

Notice that by the Itô-Tanaka formula,

〈M n〉T −Πn[ϕ
2]T =

∫ T

0

(ϕ(X n
t )

2−Πn[ϕ
2])dt

= εn

∫ X n
T

X n
0

ψn(x)
cn(x)

dx − εn

∫ T

0

ψn(X
n
t )dW 1

t .

It suffices then to prove the asymptotic normality of
 

∫ T

0

ϕ(X n
t )
h

ρ(X n
t )dW 1

t +
Æ

1−ρ(X n
t )

2dW 2
t

i

,

∫ T

0

ψn(X
n
t )dW 1

t

!

.

This follows from the martingale central limit theorem under the fifth assumption. ////

The conditions are easily verified in such a case that both Πn and sn do not depend on n ∈ N. The
model (4) with Λ ≡ 0 and η = ηn, where ηn is a positive sequence with ηn → 0, is an example of
such an easy case.

3 Main results

3.1 Main theorem and remarks

Here we state the main results of this article. We treat (1) with Borel functions ϕ, ρ satisfying
|ρ| ≤ 1, b being a locally integrable function on R and c being a positive Borel function such that
(1+ c2)/c is locally bounded on R. We suppose that ϕ also is locally bounded on R and that there
exists a non-empty open set U ⊂R such that it holds on U that
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i. ϕ and ρ are continuously differentiable,

ii. (1−ρ2)ϕ2 > 0 and |ϕ′|> 0.

If ϕ is constant, then the approximation (2) is trivially valid. Since U can be any open set as long
as it is not empty, this condition is not restrictive in the context of stochastic volatility models. This
rules out, however, the case |ρ| ≡ 1. We can introduce alternative framework to include such a case
although we do not go to the details in this article for the sake of brevity. We fix ϕ, ρ, U and assume
(Z0, X0) = (0,0) without loss of generality.

Define the scale function s : R → R of X and the normalizing constant ε > 0 as in Section 1.
It is well-known that the stochastic differential equation for X in (1) has a unique weak solution
which is ergodic if ε <∞ and s(R) = R. The ergodic distribution Π of X is given as in Section 1.
See e.g., Skorokhod [18], Section 3.1. Denote by π the density of Π. Notice that X is completely
characterized by (π, s,ε). In fact, we can recover b and c by 1/c2 = ε2s′π and b = −c2s′′/2s′.
Taking this into mind, denote by C the set of all triplets (π, s,ε) with π being a locally bounded
probability density function on R such that 1/π is also locally bounded on R, s being a bijection
from R to R such that the derivative s′ exists and is a positive absolutely continuous function, and
ε being a positive finite constant.

For given γ = (γ+,γ−) ∈ [0,∞)2 and δ ∈ (0, 1), denote by C (γ,δ) the set of θ = (π, s,ε) ∈ C
satisfying Conditions 3.1, 3.2 below.

Condition 3.1. It holds that

(1+ϕ(x)2)π(x)s′(y)≤ exp{− log(δ) + γ+x − (4γ++δ)(x − y)}

for all x ≥ y ≥ 0 and

(1+ϕ(x)2)π(x)s′(y)≤ exp{− log(δ)− γ−x + (4γ−+δ)(x − y)}

for all x ≤ y ≤ 0.

Condition 3.2. There exist x ∈ U and a ∈ [δ, 1/δ] such that |x | ≤ 1/δ, [x − a, x + a] ⊂ U, π is
absolutely continuous on [x − a, x + a] and it holds

sup
y∈[x−a,x+a]

�

�

�

�

�

�
Ç

π

s′
ϕρ

�′

(y)

�

�

�

�

�

∨ s′(y)∨π(y)∨
1

s′(y)
∨

1

π(y)
≤ 1/δ.

Given θ ∈ C , we write πθ , sθ ,εθ , bθ , cθ , Zθ for the elements of θ = (π, s,ε), the corresponding
coefficients b, c of the stochastic differential equations, and the log price process Z defined as (1)
respectively.

Theorem 3.3. Fix γ = (γ+,γ−) ∈ [0,∞)2 and δ ∈ (0, 1). Denote by Bδ the set of the Borel functions
bounded by 1/δ. Then,

sup
f ∈Bδ,θ∈C (γ,δ)

ε−2
θ

�

�

�E[ f (ZθT )]−E[(1+ pθ (N)) f (− log(D)−Σθ/2+
p

ΣθN)]
�

�

�

is finite, where N ∼ N (0,1), Σθ = Πθ[ϕ2]T, Πθ (dx) = πθ (x)dx and D, p = pθ are defined by (3)
with Σ = Σθ , Π = Πθ , c = cθ .
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Remark 3.4. The point of the definition of C (γ,δ) is that it is written independently of ε. As a
result, if θ ∈ C (γ,δ), then (πη, sη,εη) associated with the drift coefficient bη = bθ/η

2 and the
diffusion coefficient cη = cθ/η is also an element of C (γ,δ) for any η > 0. In fact πη = πθ and
sη = sθ . On the other hand, εη = ηεθ , so that Theorem 3.3 implies, with a slight abuse of notation,

E[ f (ZηT )] = E[(1+ pη(N)) f (Z0− log(D)−Ση/2+
p

ΣηN)] +O(η2) (14)

as η→ 0.

Remark 3.5. Given θ ∈ C , Condition 3.2 does not hold for any δ > 0 only when considering vicious
examples such as the case (

p

πθ/s
′
θ
ϕρ)′ is not continuous at any point of U; a sufficient condition

for Condition 3.2 to hold with some δ > 0 is that (
p

πθ/s
′
θ
ϕρ)′ is continuous at some point of U .

If Condition 3.2 holds with some δ > 0, then it holds with any δ̂ ∈ (0,δ] as well.

3.2 Examples

Lemma 3.6. Let θ ∈ C . If there exist (γ+,γ−) ∈ [0,∞)2 such that

κ± > 2γ±, lim sup
v→±∞

1+ϕ(v)2

eγ±|v|cθ (v)2
<∞ (15)

with

κ+ =− limsup
v→∞

bθ (v)
cθ (v)2

, κ− = lim inf
v→−∞

bθ (v)
cθ (v)2

,

then there exists δ0 > 0 such that for any δ ∈ (0,δ0 ∧ 1), Condition 3.1 holds for θ = (π, s,ε) with
γ= (γ+,γ−) and δ.

Proof: This is shown in a straightforward manner by (3). ////

Example 3.7. Consider

dZt =
�

rt −
1

2
Vt

�

dt +
p

Vt(ρdW 1
t +

p

1−ρ2dW 2
t )

dVt = ξη
−2(µ− Vt)dt +η−1|Vt |νdW 1

t

for positive constants ξ,µ,η > 0, ρ ∈ (−1,1) and ν ∈ [1/2,∞). We assume ξµ > 1/2 if ν = 1/2.
Then, the scale function sV of V satisfies sV ((0,∞)) = R, so that we can apply Itô’s formula to
X = log(V ) to have

dX t = η
−2(ξµe−X t − ξ− e−2(1−ν)X t/2)dt +η−1e−(1−ν)X t dW 1

t .

