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1 Introduction

Consider a real-valued branching random walk, with deterministic binary branching and i.i.d. ran-
dom steps. One possible way of constructing such a branching random walk is to start with a rooted
infinite binary tree T and a collection (ζ(e))e of i.i.d. copies of a random variable ζ, where the index
e runs over the edges of T. Given x ∈R, the value of the branching random walk at every vertex u
of T is then defined as

S(u) := x +
∑

e∈[[root,u]]

ζ(e),

where [[root, u]] denotes the set of edges of T lying between u and the root. With this definition,
for each infinite ray root =: x0, x1, . . . in T, the sequence S(x i)i=0,1,··· formed by the successive
values of the random walk along the ray, is a real-valued random walk started at S(root) = x . In
the sequel, we use the notation Px to reflect the choice of x as the initial value, so that P0 is used
for the case where the random walk starts at zero.

For v ∈R, define A∞(v) to be the event that there exists an infinite ray root =: x0, x1, . . . in T such
that S(x i) ≥ vi for all i ≥ 0. A dynamical interpretation of this event is as follows. Assume that
the tree T depicts the genealogical structure of a population whose individuals are identified with
the vertices, so that the population starts at generation zero with a single ancestor represented by
the root. For each vertex u ∈ T, S(u) is interpreted at the location on the real line of the individual
represented by u. Now assume that, in every generation n ≥ 0, any individual whose location is
strictly below vn is killed, and removed from the population together with all its progeny. In this
setting, the event A∞(v) corresponds to the fact that the population survives the killing process
forever , i.e. that the n−th generation is non-empty for every n≥ 0.

It turns our that, under suitable regularity assumptions on the distribution of ζ, there exists a critical
value v∗ such that P0(A∞(v)) > 0 for all v < v∗, while P0(A∞(v)) = 0 for all v ≥ v∗ (see e.g. [9]).
In this paper, we are interested in how fast P0(A∞(v)) goes to zero when v < v∗ goes to v∗. To
state a precise result, we first introduce some notations and assumptions on the distribution of ζ.
Our first and rather drastic assumption is that ζ has bounded support, or, in other words, that there
exists a bounded interval [ζ−,ζ+] such that

P(ζ ∈ [ζ−,ζ+]) = 1. (1)

Due to this assumption, the log-Laplace transform of ζ,

Λ(t) := log E(exp(tζ)),

is well-defined and finite for all t ∈ R, and is C∞ as a function of the parameter t. Our next (and
last) assumption on the distribution of ζ is that1 there exists a t∗ ∈]0,∞[ such that

Λ(t∗)− t∗Λ′(t∗) =− log(2). (2)

With these assumptions, the critical value v∗ is given by

v∗ = Λ′(t∗). (3)

and a recent result by N. Gantert, Y. Hu and Z. Shi [21] gives the following description of the
asymptotic behavior of the survival probability as v goes to v∗:

1The meaning of this assumption is discussed in more detail in the Appendix.

397



Theorem 1. For v < v∗, one has the following asymptotic behavior as v→ v∗:

logP0(A∞(v))∼−π

È

Λ′′(t∗)t∗

2(v∗− v)
.

In fact, the theorem quoted above is less general than the one proved in [21], since we have assumed
deterministic binary branching and bounded random walk steps, whereas [21] allows for a more
general branching mechanism, and possibly unbounded steps provided that the Laplace transform
is finite in a neighborhood of zero. In this paper, we shall prove the following slightly improved
version of Theorem 1.

Theorem 2. For v < v∗, one has the following asymptotic behavior as v→ v∗:

logP0(A∞(v)) =−π

È

Λ′′(t∗)t∗

2(v∗− v)
+O

�

log(v∗− v)
�

. (4)

The main novelty in the present paper lies in the method of proof, which is completely different
from that developed in [21]. Indeed, the proof given in [21] is based, among other things, on a
first-second moment argument, using a change-of-measure technique combined with refined "small
deviations" estimates for random walk paths, exploiting some ideas developed in [24] in the con-
text of branching Brownian motion. On the other hand, our proof relies on the characterization of
the survival probability of the branching random walk as the solution of a non-linear convolution
equation. This idea was in fact used by B. Derrida and D. Simon in [17, 30] to derive a heuristic
justification of Theorems 1 and 2, treating the corresponding equation by the non-rigorous methods
developed by Brunet and Derrida to study stochastic front propagation models. The rigorous treat-
ment given here was inspired by the work of C. Mueller, L. Mytnik and J. Quastel [28, 27], who deal
with a continuous-time version of the non-linear convolution equation, as an intermediate step in
their proof of the Brunet-Derrida velocity shift for the stochastic F-KPP equation. Both our argument
and the one given in [28, 27] use the idea of comparing the solutions of the original non-linear
equation to solutions of suitably adjusted linear approximations of it. An important difference, how-
ever, is that the equation appearing in [28, 27] is a second-order non-linear o.d.e., for which specific
techniques (such as phase-plane analysis) can be applied, while such tools are not available in our
discrete-time setting, so that we had to find a different way of implementing the comparison idea.

The rest of the paper is organized as follows. In Section 2, we introduce the non-linear convolution
equation characterizing the survival probability, and show how, given super- and sub-solutions of this
equation, one can obtain upper and lower bounds on the survival probability. Section 3 is devoted
to the study of a linearized version of the convolution equation, for which explicit solutions are
available when v is close to v∗. In Section 4 we explain how the explicit solutions of the linearized
equation derived in the previous section, can be used to build super- and sub-solutions to the original
non-linear convolution equation. Finally, Section 5 puts together the arguments needed to prove
Theorem 2. Section 6 then discusses the connection of Theorem 2 and its proof with the Brunet-
Derrida theory of stochastic fronts and related rigorous mathematical results. In the appendix, we
discuss the meaning of the assumption that there exists a t∗ such that (2) holds, and the asymptotic
behavior of the survival probability when this assumption is not met.
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2 Equations characterizing the survival probability

In this section, we explain how to the survival probability can be characterized by non-linear con-
volution equations, and how super- and sub-solutions to these equations provide control upon this
probability.

2.1 Statement of the results

Throughout this section, v denotes a real number such that

v < v∗.

Let ψ : [0,1]→ [0, 1] be defined by
ψ(s) = 2s− s2.