In this scale, ϕ(x) = exp(x/2), so that we can take any open set as U ⊂ R. We fix ξ,µ,ν ,ρ
arbitrarily. In the light of Remark 3.4, it suffices to verify Conditions 3.1 and 3.2 only when η = 1.
It is trivial that Condition 3.2 holds with a sufficiently small δ > 0. If ν = 1/2, then (15) also holds
with

κ+ =∞, κ− = ξµ−
1

2
, γ+ = 2, γ− = 0.
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If ν ∈ (1/2, 1), then it holds with

κ± =∞, γ+ = 3− 2ν , γ− = 0.

If ν = 1, then it holds with

κ+ = ξ+
1

2
, κ− =∞, γ+ = 1, γ− = 0

provided that ξ > 3/2. Unfortunately, (15) does not hold if ν ∈ (1,11/8]. If ν > 11/8, it then holds
with

κ+ =
1

2
, κ− =∞ γ+ = (3− 2ν)+, γ− = 2ν − 2.

Note that the case ν = 1/2 corresponds to the Heston model. In this case, we have a more explicit
expression of the asymptotic expansion formula; we have (14) with

pη(z) =
ηρ

2ξ

(

1− z2+
1

Σ1/2
η

(z3− 3z)

)

, Ση = µT.

This is due to the fact that the ergodic distribution of the CIR process is a gamma distribution.

Example 3.8. Here we treat (4). In order to prove the validity of the singular expansion in the form
(14) for ZηT = log(SηT ), it suffices to show that there exist γ, δ and η0 > 0 such that Conditions 3.1
and 3.2 hold for θ = (π, s,ε) ∈ C associated with

bθ (x) = m− x −ην
p

2Λ(x), cθ (x) = ν
p

2

for any η ∈ (0,η0], in the light of Remark 3.4. Here we fix m ∈ R and ν ∈ (0,∞). Suppose that
there exists (γ+,γ−) ∈ [0,∞)2 such that

limsup
x→±∞

e−γ±|x |ϕ2(x)<∞

and that Λ is locally bounded on R with

λ∞ := lim inf
|x |→∞

Λ(x)
x
>−∞.

Then we have

−sgn(v)
bθ (v)
cθ (v)2

→∞,

as |v| → ∞ uniformly in η ∈ (0,η0] with, say, η0 = 1 ∧ |1/(2νλ∞ ∧ 0)|. Hence, by Lemma 3.6,
there exists δ ∈ (0, 1) such that Condition 3.1 holds for any η ∈ (0,η0] with γ= (γ+,γ−) and δ. By,
if necessary, replacing (δ,η0) with a smaller one, Condition 3.2 also is verified for any η ∈ (0,η0]
provided that there exists a non-empty open set U such that ϕ is continuously differentiable on U .
Consequently, by Theorem 3.3, we have (14) for (4) if |ρ| < 1 and |ϕ′| > 0 on U in addition. The
obtained estimate of error O(η2) is a stronger result than one obtained by Fouque et al. [9][10] and
Alòs [1].
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Example 3.9. Here we treat a diffusion which is not geometrically mixing. Consider the stochastic
differential equation

dX t =−
1

η2

�

1

2
+ ξ
�

tanh(Yt)
cosh(Yt)2

dt +
1

η

1

cosh(X t)
dWt

with ξ > 1/2 and η > 0. Putting Yt = sinh(X t), we have

dYt =−
1

η2

ξYt

1+ Y 2
t

dt +
1

η
dWt

This stochastic differential equation has a unique weak solution which is ergodic. A polynomial
lower bound for the α mixing coefficient is given in Veretennikov [19] which implies in particular
that X = sinh−1(Y ) is not geometrically mixing for any ξ. Now, let us verify Conditions 3.1 and 3.2
for (1) with

b(x) =−
1

η2

�

1

2
+ ξ
�

tanh(x)
cosh(x)2

, c(x) =
1

η

1

cosh(x)

for any η > 0. In the light of Remark 3.4, it suffices to deal with the case η= 1. Since

− lim
|x |→∞

sgn(x)
b(x)
c(x)2

=
1

2
+ ξ,

we have (15) if there exists µ≥ 0 such that

sup
|x |→∞

e−µ|x |ϕ(x)2 <∞,
1

2
+ ξ > 4+ 2µ.

Condition 3.2 also is satisfied with a sufficiently small δ > 0 under the condition on ϕ and ρ stated
in the beginning of this section.

4 Edgeworth expansion

In this section, we present basic results of the Edgeworth expansion which play an essential role in
the proof of Theorem 3.3 given in the next section. In Section 4.1, we give a validity theorem for
the classical iid case with a brief introduction to the Edgeworth expansion theory. The theorem is
applied to a non-iid case by the regenerative approach in Section 4.2 to establish a general validity
theorem for regenerative functionals including additive functionals of ergodic diffusions.

4.1 The Edgeworth and Gram-Charlier expansions

The Edgeworth expansion is a rearrangement of the Gram-Charlier expansion. Let Y be a random
variable with E[Y ] = 0 and E[Y 2] = 1. If it has a density pY with an integrability condition

∫

pY (z)
2φ(z)−1dz <∞, (16)
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where φ is the standard normal density, then we have

pY /φ =
∞
∑

j=0

1

j!
E[H j(Y )]H j

in L2(φ) with Hermite polynomials H j defined as the coefficients of the Taylor series

et x−t2/2 =
∞
∑

j=0

H j(x)
t j

j!
, (t, x) ∈R2. (17)

This is an orthonormal series expansion of pY /φ ∈ L2(φ) and implies that

E[ f (Y )] =
∞
∑

j=0

1

j!
E[H j(Y )]

∫

f (z)H j(z)φ(z)dz (18)

for f ∈ L2(φ). The Edgeworth formula is obtained by rearranging this Gram-Charlier series. For
example, if Y = m−1/2

∑m
j=1 X j with an iid sequence X j , then the j-th cumulant κY

j of Y is of

O(m1− j/2). This is simply because

∂ j log(ψY (u)) = m∂ j log(ψX (m
−1/2u)),

where ψY and ψX are the characteristic functions of Y and X j respectively. Even if Y is not an iid
sum, κY

j = O(m1− j/2) often remains true in cases where Y converges in law to a normal distribution
as m→∞. Since E[H0(Y )] = 1, E[H1(Y )] = E[H2(Y )] = 0 and for j ≥ 3,

E[H j(Y )] =
[ j/3]
∑

k=1

∑

r1+···+rk= j, r j≥3

κY
r1

. . .κY
rk

r1! . . . rk!

j!

k!

by (17), it follows from (18) that

E[ f (Y )] =
J
∑

j=0

m− j/2

∫

f (z)q j(z)φ(z)dz+ o(m−J/2)

with suitable polynomials q j . Taking J = 0, we have the central limit theorem; in this sense, the
Edgeworth expansion is a refinement of the central limit theorem. This asymptotic expansion can
be validated under weaker conditions than (16); see Bhattacharya and Rao [3] and Hall [14] for
iid cases. Here we give one of the validity theorems which is used in the next subsection.