LetH denote the following set of maps:

H := {h : R→ [0, 1], h non-decreasing, h≡ 0 on ]−∞, 0[ },

and, for all h ∈H , define T (h) ∈H by2

¨

T (h)(x) :=ψ(E(h(x + ζ− v))), x ≥ 0
T (h)(x) := 0, x < 0

For all n ≥ 0, let An(v) denote the event that there exists a ray of length n root =: x0, x1, . . . , xn in
T such that S(x i)≥ vi for all i ∈ [[0, n]]. Finally, for all x ∈R, let

qn(x) := Px(An(v)), q∞(x) := Px(A∞(v)).

Note that, for obvious reasons3, qn and q∞ belong to H , and q0 = 1[0,+∞). Given h1, h2 ∈ H , we
say that h1 ≤ h2 when h1(x)≤ h2(x) for all x ∈R.

The following proposition gives the non-linear convolution equation satisfied by qn and q∞, on
which our analysis is based.

Proposition 1. For all n≥ 0, qn+1 = T (qn), and T (q∞) = q∞.

Proof. Analysis of the first step performed by the walk.

2The fact that T (h) ∈H is a straightforward consequence of the fact that h ∈H and that ψ is non-decreasing.
3For instance by an immediate coupling argument.
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A key property is the fact that being a non-trivial fixed point of T uniquely characterizes q∞ among
the elements ofH , as stated in the following proposition.

Proposition 2. Any r ∈H such that r 6≡ 0 and T (r) = r is such that r = q∞.

Our strategy for estimating q∞(x) is based on the following two comparison results.

Proposition 3. Assume that h ∈H is such that h(0)> 0 and T (h)≤ h. Then q∞ ≤ h.

Proposition 4. Assume that h ∈H is such that T (h)≥ h. Then q∞ ≥ h.

2.2 Proofs

Let us first record the following simple but crucial monotonicity property of T .

Proposition 5. If h1, h2 ∈H satisfy h1 ≤ h2, then T (h1)≤ T (h2).

Proof. Immediate.

As a first useful consequence of Proposition 5, we can prove Proposition 4.

Proof of Proposition 4. Since T (h) ≥ h, we can iteratively apply Proposition 5 to prove that for all
n≥ 0, T n+1(h)≥ T n(h), whence the inequality T n(h)≥ h. On the other hand, since h ∈H , we have
that h≤ 1[0,+∞[, whence the inequality T n(h)≤ T n(1[0,+∞[). Since T n(1[0,+∞[) = qn by Proposition
1, we deduce that qn ≥ h. By dominated convergence, limn→+∞ qn(x) = q∞(x), so we finally deduce
that h≤ q∞.

We now collect some elementary lemmas that are used in the subsequent proofs.

Lemma 1. One has that P(ζ≤ v∗)< 1.

Proof. By assumption, there exists t∗ > 0 such that Λ′(t∗) = v∗. But Λ′(t∗) = E(ζet∗ζ)
E(et∗ζ)

, so that

E(ζet∗ζ) = E(v∗et∗ζ). If moreover P(ζ ≤ v∗) = 1, we deduce from the previous identity that P(ζ =
v∗) = 1, so that Λ(t∗) = t∗v∗, which contradicts the assumption that Λ(t∗)− t∗v∗ =− log(2).

Lemma 2. One has that q∞(0)> 0.

Proof. In Section 4, for v∗− v small enough, we exhibit c− ∈H such that T (c−)≥ c− and c−(x)> 0
for x > 0. We deduce (with Lemma 1) that T (c−)(0) > 0. Now, letting h := T (c−), Proposition 5
shows that T (h) ≥ h. Proposition 4 then yields that q∞(0) ≥ h(0) > 0. This conclusion is valid for
small enough v∗− v. Since clearly4 q∞(0) is non-increasing with respect to v, the conclusion of the
lemma is in fact valid for all v < v∗.

Lemma 3. There exists a constant κ > 0 depending only on the distribution of ζ, such that, for all
v < v∗, q∞(0)≥ κq∞(1).

4For instance by coupling.
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Proof. Using the fact that ψ(s) ≥ s for all s ∈ [0,1], we have that, for all x ∈ [0,+∞[, q∞(x) ≥
E(q∞(x + ζ− v)). From Lemma 1, we can find η > 0 such that P(ζ ≥ v∗ + η) > 0. Using the fact
that q is non-decreasing, we obtain that q∞(x) ≥ P(ζ ≥ v∗ + η)q∞(x + η). Iterating, we see that,
for all n ≥ 0, q∞(0) ≥ P(ζ ≥ v∗ +η)nq∞(nη). Choosing n large enough so that nη ≥ 1, we get the
desired result.

We now prove Proposition 2.

Proof of Proposition 2. Let r ∈H satisfy T (r) = r and r 6≡ 0. According to Proposition 4, we already
have that r ≤ q∞. Our next step is to show that r(0)> 0. To this end, let

D := {x ∈ [0,+∞[; r(x)> 0}.

Since we assume that r 6≡ 0, D is non-empty, and since, moreover, r is non-decreasing, D has to
be an interval, unbounded to the right. Since v < v∗, we know from Lemma 1 that P(ζ ≤ v) < 1,
whence the existence of η > 0 such that P(ζ− v > η) > 0. Let x be such that x + η belongs to D.
Then, x + ζ− v belongs to D with positive probability, so that E(r(x + ζ− v)) > 0. If, moreover,
x ≥ 0, we have that:

r(x) = T (r)(x) =ψ(E(r(x + ζ− v))),

so that r(x)> 0 since ψ(s)> 0 for all 0< s ≤ 1. We have therefore proved that

(D−η)∩ [0,+∞[⊂ D.

Since D is a subinterval of [0,+∞[, unbounded to the right, this implies that D = [0,+∞[, whence
r(0)> 0. Now let

F := {λ≥ 0;∀x ∈ [0,+∞[, r(x)≥ λq∞(x)}.

Since q∞(0) > 0 by Lemma 2 and r ≤ q∞, F must have the form [0,λ0] for some λ0 ∈ [0,1],
and, we need to prove that indeed λ0 = 1 to finish our argument. We first show that λ0 > 0.
Since r is non-decreasing, we have that, for all x ∈ R, r ≥ r(0)1[0,+∞[, whence r ≥ r(0)q∞ since
1[0,+∞[ ≥ q∞. As a consequence, λ0 ≥ r(0), and we have seen that r(0) > 0. Now, using the fact
that T (r) = r, Proposition 5, and the definition of λ0, we see that

r = T (r)≥ T (λ0q∞).