Theorem 4.1. Let X n
j be a triangular array of d-dimensional independent random variables with mean

0. Assume that X n
j ∼ X n

1 for all j and that

sup
n∈N

E[|X n
1 |
ξ]<∞

for an integer ξ≥ 4,

sup
|u|≥b,n∈N

|Ψn(u)|< 1, sup
n∈N

∫

Rd

|Ψn(u)|ηdu<∞,
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for all b > 0 and for some η≥ 1 respectively, where

Ψn(u) = E[exp{iu · X n
1}].

Then, there exists m0 such that Sn
m = m−1/2

∑m
j=1 X n

j has a bounded density pn
m for all m≥ m0, n ∈N.

Further, it holds that
sup

x∈Rk ,m≥m0,n∈N
m(1+ |x |ξ)|pn

m(x)− qn
m(x)|<∞,

where

qn
m(x) = φ(x; 0, vn)−

1

6
p

m

d
∑

i, j,k=1

κn
i jk∂i∂ j∂kφ(x; 0, vn)

with the variance matrix vn of X n
1 and the third moment κn

i jk of X n
1 .

Proof: This result is a variant of Theorem 19.2 of Bhattacharya and Rao [3]. Although the distribu-
tion of X n

1 depends on n, the assertion is proved in a similar manner with the aid of Theorem 9.10
of Bhattacharya and Rao [3], due to our assumptions. For example, we have ( and use )

0< inf
|u|=1,n∈N

E[|u · X n
1 |

2]≤ sup
|u|=1,n∈N

E[|u · X n
1 |

2]<∞.

////

Remark that an Edgeworth-type result typically requires the existence of moments up to a sufficiently
large order and the smoothness of a distribution to hold. In an iid case, such conditions are verifiable
because they are usually given in terms of the identical distribution of the summands, as in the above
theorem. It is not the case when considering non-iid summands. The technique of the regenerative
approach presented in the next subsection is to decompose a sum or integral of a dependent process
into iid blocks.

4.2 Edgeworth expansion for regenerative functionals

We have seen that the fast mean reverting expansion gives a correction term to the Black-Scholes
price that corresponds to the central limit of an additive functional of ergodic diffusion in Sec-
tion 2.1. In order to prove the validity of the expansion, it is therefore natural to apply the Edgeworth
expansion theory for ergodic diffusions. Here we present a general result for triangular arrays of
regenerative functionals, which extends a result for additive functionals of ergodic diffusions given
by Fukasawa [11]. Let Pn = (Ωn,F n, {Fn

t }, Pn) be a family of filtered probability spaces satisfying
the usual assumptions and Kn = (Kn

t ) be an {Fn
t }-adapted cadlag process defined on Pn. What we

treat in the proof of the main result is essentially of the form

Kn
t =

�
∫ t

0

h(Xs)ds,

∫ t

0

ϕ(Xs)[ρ(Xs)dW 1
s +

p

1−ρ(Xs)2dW 2
s ]

�

with h= Tϕ2 −Σ for each n ∈N, where X , ϕ, ρ and Σ are the same as in Section 1. We however
work for a while in more general framework of regenerative functionals in order to clarify the

776



essence of the argument. For a given sequence of increasing {Fn
t }-stopping times {τn

j } with τn
0 = 0

and lim j→∞τ
n
j =∞, put

K n
j =

�

K n
j,t

�

t≥0
, K n

j,t = Kn
t+τn

j
− Kn

τn
j
, ln

j = τ
n
j+1−τ

n
j , j = 0, 1,2, . . .

We say that Kn is a regenerative functional if there exists {τn
j } such that

(i) (K n
j , ln

j ) is independent of Fn
τn

j
for each j = 1,2, . . . ,

(ii) (K n
j , ln

j ), j = 1,2, . . . are identically distributed.

Let Kn be a d-dimensional regenerative functional and put K̄ n
j = (K

n
j,ln

j
, ln

j ) for j = 0, 1, . . . . The idea

of the regenerative approach is to use the fact that K̄ n
j , j ≥ 1 is an iid sequence and independent

of K̄ n
0 . Denote by En[·] and Varn[·] the expectation and variance with respect to Pn respectively.

Assume that Varn[K̄ n
j ] exists and is of rank d ′ + 1 with 1 ≤ d ′ ≤ d for all j ≥ 1. Without loss of

generality, assume that there exists a d ′-dimensional iid sequence Gn
j , j ≥ 1 such that the variance

matrix of (Gn
j , ln

j ) is of full rank and that

K̄ n
j = (G

n
j , Rn

j , ln
j ) (19)

with a d − d ′ dimensional sequence Rn
j . Put

mn
L = En[ln

1], mn
G = En[Gn

1], mn
R = En[Rn

1],

µn = (µn
k) = (m

n
G , mn

R)/m
n
L ,

and
Kn

j = (G
n
j , ln

j ), G
n
j = Gn

j − ln
j mn

G/m
n
L , j ∈N.

Due to the definition, it is not difficult to see a law of large numbers holds:

Kn
T/T → µ

n

in probability as T →∞. Further, a central limit theorem
p

T (Kn
T/T −µ

n)⇒N (0, V n)

holds with a suitable matrix V n. Our aim here is to give a refinement of this central limit theorem.
More precisely, for a given function An : Rd → R and a positive sequence Tn → ∞, we present a
valid approximation of the distribution of

p

Tn(A
n(Kn

Tn
/Tn)− An(µn))

up to O(T−1
n ) as n→∞. As far as considering this form, we can assume without loss of generality

that En[|Rn
j |] = 0 for all j ≥ 1 in (19). Put

(µn
k,l) = Varn[Gn

1]/m
n
L , ρn = (ρn

k) = Covn[Gn
1, ln

1]

and
µn

k,l,m = (κ
n
k,l,m−ρ

n
kµ

n
l,m−ρ

n
l µ

n
m,k −ρ

n
mµ

n
k,l)/m

n
L ,

where (κn
k,l,m) is the third moment of Gn

1.

We have decomposed (Kn
Tn

, Tn) into the blocks K̄ n
j . Notice that the number of blocks obtained up to

Tn is random. To control its distribution, we put the following condition on mn
L .

777



Condition 4.2. It holds that
inf
n∈N

mn
L > 0.

The next condition corresponds to the assumption on the existence of moments of iid summands
that is required in the classical Edgeworth theory.

Condition 4.3. For ξ= (d ′+ 2)∨ 4, it holds that

sup
n∈N

(

En[|K̄ n
0 |

2] + En[|Kn
1|
ξ] + En





∫ τn
2

τn
1

|K n
1,t |

2dt





)

<∞.

Under Conditions 4.2 and 4.3, the sequences µn, (µn
k,l), (µ

n
k,l,m) are bounded in n ∈N. The next con-

dition corresponds to the assumption on the smoothness of the identical distribution of summands
in the classical Edgeworth theory.

Condition 4.4. Let Ψn be the characteristic function of Kn
1:

Ψn(u) = En[exp{iu ·Kn
1}].

It holds
sup

|u|≥b,n∈N
|Ψn(u)|< 1

for all b > 0 and there exists η≥ 1 such that

sup
n∈N

∫

Rd′+1

|Ψn(u)|ηdu<∞.

Note that under Conditions 4.3 and 4.4, it holds

0< inf
|a|=1,n∈N

En[|a ·Kn
1|

2]≤ sup
|a|=1,n∈N

En[|a ·Kn
1|

2]<∞,

that is, the largest and smallest eigenvalues of the variance matrix of Kn
1 is bounded and bounded

away from 0 in n ∈N.

Let Bn(ζ) = {x ∈Rd ; |x −µn|< ζ} for ζ > 0,

an
i = ∂iA

n(µn), an
i, j = ∂i∂ jA

n(µn), 1≤ i, j ≤ d

for a given function An :Rd →R which is twice differentiable at the point µn and

an = (an
k) ∈R

d , vn =
d ′
∑

k,l=1

µn
k,l a

n
k an

l .

We put the following condition on An.

Condition 4.5. There exists ζ > 0 such that

i. An :Rd →R is four times continuously differentiable on Bn(ζ) for all n,
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ii. all the derivatives up to fourth order are bounded on Bn(ζ) uniformly in n,

iii. it holds that
0< inf

n∈N
vn ≤ sup

n∈N
vn <∞.

Denote by ι the natural inclusion: Rd ′ 3 v 7→ (v, 0, . . . , 0) ∈Rd .

Theorem 4.6. Let M be a positive constant and BM be the set of Borel functions on R which are
bounded by M. Under Conditions 4.2, 4.3, 4.4 and 4.5, it holds that

sup
H∈BM ,n∈N

Tn

�

�

�

�

En[H(
p

Tn(A
n(Kn

Tn
/Tn)− An(µn)))]−

∫

H(z)qn(z)dz

�

�

�

�

<∞,

where qn is defined as

qn(z) = φ(z; vn) + T−1/2
n

¨

An
1q1(z; vn) +

An
3

6
q3(z; vn)

«

(20)

with φ(z; vn) being the normal density with mean 0 and variance vn,

q1(z; vn) =−∂ φ(z; vn), q3(z; vn) =−∂ 3φ(z; vn),

and

An
1 =

1

2

n′
∑

k,l=1

an
k,lµ

n
k,l + an ·

(

En[Kn
τn

1
] +

1

mn
L

En





∫ τn
2

τn
1

Kn
t dt



−
ι(ρn)
mn

L

)

,

An
3 =

n′
∑

k,l,m=1

an
k an

l an
mµ

n
k,l,m+ 3

n′
∑

j,k,l,m=1

an
j an

k an
l,mµ

n
j,lµ

n
k,m.

(21)

Proof: The proof is a repetition of the proof of Theorem 4.1 in Fukasawa [11] with the aid of
Theorem 4.1 in the previous subsection and so is omitted. ////

5 Proof of Theorem 3.3

Here we give the proof of Theorem 3.3. We formulate the problem in terms of the distribution of
a regenerative functional and verify all the conditions for Theorem 4.6 to hold. We are considering
(1) with ϕ, ρ, U satisfying the condition stated in the beginning of Section 3. The initial value
(Z0, X0) = (0,0) and the time to maturity T are fixed. Now, to obtain a contradiction, let us suppose
that the supremum in Theorem 3.3 is infinite. Then there exists a sequence θn ∈ C (γ,δ) such that

ε−2
n

�

�

�E[ f (Zn
T )]−E[(1+ pn(N)) f (− log(D)−Σn/2+

p

ΣnN)]
�

�

�→∞ (22)

as n→∞, where εn = εθn
, pn = pθn

, Σn = Σθn
. Put b̂n = ε2

n bθn
, ĉn = εncθn

and denote by En
x the

expectation operator with respect to the law of X̂ n determined by the stochastic differential equation

dX̂ n
t = b̂n(X̂

n
t )dt + ĉn(X̂

n
t )dŴ 1

t , X̂ n
0 = x ∈R,
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where Ŵ 1 is a standard Brownian motion. It is easy to see that the law of X = {X t} in (1) is the

same as that of
§

X̂ n
t/ε2

n

ª

with X̂ n
0 = 0. Hence, the law of Zn = Zθn is the same as that of

− log(D)−
1

2
Σn+

p

Σn

p

TnAn(Kn
Tn
/Tn)

under En
0, where

Tn =
T

ε2
n

, An(x , y) =

p
T y − T−1/2

n x/2
p

Σn

, hn = Tϕ2−Σn, (23)

Kn
t =

�
∫ t

0

hn(X̂
n
s )ds,

∫ t

0

ϕ(X̂ n
s )
�

ρ(X̂ n
s )dŴ 1

s +
Æ

1−ρ(X̂ n
s )

2dŴ 2
s

�

�

and (Ŵ 1, Ŵ 2) is a 2-dimensional standard Brownian motion. By the strong Markov property, Kn

is a regenerative functional in the sense given in the previous section with the stopping times {τn
j }

defined as

τn
0 = 0, τn

j+1 = inf







t > τn
j ; X̂ n

t = xn
0 , sup

s∈[τn
j ,t]

X̂ n
s ≥ xn

1







, (24)

with an arbitrarily fixed point (xn
0 , xn

1) ∈ R
2 with xn

0 < xn
1 . Let us take xn

0 = x , xn
1 = x + a with

(x , a) which satisfies Condition 3.2; recall that θn ∈ C (γ,δ), so that we can find such a pair (x , a)
for each n.

Put sn = sθn
, πn = πθn

and Πn = Πθn
. To verify all the conditions for Theorem 4.6 to hold, we use

the following more-or-less known identities. The first one is that

Πn[g] =
1

Exn
0
[τn

1]
E





∫ τn
1

0

g(X̂ n
t )dt



 (25)

for all integrable function g; see e.g., Skorokhod [18]. Section 3.1. The second one is Kac’s moment
formula [7]: for given a positive Borel function g, define

Gk
g(y; z) = En

y





∫ τ(z)

0

g(X̂ n
t )G

k−1
g (X̂ n

t ; z)dt





recursively for k ∈N, where y, z ∈R, G0
g(y; z)≡ 1 and

τ(z) = inf{t > 0; X̂ n
t = z}.

Then, it holds that

En
y







�

�

�

�

�

∫ τ(z)

0

g(X̂ n
t )dt

�

�

�

�

�

k





= k!Gk

g(y; z) (26)

for any y, z ∈R. The third one is that

G1
g(y; z) = 2

∫ z

y

(sn(z)− sn(x))g(x)Πn(dx) + 2(sn(z)− sn(y))

∫ y

−∞
g(x)Πn(dx)
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if y ≤ z, and

G1
g(y; z) = 2(sn(y)− sn(z))

∫ ∞

y

g(x)Πn(dx) + 2

∫ y

z

(sn(x)− sn(z))g(x)Πn(dx)

if y > z. See Skorokhod [18], Section 3.1 for the details.