For x ≥ 0, we also have that q∞(x) ≥ q∞(0) > 0, and E(q∞(x + ζ− v)) > 0. Since λ0 > 0, we can
write:

r(x)≥ λ0q∞(x)
T (λ0q)(x)
λ0q∞(x)

= λ0q∞(x)
T (λ0q∞)(x)
λ0T (q∞)(x)

,

whence the inequality
r(x)≥ λ0q∞(x) χ

�

E(q∞(x + ζ− v))
�

,

where χ is the map defined, for s ∈]0,1], by

χ(s) :=
ψ(λ0s)
λ0ψ(s)

=
2−λ0s

2− s
,

with the extension χ(0) := 1. Since q∞ is non-decreasing, this is also the case of the map x 7→
E(q∞(x + ζ− v)). Moreover, χ too is non-decreasing on [0,1], so we get that:

r(x)≥ λ0χ(E(q∞(ζ− v)))q∞(x).
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Therefore, λ0χ(E(q∞(ζ−v))) is an element of the set F . If λ0 < 1, the fact that E(q∞(ζ−v))> 0 and
strict monotonicity of χ show that χ(E(q(ζ− v))) > χ(0) = 1. We would thus have the existence
of an element in F strictly greater than λ0, a contradiction. We thus conclude that λ0 equals 1.
Therefore one must have r ≥ q∞.

Proof of Proposition 3. Since T (h) ≤ h, we deduce from Proposition 5 that, for all x ∈ R, the se-
quence (T n(h)(x))n≥0 is non-increasing. We deduce the existence of a map T∞(h) in H such that,
for all x ∈ R, T∞(h)(x) = limn→+∞ T n(h)(x), and it is easily checked by dominated convergence
that T (T∞(h))(x) = T∞(h)(x) for all x ∈ R, while T∞(h)(x) ≤ h(x). It remains to check that
T∞(h) 6≡ 0 to obtain the result, since Proposition 2 will then prove that T∞(h) ≡ q∞. Using the
fact that h is non-decreasing, we have that, for all x ≥ 0, h(x) ≥ h(0)1[0,+∞[(x). Moreover, it is
easily checked that, for all λ, s ∈ [0,1], ψ(λs) ≥ λψ(s). Using Proposition 5, we thus obtain that
T n(h)(x) ≥ h(0)T n(1[0,+∞[)(x), whence T∞(h)(x) ≥ h(0)q∞(x) by letting n → +∞. We deduce
that T∞(h)(x) 6≡ 0 since we have assumed that h(0)> 0.

Remark 1. The proof of Proposition 2 given above relies solely on analytical arguments. It is in fact
possible to prove a slightly different version of Proposition 2 – which is sufficient to establish Propositions
3 and 4 – using a probabilistic argument based on the interpretation of the operator T in terms of
branching random walks. We thought it preferable to give a purely analytical proof here, since our
overall proof strategy for Theorem 2 is at its core an analytical approach.

3 Solving a linearized equation

According to Proposition 2, the survival probability q∞ can be characterized as the unique non-trivial
solution (in the spaceH ) of the non-linear convolution equation, valid for x ≥ 0:

r(x) =ψ(E(r(x + ζ− v))). (5)

Linearizing the above equation around the trivial solution r ≡ 0, using the fact that ψ(s) = 2s+ o(s)
as s→ 0, yields the following linear convolution equation:

r(x) = 2E(r(x + ζ− v)). (6)

As explained in Section 4 below, explicit solutions to a slightly generalized version of (6) are pre-
cisely what we use to build super- and sub-solutions to the original non-linear convolution equation
(5). To be specific, the linear convolution equation we consider are of the form

c(x) = e−aE(c(x + ζ− v)), x ∈R, (7)

where c : R→ C is a measurable map, v is close to v∗ and e−a is close to 2. Looking for solutions
of (7) of the form

c(x) = eφx , (8)

where φ ∈ C, we see that a necessary and sufficient condition for (8) to yield a solution is that

E
�

eφ(ζ−v)
�

= ea. (9)
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Due to our initial assumption on ζ, we have that

E
�

et∗(ζ−v∗)
�

= 1/2,

so that one can hope to find solutions to (9) by performing a perturbative analysis. This is precisely
what is done in Section 3.1. Then, in Section 3.2, some of the properties of the corresponding
solutions of (7) are studied.

3.1 Existence of exponential solutions

Consider the extension of the Laplace transform of ζ when the parameter t ∈ C. Since ζ has
bounded support, t 7→ E(exp(tζ)) defines a holomorphic map from C to C, and, since E(exp(t∗ζ)) /∈
R−, we may extend the definition of Λ to an open neighborhood U of t∗ in C, by setting Λ(t) :=
log E(exp(tζ)) for t ∈ U , using the principal determination of the logarithm. We thus obtain a
holomorphic map on U .

Proposition 6. Let a be a holomorphic function defined on a neighborhood of zero, such that a(0) =
− log(2) and a′(0) = 0. There exists ε0 > 0 and a map φ : [0,ε0] → U such that, for all v ∈
[v∗− ε0, v∗], the following identity holds:

E
�

eφ(v
∗−v)(ζ−v)

�

= ea(v∗−v), (10)

and such that, as ε→ 0,

φ(ε) = t∗+ i

r

2t∗ε

Λ′′(t∗)
+O(ε). (11)

Proof. Given v in the vicinity of v∗, we are looking for a t ∈ U such that

E
�

et(ζ−v)
�

= ea(v∗−v). (12)

For t close enough to t∗, and v close enough to v∗, we can use the logarithm and observe that the
equation

Λ(t)− t v = a(v∗− v). (13)

is sufficient for (12) to hold. Expanding Λ for t ∈ U , we have that

Λ(t) = Λ(t∗) + (t − t∗)Λ′(t∗) + (t − t∗)2 g(t),

where g is holomorphic on U and satisfies g(t∗) = Λ′′(t∗)/2. Plugging (2) and (3), we can rewrite
the above expansion as

Λ(t) =− log(2) + t v∗+ (t − t∗)2 g(t).