Lemma 5.1. Condition 4.2 holds.

Proof: By the strong Markov property and the above identities,

mn
L = E[τ

n
2 −τ

n
1] = E

n
xn

0
[τ(xn

1)] +E
n
xn

1
[τ(xn

0)] = 2(sn(x
n
1)− s1(x

n
0)).

The result then follows from Condition 3.2. ////

Lemma 5.2. Condition 4.3 holds.

Proof: By the Burkholder-Davis-Gundy inequality and the strong Markov property, it suffices to
show

sup
n∈N

En
y






|τ(z)|4+

�

�

�

�

�

∫ τ(z)

0

|hn(X̂
n
t )|dt

�

�

�

�

�

4

+

�

�

�

�

�

∫ τ(z)

0

ϕ(X̂ n
t )

2dt

�

�

�

�

�

2





<∞

for (y, z) = (0, xn
0), (y, z) = (xn

0 , xn
1) and (y, z) = (xn

1 , xn
0). We only need to show

sup
n∈N

En
y







�

�

�

�

�

∫ τ(z)

0

(1+ϕ(X̂ n
t )

2)dt

�

�

�

�

�

4





<∞. (27)

because hn = Tϕ2−Σn,

Σn = TΠn[ϕ
2] =

T

mn
L
En

xn
0





∫ τn
1

0

ϕ(X̂ n
t )

2dt





and infn mn
L > 0 by Lemma 5.1. By Condition 3.1, we have

s′n(w)gk(v)πn(v)≤
1

δ
e(k+1)γ±|v|−(4γ±+δ)|v−w|)

for gk(v) = (1+ ϕ(v)2)exp(kγ±|v|), k ∈ Z if |v| ≥ |w| and vw ≥ 0, where γ± = γ+ if v ≥ 0 and
γ± = γ− otherwise. Hence, by Condition 3.2, there exists a constant C (independent of n) such that

G1
gk
(u; z)≤ Ce(k+1)γ±|u|.

for any u ∈R as long as k ≤ 3, where z = xn
0 or z = xn

1 . This inequality implies (27) with the aid of
(26). ////

Lemma 5.3. Condition 4.4 holds.

Proof: The proof is lengthy so is deferred to Section 6. ////
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Lemma 5.4. Condition 4.5 holds.

Proof: Note that
0< inf

n∈N
Σn ≤ sup

n∈N
Σn <∞

by Lemmas 5.1, 5.2 and 5.3. The first two properties are then obvious from (23). To see the third,
notice that

vn =
T

mn
LΣn

E





∫ τn
2

τn
1

ϕ2(X̂ n
t )dt





+
εn

mn
LΣn

E





∫ τn
2

τn
1

ψn(X̂
n
t )ϕ(X̂

n
t )ρ(X

n
t )dt



+O(ε2
n)

=1+
εn

Σn
Πn[ψnϕρ] +O(ε2

n)

(28)

and Πn[ψnϕρ] = O(1), in the light of Lemma 5.2, where

ψn(y) = 2s′n(y)ĉn(y)

∫ y

−∞
hn(w)Πn(dw). (29)

Here we used the fact that

0=

∫ X̂ n
τn

2

X̂ n
τn

1

ψn(x)
ĉn(x)

dx =

∫ τn
2

τn
1

ψn(X̂
n
t )dŴ 1

t +

∫ τn
2

τn
1

hn(X̂
n
t )dt,

which follows from the Itô-Tanaka formula. ////

Now we are ready to apply Theorem 4.6. In the light of Lemma 3 of Fukasawa [11] and Lemma 5.2,
we have An

1 = O(εn). Further, by the Itô-Tanaka formula and Lemma 5.2, we obtain

En
xn

0







(

∫ τn
1

0

ϕ(X̂ n
t )
§

ρ(X̂ n
t )dŴ 1

t +
Æ

1−ρ(X̂ n
t )dŴ 2

t

ª

)3






= 3En
xn

0





∫ τn
1

0

ϕ(X̂ n
t )
§

ρ(X̂ n
t )dŴ 1

t +
Æ

1−ρ(X̂ n
t )dŴ 2

t

ª

∫ τn
1

0

ϕ(X̂ n
t )

2dt





= 3En
xn

0





∫ τn
1

0

ϕ(X̂ n
t )ρ(X̂

n
t )dŴ 1

t

∫ τn
1

0

ϕ(X̂ n
t )

2dt





= 3
En

xn
0
[τn

1]

T







−Πn[ϕρψn] +
Σn

En
xn

0
[τn

1]
En

xn
0



τn
1

∫ τn
1

0

ϕ(X̂ n
t )ρ(X̂

n
t )dŴ 1

t











,

where ψn is defined by (29). This implies

An
2 =−

3Πn[ϕρψn]

Πn[ϕ2]3/2T
+O(εn) =

6αn

p

Tn
p

Σn

+O(εn),
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where α= αn is defined as (3) with c = cθn
= ĉn/εn, Σ = Σn and Π = Πn. Since

∫

g(z)φ(z; vn)dz =

∫

g(z)φ(z; 1)dz+
εn

Σn
Πn[ψnϕρ]

∫

g(z)
∂

∂ v
φ(z; v)

�

�

�

v=1
dz+O(ε2

n)

=

∫

g(z)φ(z; 1)dz−αn

∫

g(z)φ(z; 1)(z2− 1)dz+O(ε2
n)

for any Borel function g of polynomial growth by (28), we conclude
∫

g(z)qn(z)dz =

∫

g(z)φ(z; 1)(1+ pn(z))dz+O(ε2
n),

where qn is defined by (20). By Theorem 4.6, we obtain a contradiction to (22).

6 Proof of Lemma 5.2

Here we prove that the characteristic function Ψn(u) of
 

τn
1,

∫ τn
1

0

hn(X̂
n
t )dt,

∫ τn
1

0

ϕ(X̂ n
t )
�

ρ(X̂ n
t )dŴ 1

t +
Æ

1−ρ(X̂ n
t )

2dŴ 2
t

�

!

under En
xn

0
satisfies the inequalities of Condition 4.4. By the strong Markov property, it suffices to

prove the same inequalities for the characteristic function Ψ̂n(u) of
 

τ(xn
1),

∫ τ(xn
1 )

0

hn(X̂
n
t )dt,

∫ τ(xn
1 )

0

ϕ(X̂ n
t )
�

ρ(X̂ n
t )dŴ 1

t +
Æ

1−ρ(X̂ n
t )

2dŴ 2
t

�

!

under En
xn

0
instead of Ψn(u).

Note that Y n := sn(X̂ n) is a local martingale by the Itô-Tanaka formula, so that there exists a standard
Brownian motion Bn such that Y n = Bn

〈Y n〉 by the martingale representation theorem. Under En
xn

0
,

Bn
0 = sn(xn

0). Note also that

dY n
t = s′n(X̂

n
t )ĉn(X̂

n
t )dŴ 1

t =

È

s′n
πn
(X̂ n

t )dŴ 1
t =

1

σn(Y n
t )

dŴ 1
t ,

where σn(y) =
p

πn(s−1
n (y))/

p

s′n(s
−1
n (y)). It follows that

∫ τ

0

g(X̂ n
t )dt =

∫ 〈Y n〉τ

0

g(s−1
n (B

n
u))σn(B

n
u)

2du,

∫ τ

0

g(X̂ n
t )dŴ 1 =

∫ 〈Y n〉τ

0

g(s−1
n (B

n
u))σn(B

n
u)dBn

u

for every finite stopping time τ and locally bounded Borel function g. When considering the hitting
time τ= τ(xn

1) of X̂ n, we have

〈Y n〉τ = τ̂n := inf{s > 0; Bn
s = sn(x

n
1)}. (30)
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Put yn
i = sn(xn

i ) for i = 0,1 and yn
−1 = sn(2xn

0 − xn
1). Notice that by definition,

inf
n∈N
|yn

1 − yn
0 |> 0, inf

n∈N
|yn

0 − yn
−1|> 0, sup

n∈N
|yn

1 − yn
−1|<∞.

Lemma 6.1. Let Bn be a standard Brownian motion with Bn
0 = yn

0 and define τ̂n as (30). Let Λ be a
set and gn(·,λ) :R→R be a sequence of Borel functions for each λ ∈ Λ with

sup
λ∈Λ,n∈N,v∈[yn

−1,yn
1 ]
|gn(v,λ)|<∞. (31)

Then there exist positive constants a1 and a2 such that for all λ ∈ Λ and n ∈N, the distribution of

∫ τ̂n

0

gn(B
n
t ,λ)dt

is infinite divisible with Lévy measure L satisfying for all z > 0,

L((−∞,−z])∨ L((z,∞))≤ a1+
a2p

z
.

Moreover,

• if there exists a sequence of intervals In ⊂ [yn
0 , yn

1 ] such that

inf
n∈N
|In|> 0, inf

λ∈Λ,n∈N,v∈In

gn(v,λ)> 0,

then there exist positive constants a3 and a4 such that

−a3+
a4p

z
≤ L((z,∞))

holds for all z > 0, λ ∈ Λ and n ∈N,

• if there exists a sequence of intervals In ⊂ [yn
0 , yn

1 ] such that

inf
n∈N
|In|> 0, sup

n∈N,λ∈Λ,v∈In

gn(v,λ)< 0,

then there exist another positive constants a3 and a4 such that

−a3+
a4
p

|z|
≤ L((∞, z])

holds for all z < 0, λ ∈ Λ and n ∈N.

Proof: This can be proved by the same argument as in the proof of Lemma 3 of Borisov [4]. ////

Lemma 6.2. Let (Bn, B̌n) be a 2-dimensional standard Brownian motion with Bn
0 = yn

0 and define τ̂n
as (30). Let gn be a sequence of locally bounded Borel functions with

sup
n∈N,v∈[yn

−1,yn
1 ]
|gn(v)|<∞, inf

n∈N,v∈[yn
−1,yn

1 ]
|gn(v)|> 0.
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Then there exist positive constants a1, a2, a3, a4 such that the distribution of
∫ τ̂n

0

gn(B
n
t )dB̌n

t

is infinite divisible with Lévy measure L satisfying

−a1+
a2

z
≤ L((−∞,−z]) = L((z,∞))≤ a3+

a4

z
for all z > 0, n ∈N.

Proof: Put ∆n = yn
1 − yn

0 . Let τi/m, i = 1, . . . , m be the times at which Bn first attains the levels
yn

0 +∆ni/m respectively. Put

Jn =
m
∑

i=1

Jmi
n , Jmi

n =

∫ τi/m

τ(i−1)/m

gn(B
n
t )dB̌n

t .

Note that Jmi
n , i = 1, . . . , m are independent by the strong Markov property. Besides, {Jmi

n }1≤i≤m is a
null array for each n ∈N since for all ε > 0,

sup
1≤i≤m

P[|Jmi
n |> ε]≤ P[Mτ1/mN2 > ε2] + Am

which converges to 0 as m→∞, where M is a constant, N is a standard normal variable independent
of Bn, and

Am = sup
1≤i≤m,n∈N

P

�¨

inf
τ(i−1)/m≤t≤τi/m

Bn
t ≤ yn

−1

«�

=
1

m

1

infn∈N |yn
0 − yn

−1|
. (32)

Hence, Jn is infinite divisible for each n ∈N. Denoting by L its Lévy measure, it holds that for every
continuity point z > 0,

lim
m→∞

m
∑

i=1

P[Jmi
n > z] = L((z,∞)) (33)

and for every continuity point z < 0 of L,

lim
m→∞

m
∑

i=1

P[Jmi
n ≤ z] = L((−∞, z]), (34)

for which see e.g., Feller [6], XVII.7. Observe that for z > 0,

P
�

Jmi
n <−z

�

= P
�

Jmi
n > z

�

≤ Am+

∫ ∞

0

∫ ∞

z/
p

M t

φ(y; 1)dy
∆n

m
p

2πt3
exp

¨

−
∆2

n

2tm2

«

dt

= Am+

∫ ∞

0

∫ ∞

z/
p

M

∆n

2πmt2 exp

¨

−
∆2

n+m2u2

2tm2

«

dudt

= Am+

∫ ∞

z/
p

M

∫ ∞

0

∆n

2πm
exp

¨

−
s

2

¨

u2+
∆2

n

m2

««

dsdu

= Am+
1

π

∫ ∞

mz/(∆n
p

M)

dv

1+ v2
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where M is a constant. Hence, by L’Hopital’s rule and (33),

L((−∞,−z]) = L((z,∞))≤ a+
supn∈N∆n

p
M

πz

with a constant a > 0. By the same calculation, we have also

L((−∞,−z]) = L((z,∞))≥−a+
infn∈N∆n

p
M ′

πz

with another constant M ′ > 0. ////

Lemma 6.3. Let (Bn, B̌n) be a 2-dimensional standard Brownian motion with Bn
0 = yn

0 and define τ̂n
as (30). Let Λ be a set, gn,1(·,λ) be Borel functions for each λ ∈ Λ, gn,2 be Borel functions which are
absolutely continuous on [yn

−1, yn
1 ] respectively, and gn,3 be Borel functions with

sup
λ∈Λ,n∈N,v∈[yn

−1,yn
1 ]
|gn,1(v,λ)| ∨ |gn,2(v)| ∨ |g ′n,2(v)| ∨ |gn,3(v)| ∨

1

|gn,3(v)|
<∞.