On the other hand, using our assumptions on a, we can write

a(v∗− v) =− log(2) + (v∗− v)b(v∗− v),

where b is an holomorphic function in a neighborhood of zero such that b(0) = 0. Finally, (13)
reads

(t − t∗)2 g(t) = (v− v∗)(t − b(v∗− v)). (14)

403



Observe that, since g(t∗) = Λ′′(t∗)/2 /∈ R−, we can define
p

g(t) for t close to t∗, using the
principal determination of the logarithm and the definition

p
z = exp(log z/2). We can similarly

define
p

t − b(z) for (t, z) close to (t∗, 0). Now, for (t, u) ∈ C×C in the vicinity of (t∗, 0), consider
the equation

(t − t∗)
p

g(t) = u
p

t − b(−u2). (15)

Clearly, if (15) holds with u= i
p

v∗− v when v∗ and v are real numbers such that v < v∗, then (14)
holds. Now consider the map Ξ defined in the neighborhood of (t∗, 0) in C×C by

Ξ(t, u) := (t − t∗)
p

g(t)− u
p

t − b(−u2).

Observe that Ξ(t∗, 0) = 0, and that the (holomorphic) derivative of Ξ with respect to t at (t∗, 0) is
equal to

p

g(t∗) =
p

Λ′′(t∗)/2 6= 0. Identifying C with R×R, we can thus view Ξ as a smooth map
defined on an open set of R4, and apply the implicit function theorem to deduce the existence of a
smooth map f defined on a neighborhood of 0 in C such that f (0) = t∗ and such that, for all u near
zero,

Ξ( f (u), u) = 0. (16)

We now set φ(ε) = f (i
p
ε), which yields (10). Then, one obtains (11) by computing the derivative

of f at zero from (16) in the usual way.

3.2 Properties of the exponential solutions

Now let a, ε0 and φ be given as in Proposition 6. Throughout the sequel, we use the notation

ε= v∗− v.

An immediate consequence of the proposition is that, for all v ∈ [v∗−ε0, v∗], the map defined on R
by x 7→ eφ(ε)x , solves the equation

c(x) = e−a(ε)E(c(x + ζ− v)). (17)

If a(ε) ∈R when ε ∈R (this will be the case in all the examples we consider below), then the map
x 7→ eφ(ε)x is also a solution of (17), where z denotes the conjugate complex number of z. Let us
set α(ε) :=ℜ(φ(ε)) and β(ε) := ℑ(φ(ε)). Thus, we obtain a solution of (17) if we set

d(x) := eα(ε)x sin(β(ε)x). (18)

Consider ε small enough so that α(ε)> 0 and β(ε)> 0. Note that

d(0) = d(π/β(ε)) = 0,

and that one has






d ≤ 0 on [−π/β(ε), 0],
d ≥ 0 on [0,π/β(ε)],
d ≤ 0 on [π/β(ε), 2π/β(ε)].
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The derivative of d is given by

d ′(x) = α(ε)eα(ε)x sin(β(ε)x) + β(ε)eα(ε)x cos(β(ε)x).

One thus checks that d attains a unique maximum on the interval [0,π/β(ε)], at a value x = L(ε)
satisfying

tan(β(ε)L(ε)) =−β(ε)/α(ε), (19)

and that d is increasing on the interval [0, L(ε)]. As ε goes to 0, we know from (11) that

α(ε) = t∗+O(ε), β(ε) =

r

2t∗ε

Λ′′(t∗)
+O(ε), (20)

and we then deduce from (19) that, as ε goes to 0,

L(ε) =
π

β(ε)
− 1/t∗+ o(1), (21)

whence

L(ε) = π

r

Λ′′(t∗)
2t∗ε

+O(1). (22)

4 Building a super-solution and a sub-solution to the original equation

In this section, we explain how to transform the explicit solutions of the linear equation (7) obtained
in the previous section, into super- and sub- solutions of the non-linear convolution equation of
Section 2. In the sequel,∆ denotes a real number (whose existence is guaranteed by the assumption
that ζ has bounded support) such that, for all v in the vicinity of v∗,

P(|ζ− v| ≤∆) = 1.

4.1 The super-solution

Let us choose the function a in Proposition 6 as the constant function a(ε) := − log(2). Then
consider the function d(·) defined in (18), and note that any function of the form

c(x) := A(ε)d(x +∆), x ∈R

is a solution of (7). Now let A(ε) be implicitly defined by the requirement that

c(L(ε)− 2∆) = 1.

This last condition rewrites more explicitly as

A(ε)eα(ε)(L(ε)−∆) sin(β(ε)(L(ε)−∆)) = 1. (23)

From (21), we have that, as ε→ 0,

sin(β(ε)(L(ε)−∆))∼ β(ε)(1/t∗+∆).
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Combining with (23), (22) and (20), we deduce that, as ε→ 0, A(ε)> 0 and

log A(ε) =−π

r

Λ′′(t∗)t∗

2ε
+O(logε). (24)

For notational convenience, we introduce

C(ε) := L(ε)− 2∆.

The next proposition summarizes the properties of c that we shall use in the sequel.

Proposition 7. For small enough ε, the following properties hold.

(i) c(x)≥ 0 for all x ∈ [−∆, 0];

(ii) 0≤ c(x)≤ 1 for all x ∈ [0, C(ε)];

(iii) c(x)≥ 1 for all x ∈ [C(ε), C(ε) +∆].

(iv) c is non-decreasing on [0, C(ε)]

Moreover, as ε goes to zero,

log c(1) =−π

r

Λ′′(t∗)t∗

2ε
+O(logε). (25)

Proof. (i), (ii), (iii) and (iv) are rather direct consequences of the definition and of the analysis of
Section 3.2. As for (25), it is readily derived from (24) and (20).

We now define the map c+ : R→ [0,1] by

• c+(x) = 0 for all x < 0;

• c+(x) = c(x) for all x ∈ [0, L(ε)− 2∆];

• c+(x) = 1 for all x > L(ε)− 2∆.

Now let ψ+ be defined on [0, 1] by

ψ+(s) :=min(2s, 1).

Proposition 8. For all s ∈ [0,1], ψ+(s)≥ψ(s).

Proof. Immediate.

Proposition 9. For small enough ε, one has that c+ ∈H and, for all x ≥ 0,

c+(x)≥ψ+(E(c+(x + ζ− v))).
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Proof. The fact that c+ ∈H is guaranteed by the definition and properties (i) to (iv) of Proposition
7. Consider first the case x ∈ [0, C(ε)]. By definition, one has that

c(x) = 2E(c(x + ζ− v)).

Since, by construction, c+ ≤ c on [−∆, C(ε) +∆], we deduce that

c(x)≥ 2E(c+(x + ζ− v)).

Since ψ+(s)≤ 2s for all s ∈ [0, 1], we deduce that

c(x)≥ψ+(E(c+(x + ζ− v))),

whence, remembering that c+(x) = c(x),

c+(x)≥ψ+(E(c+(x + ζ− v))).

Now, for x > C(ε), we have that c+(x) = 1, so that c+(x)≥ψ+(s) for all s ∈ [0, 1]. In particular,

c+(x)≥ψ+(E(c+(x + ζ− v))).

Corollary 1. For small enough ε, one has that c+ ≥ T (c+).

Proof. Direct consequence of Propositions 8 and 9.

4.2 The sub-solution

In this section, we choose the function a in Proposition 6 as the function a(ε) := − log(2) + ε2. For
notational convenience, we also introduce

γ(ε) := e−a(ε), h(ε) := γ(ε)(2− γ(ε)).

As above, we use the function d(·) defined in (18), and let

c(x) := A(ε)d(x) = A(ε)eα(ε)x sin(β(ε)x),

where A(ε) is implicitly defined by the requirement that

c(L(ε)) = h(ε).

The same argument as in the previous section then shows that, as ε→ 0, A(ε)> 0 and

log A(ε) =−π

r

Λ′′(t∗)t∗

2ε
+O(logε). (26)

Here are the properties of c that we shall use in the sequel.

Proposition 10. For small enough ε, the following properties hold.
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(i) c(x)≤ 0 for all x ∈ [−∆, 0];

(ii) 0≤ c(x)≤ h(ε) for all x ∈ [0, L(ε)];

(iii) c(x)≤ h(ε) for all x ∈ [L(ε), L(ε) +∆];

(iv) c is non-decreasing on [0, L(ε)].

Moreover, as ε goes to zero,

log c(1) =−π

r

Λ′′(t∗)t∗

2ε
+O(logε). (27)

Proof. (i), (ii), (iii) and (iv) are rather direct consequences of the definition and of the analysis of
Section 3.2. As for (27), it is readily derived from (26) and (20).

We define the map c− : R→ [0,1] by

• c−(x) = 0 for all x < 0;

• c−(x) = c(x) for all x ∈ [0, L(ε)];

• c−(x) = h(ε) for all x > L(ε).

Now define ψ− on [0, 1] by
ψ−(s) :=min(γ(ε)s, h(ε)).

Proposition 11. For small enough ε, for all s ∈ [0,1], ψ−(s)≤ψ(s).

Proof. Immediate.

Proposition 12. For small enough ε, one has c− ∈H and, for all x ≥ 0,

c−(x)≤ψ−(E(c−(x + ζ− v))).

Proof. The fact that c− ∈H is a direct consequence of the definition and of properties (i) to (iv) of
Proposition 10. Consider first the case x ∈ [0, L(ε)]. By construction, one has that

c(x) = γ(ε)E(c(x + ζ− v)).

Since, by construction, c− ≥ c on [−∆, L(ε) +∆], we deduce that

c(x)≤ γ(ε)E(c−(x + ζ− v)). (28)

Since we have c(x)≤ h(ε) and c−(x) = c(x), we deduce that

c−(x)≤ψ−(E(c−(x + ζ− v))).

Consider now x > L(ε). Since c− is non-decreasing, so is y 7→ γ(ε)E(c−(y+ζ− v)). We deduce that

γ(ε)E(c−(x + ζ− v))≥ γ(ε)E(c−(L(ε) + ζ− v)).
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Using again the fact that c− ≥ c on [−∆, L(ε) +∆], we have that

γ(ε)E(c−(L(ε) + ζ− v))≥ γ(ε)E(c(L(ε) + ζ− v)) = c(L(ε)) = h(ε).

Since c− ≤ h(ε), we finally deduce that

c−(x)≤ψ−(E(c−(x + ζ− v))).

Corollary 2. For small enough ε, one has that c− ≤ T (c−).

Proof. Direct consequence of Propositions 11 and 12.

5 Proof of Theorem 2

We now put together the different pieces leading to the proof of Theorem 2. For small enough ε,
Corollary 1 yields a super-solution of the non-linear convolution equation, i.e. a function c+ ∈ H
such that c+ ≥ T (c+). By Proposition 3, we automatically have that q∞ ≤ c+. Now we have
q∞(0)≤ q∞(1)≤ c+(1), so that the asymptotic behavior stated in (25) yields that

log q∞(0)≤−π

È

Λ′′(t∗)t∗

2(v∗− v)
+O(log(v∗− v)).

Similarly, Corollary 2 yields a sub-solution, i.e. a function c− ∈ H such that c− ≤ T (c−), and, by
Proposition 4 we have that q∞ ≥ c−. Using Lemma 3, we obtain that q∞(0) ≥ κq∞(1) ≥ κc−(1), so
that the asymptotic behavior stated in (27) yields that

log q∞(0)≥−π

È

Λ′′(t∗)t∗

2(v∗− v)
+O(log(v∗− v)).

This concludes the proof of Theorem 2.

Remark 2. One may wonder whether it is possible to extend our method of proof to a more general
situation such as the one treated in [21], i.e. a fairly general supercritical stochastic branching mech-
anism, and random walk steps whose Laplace transform is finite in a neighborhood of zero. We expect
our proof to be robust to more general branching mechanisms, since the key properties of the resulting
non-linear convolution equation (monotonicity, qualitative features of the linearized equation) should
be preserved. On the other hand, it might not be easy to replace the bounded support assumption by a
less stringent one, since one would have to control how large unlikely values of the random walk steps
affect the validity of the construction of super- and sub-solutions described in Section 4.