Assume that there exists a sequence of intervals In ⊂ [yn
0 , yn

1 ] with

inf
n∈N
|In|> 0

such that
inf

λ∈Λ,n∈N,v∈In

gn,1(v,λ)> 0 or sup
λ∈Λ,n∈N,v∈In

gn,1(v,λ)< 0 (35)

holds. Denote by ĝn(·; u,λ) the characteristic function of J defined as

J = u1

∫ τ̂n

0

gn,1(B
n
t ,λ)dt + u2

∫ τ̂n

0

gn,2(B
n
t )dBn

t + u2

∫ τ̂n

0

gn,3(B
n
t )dB̌n

t ,

where u = (u1, u2) ∈ R2 with |u| = 1. Then, there exists a constant C ∈ (0,∞) such that for every
t ∈R, it holds

sup
λ∈Λ,n∈N,u;|u|=1

| ĝn(t; u,λ)| ≤ Ce−
p
|t|/C .

Proof: Put ∆n = yn
1 − yn

0 and let τi/m, i = 1, . . . , m be the times at which Bn first attains the levels
yn

0 +∆ni/m respectively as in the previous proof. Put

Jmi,1
n = u1

∫ τi/m

τ(i−1)/m

gn,1(B
n
t ,λ)dt + u2

∫ τi/m

τ(i−1)/m

gn,2(B
n
t )dBn

t ,

Jmi,2
n = u2

∫ τi/m

τ(i−1)/m

gn,3(B
n
t )dB̌n

t

and Jmi
n = Jmi,1

n + Jmi,2
n . By the same argument as before, we conclude that J is infinitely divisible

for each n ∈N, λ ∈ Λn and u ∈R2. We have (33) and (34) with its Lévy measure L. Notice that

∫ τi/m

τ(i−1)/m

gn,2(B
n
t )dBn

t =

∫ yn
0+i∆n/m

yn
0+(i−1)∆n/m

gn,2(y)dy −
1

2

∫ τi/m

τ(i−1)/m

g ′n,2(B
n
t )dt (36)
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on the set
¨

inf
τ(i−1)/m≤t≤τi/m

Bn
t > yn

−1

«

by the Itô-Tanaka formula. Since, for example,

P[Jmi
n > z]≥ P

�

Jmi,2
n > 2z

�

− P[Jmi,1
n ≤−z],

P[Jmi
n > z]≤ P

�

Jmi,2
n > z/2

�

+ P[Jmi,1
n > z/2],

there exist positive constants ai , i = 1,2, . . . , 6 such that

− a1−
a2p

z
+

a3|u2|
z
≤ L((z,∞))≤ a4+

a5p
z
+

a6|u2|
z

(37)

for all z > 0 and

−a1−
a2
p

|z|
+

a3|u2|
|z|

≤ L((−∞, z])≤ a4+
a5
p

|z|
+

a6|u2|
|z|

for all z < 0 by Lemmas 6.1, 6.2 and (32), (33), (34).

In case we have the first inequality in (35), if

|u2| ≤ β0 :=
1
p

2
∧
β1

2β2

with β1 = infλ∈Λ,n∈N,v∈In
gn,1(v,λ) and β2 = supn∈N,v∈In

|g ′n,2(v)|, then

inf
n∈N,λ∈Λn,v∈In

u1 gn,1(v;λ)− u2 g ′n,2(v)/2

≥
p

1− |u2|2β1− |u2|β2/2≥ β1/4> 0,

so that by Lemma 6.1 and (36),

lim
m→∞

m
∑

i=1

P[Jmi,1
n > z]≥−ã1+

ã2p
z

for all z > 0, where ãi , i = 1,2 are positive constants. In addition, we have

P[Jmi
n > z]≥ P[Jmi

n > z; Jmi,1
n > z]≥

1

2
P[Jmi,1

n > z]

for all z > 0. Hence, when |u2| ≤ β0, there exist another constants a′i , i = 1,2 such that

− a′1+
a′2p

z
≤ L((z,∞))≤ a4+

a5p
z
+

a6|u2|
z

(38)

for all z > 0. Now, note that by the Lévy-Khinchin expression, there exists a constant σ2 ≥ 0 such
that

Re log( ĝn(t; u,λ)) =−σ2 t2/2− 2

∫

R

sin2(zt/2)L(dz).
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Take z1 > 0 such that z 7→ sin2(z) is increasing on [0, z1/2]. Then, observe that for sufficiently small
z0 ∈ (0, z1), it holds that

a′2/
p

z0− a5/
p

z1

a6/z1
>

a2/
p

z0+ a5/
p

z1

a3/z0− a6/z1
> 0.

Fix such a point z0 and take β3 such that

a′2/
p

z0− a5/
p

z1

a6/z1
> β3 >

a2/
p

z0+ a5/
p

z1

a3/z0− a6/z1
.

Then we have for the case that |u2|
p

t ≥ β3,
∫

R

sin2(zt/2)L(dz)

≥
∫

(z0/|t|,z1/|t|]
sin2(zt/2)L(dz)

≥ sin2(z0/2)L((z0/|t|, z1/|t|])

≥ sin2(z0/2)

¨

�

a3

z0
−

a6

z1

�

|u2||t| −
�

a2
p

z0
+

a5
p

z1

�

p

|t| − a1− a4

«

≥
p

|t|/C − log(C)

(39)

for sufficiently large constant C by (37). Further, by (38), we have for the case that |u2|
p

t ≤ β3,

sin2(z0/2)L((z0/|t|, z1/|t|])

≥ sin2(z0/2)

¨�

a′2p
z0
−

a5
p

z1

�

p

|t| −
a6

z1
|u2||t| − a′1− a4

«

≥
p

|t|/C − log(C).

The same conclusion is obtained also in the case that we have the second inequality instead of the
first in (35). For example, we define β1 alternatively as β1 =− supλ∈Λ,n∈N,v∈In

gn,1(v,λ) and observe

lim
m→∞

m
∑

i=1

P[Jmi,1
n ≤ z]≥−ã1+

ã2
p

|z|

for all z < 0 with positive constants ã1, ã2 when |u2| ≤ β0. Then use

P[Jmi
n ≤ z]≥ P[Jmi

n ≤ z; Jmi,1
n ≤ z]≥

1

2
P[Jmi,1

n ≤ z]

to obtain

−a′1+
a′2
p

|z|
≤ L((∞, z])≤ a4+

a5
p

|z|
+

a6|u2|
|z|

for all z < 0. The rest is a straightforward translation. ////
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Now we are ready to prove Lemma 5.2. By Petrov’s lemma (see Petrov [17], p.10), it suffices to
prove that there exists a constant C ∈ (0,∞) such that

|Ψ̂n(u)| ≤ Ce−|u|/C ,

where Ψ̂n is what was defined at the beginning of this section. Put

gn,1(v,λ) = (λ1+λ2hn(s
−1
n (v)))σn(v),

gn,2(v) = ϕ(s
−1
n (v))ρ(s

−1
n (v))σn(v),

gn,3(v) = ϕ(s
−1
n (v))

Æ

1−ρ(s−1
n (v))

2σn(v)

and

M(λ) = sup
n∈N,v∈[yn

−1,yn
1 ]
|gn,1(v,λ))| ∨ |gn,2(v)| ∨ |g ′n,2(v)| ∨ |gn,3(v)| ∨

1

|gn,3(v)|

for λ = (λ1,λ2) ∈ S, the 1-dimensional unit sphere. It is not difficult to see that for all λ ∈ S, we
have M(λ)<∞ and that there exists a sequence of intervals In(λ)⊂ [yn

0 , yn
1 ] with

inf
n∈N
|In(λ)|> 0

such that
inf

n∈N,v∈In(λ)
gn,1(v,λ)> 0 or sup

n∈N,v∈In(λ)
gn,1(v,λ)< 0

holds. If the first inequality holds for λ= λ0, put

m(λ0) = inf
n∈N,v∈In(λ0)

gn,1(v,λ0)

and

Λ(λ0) =
�

λ ∈ S; inf
n∈N,v∈In(λ0)

gn,1(v,λ)> m(λ0)/2, M(λ)< 2M(λ0)
�

.