Remark 3. The error term in the statement of Theorem 2 is O(log(v∗ − v)), but we suspect that its
correct order of magnitude might be O(1), as suggested by the (mathematically non-rigorous) results
obtained by B. Derrida and D. Simon in [17, 30], and by analogous results obtained in the context of
branching Brownian motion by J. Berestycki, N. Berestycki and J. Schweinsberg [6] and E. Aidekon and
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S. Harris [1]. Indeed, pushing the calculations just a little further with our method, it is not difficult to
show that the error term is bounded above by a O(1), i.e. that

logP0(A∞(v))≤−π

È

Λ′′(t∗)t∗

2(v∗− v)
+O(1).

However, an extra log(v∗ − v) creeps into our lower bound, as a consequence of the sub-solution in
Section 4 being built with a(ε) := − log(2) + ε2 instead of a(ε) := 2, so that the best lower bound we
can prove is O(log(v∗− v)).

6 Connection with the Brunet-Derrida theory of stochastic fronts

Through a series of papers (see e.g. [13, 14, 15, 11, 10, 12]), Brunet and Derrida, partly with
Mueller and Munier, developed a theory for the propagation of stochastic fronts described by per-
turbed F-KPP like equations. The methods and arguments used by Brunet and Derrida are not
mathematically rigorous, but several of the corresponding results have now been given regular
mathematical proofs (see e.g. [2, 3, 18, 16, 28, 27, 4, 19, 5]). The purpose of this section is to
explain how the present paper relates to these developments.

We first explain how the survival probability of the branching random walk is related to travelling
wave solutions of F-KPP like equations. We then explain how such travelling waves arise in the
context of the Brunet-Derrida theory of stochastic fronts, and describe the approach used by Brunet
and Derrida to deal with these travelling waves. We finally discuss how Theorem 2, its proof, and
some of its consequencs, fit into the series of rigorous mathematical results establishing predictions
from the Brunet-Derrida theory.

6.1 Survival probability and travelling waves

The F-KPP equation, named after Fisher [20] and Kolmogorov, Petrovsky and Piscounov [26], is one
of the classical PDE models of front propagation, whose salient feature is to lead to travelling wave
solutions. In its simplest form, the equation reads

∂ u

∂ t
=
∂ 2u

∂ x2 + u(1− u),

where u= u(x , t), x ∈R, t ≥ 0, and a travelling wave solution means a solution u of the form

u(x , t) = g(x − vt),

where v ∈R is the wave speed, and g(x), x ∈R describes the wave shape.

In our context, it turns out that the survival probability q∞ (as a function of the starting point x of
the branching random walk) can be viewed as the shape of a travelling wave solution to a discrete
analog of the F-KPP equation, with a special boundary condition. Indeed, define, for all n ≥ 0 and
x ∈R,

un(x) := q∞(−x + nv).
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From Proposition 1, one sees that the following equation holds for un: for all x ≤ (n+ 1)v,

un+1(x) =ψ(E(un(x − ζ))). (29)

Using the definition of ψ, and rearranging the formulas a little, the above equation rewrites5

un+1(x)− un(x)
︸ ︷︷ ︸

¡ ∂ u
∂ t

= E(un(x − ζ))− un(x)
︸ ︷︷ ︸

¡ ∂ 2u
∂ x2

+ E(un(x − ζ))− E(un(x − ζ))2
︸ ︷︷ ︸

¡u−u2

. (30)

Remember that the above equation holds only for x ≤ (n+ 1)v, while, due to the fact that q∞ ≡ 0
on ]−∞, 0[, we have that un+1(x) = 0 for x > (n+ 1)v. It is now apparent that (n, x) 7→ un(x)
describes a discrete travelling wave with speed v, obeying a discrete analog of the F-KPP equation
at the left of the front, and identically equal to zero at the right of the front, where at time n the
location of the front is nv.

6.2 Brunet-Derrida theory of stochastic fronts

We begin by describing two distinct models considered by Brunet and Derrida. One is the stochastic
F-KPP equation

∂ u

∂ t
=
∂ 2u

∂ x2 + u(1− u) +

r

u(1− u)
N

Ẇ , (31)

where Ẇ is a standard space-time white-noise, and N is large, with the initial condition u(x , t =
0) = 1]−∞,0](x).

The other is a particle system on the real line where a population of N particles evolves according
to repeated steps of branching and selection. Branching steps are identical to those of the branching
random walk considered in this paper, each particle in a given generation being replaced in the next
generation by two new particles whose locations are shifted using two independent random walk
steps. Selection steps consist in keeping only the N rightmost particles among the 2N obtained by
branching from the population in the previous generation.

It is possible to see these two models as describing the propagation of a front, and Brunet and
Derrida found (see [13, 14, 15]) that, for both models, the limiting velocity vN of the front has the
following behavior as N goes to infinity:

v∞− vN ∼ C(log N)−2, (32)

where v∞ is the limiting value of vN as N goes to infinity. Mathematical proofs of these results were
then obtained in [28] for the stochastic F-KPP equation case, and in [4] for the branching-selection
particle system case. Let us mention that the description of stochastic fronts obtained by Brunet,
Derrida, Mueller and Munier goes far beyond (32), which is, in some sense, a first-order result (we
refer to [11, 10, 12] for more details).

A very rough sketch of the argument used by Brunet and Derrida to deduce (32) is as follows. For
solutions u of the stochastic F-KPP equation (31), at every time t > 0, x 7→ u(x , t) continuously
connects 1 at x = −∞ to 0 at some random x = X (t) defining the position of the front, right of

5Written below the equation is the term-by-term analogy with the F-KPP equation.
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which u(·, t) is identically zero. Looking at the equation (31), one can see that stochastic effects
due to the noise term counterbalance the u(1− u) creation term when u is of order 1/N . To find
the asymptotic speed of propagation of the front, one should thus look for travelling waves obeying
the F-KPP equation at the left of the front, taking values of order 1/N near the front, and which
are identically equal to zero at the right of the front. To study these travelling waves, one replaces
the F-KPP equation by a linear approximation, for which explicit solutions can be found – these
solutions should be approximately valid for the original equation, thanks to the fact that the values
of u are small near the front. One can then check that the speed of these travelling waves must
satisfy (32). The same line of argument is used to derive (32) for the branching-selection particle
system. In this case, the N →+∞ limit of the model can be viewed as a time-discrete version of the
F-KPP equation similar to (30), and the actual system with N particles is described by a perturbation
of this equation. As in the case of the stochastic F-KPP equation, one finds that the relevant scale
for perturbations is 1/N , but this time this is due to the fact that a population of N particles has a
resolution of 1/N for representing a probability mass.

Now, the key observation is that the dicrete travelling wave (n, x) 7→ un(x) deduced from q∞ in
the previous section corresponds just to the object studied by Brunet and Derrida in their argument
for (32), namely travelling waves obeying an F-KPP like equation at the left of the front, that are
identically equal to zero at the right of the front. One slight difference is that Brunet and Derrida
prescribe the order of magnitude of the values of the travelling wave near the front to be 1/N , and
ask for the corresponding speed, while we prescribe the speed to be v = v∗ − ε, and ask for the
corresponding order of magnitude of the values near the front.

Looking for a speed v(N) such that, for large N ,

P0(A∞(v(N)))∼ 1/N ,

we see from Theorem 1 that one must have

v∗− v(N)∼ π2

2
t∗Λ′′(t∗)(log N)−2, (33)

which corresponds precisely to the behavior (32) of vN obtained by Brunet and Derrida in the
branching-selection particle system case, and is also the key to the rigorous proof of (32) given in
[4].

The connection between the survival probability of the branching random walk and the travelling
wave solutions of perturbed discrete F-KPP equations of the type investigated by Brunet and Derrida,
was in fact used by Derrida and Simon in [17, 30] to derive Theorems 1 and 2, in a mathematically
non-rigorous way, from the Brunet and Derrida approach outlined above.

6.3 Discussion

Our strategy for proving Theorem 2 is based on the original argument of Brunet and Derrida
sketched in the previous section, and turns out to be quite different from the probabilistic approach
used by Gantert, Hu and Shi in [21]. Remember that the idea is to replace the discrete F-KPP equa-
tion by a linear approximation of it for which explicit solutions can be computed. In our context,
this corresponds to replacing the non-linear convolution equation (5) by the linear equation (7).
An additional idea we use is that the monotonicity properties of the non-linear equation allow for
a rigorous comparison between suitably adjusted solutions of the linear equation, and solutions
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of the original non-linear one, via the construction of super- and sub-solutions. We were inspired
by the work of Mueller, Mytnik and Quastel [28, 27], where this comparison idea is used as an
intermediate step in the rigorous proof of (32) in the stochastic F-KPP equation case. In their con-
text, the equation corresponding to (5) is the non-linear second-order ordinary differential equation
−vu′ = u′′ + u(1 − u), and one can rely on specific techniques, such as phase-plane analysis, to
implement the comparison idea. However, these tools are not available in our discrete-time setting,
and we had to find a quite different way of achieving the comparison argument. Note that, as a di-
rect by-product of the argument in [28, 27], one can prove an analog to Theorem 2 for the survival
probability of the branching Brownian motion killed below a linearly moving boundary.

The asymptotic behavior of the survival probability q∞ plays a key role in our proof of (32) in
the branching-selection particle system case, which was given in [4], and relied on the proof of
Theorem 1 given by Gantert, Hu and Shi in [21]. In this regard, an interesting feature of the proof
of Theorem 2 presented here is that, combined to the comparison argument described in [4], it
provides a proof of (32) in the branching-selection particle system case which is along the lines of
the original argument by Brunet and Derrida. What is (a little) more, the slight improvement from
Theorem 1 to Theorem 2 concerning the order of magnitude of the error term allows us to refine
(32) and thus achieve a result comparable with the one obtained in [28, 27]. Indeed, under the
assumptions of Theorem 2, one has that, in the branching-selection particle system case,

v∗− vN −
π2

2
t∗Λ′′(t∗)(log N)−2 = O

�

log log N
(log N)3

�

.

Note that the log log N
(log N)3 term in the above equation corresponds to the actual order of magnitude

expected from [11], where more precise predictions are given.
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[18] Freddy Dumortier, Nikola Popović, and Tasso J. Kaper. The critical wave speed for the Fisher-
Kolmogorov-Petrowskii-Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.
MR2307884

[19] R. Durrett and D. Remenik. Brunet-Derrida particle systems, free boundary problems and
Wiener-Hopf equations. arXiv:0907.5180, to appear in Annals of Probability, 2009.

[20] R. A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:355–369, 1937.

[21] N. Gantert, Yueyun Hu, and Zhan Shi. Asymptotics for the survival probability in a supercritical
branching random walk. Ann. Inst. Henri Poincaré Probab. Stat., 47(1):111–129, 2011.

[22] J. M. Hammersley. Postulates for subadditive processes. Ann. Probability, 2:652–680, 1974.
MR0370721

[23] B. Jaffuel. The critical barrier for the survival of the branching random walk with absorption.
arXiv:0911.2227, 2009.

414

http://www.ams.org/mathscinet-getitem?mr=0420890
http://www.ams.org/mathscinet-getitem?mr=1129775
http://www.ams.org/mathscinet-getitem?mr=2299937
http://www.ams.org/mathscinet-getitem?mr=2365627
http://www.ams.org/mathscinet-getitem?mr=1473413
http://www.ams.org/mathscinet-getitem?mr=1828730
http://www.ams.org/mathscinet-getitem?mr=2182316
http://www.ams.org/mathscinet-getitem?mr=2366713
http://www.ams.org/mathscinet-getitem?mr=2307884
http://www.ams.org/mathscinet-getitem?mr=0370721


[24] Harry Kesten. Branching Brownian motion with absorption. Stochastic Processes Appl., 7(1):9–
47, 1978. MR0494543

[25] J. F. C. Kingman. The first birth problem for an age-dependent branching process. Ann.
Probability, 3(5):790–801, 1975. MR0400438

[26] A. Kolmogorov, I. Petrovsky, and N. Piscounov. Etude de l’équation de la diffusion avec crois-
sance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat
Moscou Sér. Int. Sect. A Math. Mécan., 1(6):1–25, 1937.

[27] C. Mueller, L. Mytnik, and J. Quastel. Effect of noise on front propagation in reaction-diffusion
equations of KPP type. arXiv:0902.3423, To appear in Inventiones Math.