If the second inequality holds for λ= λ0, put

m(λ0) = sup
n∈N,v∈In(λ0)

gn,1(v,λ0)

and

Λ(λ0) =

(

λ ∈ S; sup
n∈N,v∈In(λ0)

gn,1(v,λ)< m(λ0)/2, M(λ)< 2M(λ0)

)

.

Now, notice that Λ(λ0),λ0 ∈ S is an open covering of S, so that it has a finite subcovering
Λ(λ1), · · · ,Λ(λJ ). For each λ j , we can apply Lemma 6.3 with Λ = Λ(λ j) to obtain that there
exists C j > 0 such that

sup
λ∈Λ(λ j),u∈S,n∈N

|Ψ̂n(tu1λ1, tu1λ2, tu2)| ≤ C je
−|t|/C j

for all t ∈R. Since J <∞, we conclude that there exists C > 0 such that

sup
λ∈S,u∈S,n∈N

|Ψ̂n(tu1λ1, tu1λ2, tu2)| ≤ Ce−|t|/C

for all t ∈R, which completes the proof of Lemma 5.2.

789



References

[1] Alòs, E. (2006): A generalization of the Hull and White formula with applications to option
pricing approximation, Finance Stoch. 10, No. 3, 353-365 MR2244350

[2] Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2001): The distribution of realized
exchange rate volatility, J. Amer. Statist. Assoc. 96, No. 453, 42-55 MR1952727

[3] Bhattacharya, R.N. and Rao, R.R. (1979): Normal approximation and asymptotic expansions,
Wiley

[4] Borisov, I.S. (1978): Estimate of the rate of convergence of distributions of additive function-
als of a sequence of sums of independent random variables, Sib. Mat. J., 19, No.3, 371-383
MR0501274

[5] Conlon, J.G. and Sullivan, M.G. (2005): Convergence to Black-Scholes for ergodic volatility
models, European J. Appl. Math. 16, No. 3, 385-409 MR2175032

[6] Feller, W. (1971): An introduction to probability theory and its applications, Vol. II. Second edition
John Wiley & Sons, Inc., New York-London-Sydney MR0270403

[7] Fitzsimmons, P.J. and Pitman, J. (1999): Kac’s moment formula and Feynman-Kac formula for
additive functionals of a Markov process, Stoc. Proc. Appl. 79, 117-134 MR1670526

[8] Fouque, J.P., Papanicolaou, G. and Sircar, K. R. (2000): Derivatives in financial markets with
stochastic volatility, Cambridge University Press, Cambridge MR1768877

[9] Fouque, J.P., Papanicolaou, G., Sircar, R. and Solna, K. (2003): Singular perturbations in option
pricing, SIAM J. Appl. Math. 63, No. 5, 1648-1665 MR2001213

[10] Fouque, J.P., Sircar, R. and Solna, K. (2004): Stochastic Volatility Effects on Defaultable Bonds
Applied Mathematical Finance 13, no. 3, (September 2006), 215-244

[11] Fukasawa, M. (2008): Edgeworth expansion for ergodic diffusions, Probab. Theory Related
Fields 142, No. 1-2, 1-20 MR2413265

[12] Fukasawa, M. (2009): Asymptotic Analysis for stochastic volatility: martingale expansion, to
appear in Finance Stoch. MR2528503

[13] Gatheral, J. (2006): The volatility surface; a practitioner’s guide Wiley.

[14] Hall, P. (1992): The bootstrap and Edgeworth expansion, Springer Verlag, New York
MR1145237

[15] Khasminskii, R.Z. and Yin, G. (2005): Uniform asymptotic expansions for pricing European
options, Appl. Math. Optim. 52, No. 3, 279-296 MR2174016

[16] Malinovskii, V.K. (1987): Limit theorems for Harris Markov chains, 1, Theory Probab. Appl. 31,
No.2, 269-285 MR0850991

[17] Petrov, V.V. (1975): Sums of independent random variables, Springer-Verlag, New York-
Heidelberg MR0388499

790

http://www.ams.org/mathscinet-getitem?mr=2244350
http://www.ams.org/mathscinet-getitem?mr=1952727
http://www.ams.org/mathscinet-getitem?mr=0501274
http://www.ams.org/mathscinet-getitem?mr=2175032
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=1670526
http://www.ams.org/mathscinet-getitem?mr=1768877
http://www.ams.org/mathscinet-getitem?mr=2001213
http://www.ams.org/mathscinet-getitem?mr=2413265
http://www.ams.org/mathscinet-getitem?mr=2528503
http://www.ams.org/mathscinet-getitem?mr=1145237
http://www.ams.org/mathscinet-getitem?mr=2174016
http://www.ams.org/mathscinet-getitem?mr=0850991
http://www.ams.org/mathscinet-getitem?mr=0388499


[18] Skorokhod, A. V. (1989): Asymptotic methods in the theory of stochastic differential equations
Translations of Mathematical Monographs, 78. American Mathematical Society, Providence, RI
MR1020057

[19] Veretennikov, A. Yu.(2006): On lower bounds for mixing coefficients of Markov diffusions.
From stochastic calculus to mathematical finance, 623–633, Springer, Berlin MR2234294

[20] Yoshida, N. (1997): Malliavin calculus and asymptotic expansion for martingales, Probab.
Theory Related Fields 109, No. 3, 301-342 MR1481124

[21] Yoshida, N. (2004): Partial mixing and Edgeworth expansion, Probab. Theory Related Fields
129, No. 4, 559-624 MR2078982

791

http://www.ams.org/mathscinet-getitem?mr=1020057
http://www.ams.org/mathscinet-getitem?mr=2234294
http://www.ams.org/mathscinet-getitem?mr=1481124
http://www.ams.org/mathscinet-getitem?mr=2078982

	1 Introduction
	2 Fast mean reverting stochastic volatility
	2.1 PDE approach
	2.2 Martingale expansion

	3 Main results
	3.1 Main theorem and remarks
	3.2 Examples

	4 Edgeworth expansion
	4.1 The Edgeworth and Gram-Charlier expansions
	4.2 Edgeworth expansion for regenerative functionals

	5 Proof of Theorem 3.3
	6 Proof of Lemma 5.2
	References