[28] C. Mueller, L. Mytnik, and J. Quastel. Small noise asymptotics of traveling waves. Markov
Process. Related Fields, 14, 2008. MR2453698

[29] Robin Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab.,
19(4):1273–1291, 2009. MR2538070

[30] Damien Simon and Bernard Derrida. Quasi-stationary regime of a branching random walk in
presence of an absorbing wall. J. Stat. Phys., 131(2):203–233, 2008. MR2386578

A The t∗ assumption

Remember that the core results in this paper are derived under the following two assumptions on
the random variable ζ describing the steps of the branching random walk:

1. the probability distribution of ζ has bounded support;

2. there exists t∗ > 0 such that Λ(t∗)− t∗Λ′(t∗) =− log(2), where Λ is the log-Laplace transform
of ζ.

The goal of the present section is to discuss the role and meaning of the second assumption, which
we call the t∗ assumption. For the sake of simplicity, we keep assuming throughout this section
that ζ is bounded. We first try to provide some intuition about the t∗ assumption by giving some
alternative characterizations. We then discuss the asymptotic behavior of the survival probability
when the t∗ assumption is not met.

A.1 Alternative characterizations of the t∗ assumption

The results contained in this section seem to be more or less folklore in the branching process
literature. However, we failed at finding a reference providing both complete statements and self-
contained proofs, so we decided to include the following short elementary account of these results.

We start by giving a general characterization of the critical speed v∗. Let ζ+ be the essential supre-
mum of ζ, and let ζ− be its essential infimum. Then let θ :R→R be defined by

θ(t) = log
�

2E(exp(tζ))
�

= log(2) +Λ(t).
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From the bounded support assumption for ζ, θ is well-defined and finite for all t ∈ R, and is C∞

and convex as a function of the parameter t. Then define

v∗ = inf
�

θ(t)
t

, t > 0
�

. (34)

From results by J. M. Hammersley [22], J. F. C. Kingman [25], and J. D. Biggins [7], v∗ appears as
the maximum limiting speed in the branching random walk. Indeed, letting Mn denote the position
of the rightmost particle of the branching random walk at time n, one has that

Theorem 3. With probability one, Mn
n
→ v∗.

We refer to [8] for a survey of this type of results. Note that, as an immediate consequence, ζ− ≤
v∗ ≤ ζ+.

The following result shows that the existence of a t∗ such that (2) is satisfied (the t∗ assumption),
is equivalent to the infimum defining v∗ in (34) being in fact a minimum. (Note that (36) below is
exactly the same as (2).)

Lemma 4. For all t∗ > 0,
θ(t∗)

t∗
= v∗ (35)

is equivalent to
θ(t∗)

t∗
= θ ′(t∗), i.e. Λ(t∗)− t∗Λ′(t∗) =− log(2). (36)

Proof. Let t∗ > 0. If (35) holds, then the map defined by t 7→ θ(t)/t reaches its minimum at t∗. But
its derivative at t∗ is :

θ ′(t∗)t∗− θ(t∗)
t∗2

.

Therefore (36) holds. Conversely, assume that (36) holds. By convexity of θ and by (36) we get,
for all t > 0,

θ(t)≥ θ ′(t∗)(t − t∗) + θ(t∗) = θ(t∗)t/t∗.

Therefore (35) holds.

The following lemma provide some alternative probabilistic interpretations for the t∗ assumption.

Lemma 5. The following conditions are equivalent.

1. There exists t∗ > 0 such that (36) holds.

2. P(ζ > v∗)> 0, i.e. v∗ < ζ+.

3. P(ζ= ζ+)< 1/2.

Proof. By Lemma 1, Condition 1 implies Condition 2. Let us check that Condition 2 implies condition
1. We have:

lim
t→0+

θ(t)
t
=+∞ and lim

t→+∞

θ(t)
t
= ζ+.
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Assume v∗ < ζ+. Then, v∗ can be defined as the infimum of t 7→ θ(t)/t on a compact interval
of ]0,+∞[. Therefore, there exists t∗ > 0 such that (35) holds. By Lemma 4 we then get that
Condition 1 holds.

Let us check that Conditions 2 and 3 are equivalent. This is a special case of Proposition A.2 in [23].
Below we give a sligthly modified proof. Let us write

θ(t) = tζ++ log(A+ B(t))

where
A= 2P(ζ= ζ+) and B(t) = 2E(exp(t(ζ− ζ+))1ζ<ζ+).

Note that A+ B(t) converges toward A. If P(ζ= ζ+)< 1/2, we then get:

lim log(A+ B(t))< 0

(the limit might be −∞). Therefore there exists t > 0 such that θ(t)/t < ζ+ and we then have
v∗ < ζ+: Condition 2 holds. If, on the contrary, P(ζ = ζ+) ≥ 1/2, then for all t > 0 we have
A+ B(t)≥ 1 and then θ(t)/t ≥ ζ+. Therefore v∗ ≥ ζ+: Condition 2 does not hold.

A.2 Survival probability when the t∗ assumption is not fulfilled

Our aim in this subsection is to show that, when the t∗ assumption is not fulfilled, the behavior of
the survival probability differs from the one established in the core of the paper.

Let us consider the process of children displaced by exactly ζ+ from their parent in the branching
random walk. This is a Galton-Watson process. The number of children of a given parent follows
a binomial distribution with parameters 2 and P(ζ = ζ+). The behavior of the surving probability
P0(A∞(v)) as v tends to v∗ from below turns out to depend on the behavior of this Galton-Watson
process.

1. Subcritical case, i.e. P(ζ = ζ+) < 1/2. By Lemma 5 this is the case studied in the paper. We
have:

logP0(A∞(v))∼−Cζ(v
∗− v)−1/2

where Cζ is an explicit positive constant that depends on the distribution of ζ.

2. Critical case, i.e. P(ζ = ζ+) = 1/2. By Lemma 5 we have v∗ = ζ+. As in the subcritical case
we have:

P0(A∞(v))→ P0(A∞(v
∗)),

since P0(A∞(v∗)) = 0 is also the survival probability of the critical Galton-Watson process.
However, the rate of convergence is not the same as in the subcritical case. Indeed, there
exists a positive constant dζ depending only on the distribution of ζ such that

P0(A∞(v))≥ dζ(v
∗− v).

When P(ζ = 0) = P(ζ = 1) = 1/2 this is the lower bound given by Proposition 2.4 of [29].
The general case follows by coupling and rescaling 6.

6First replace ζ by a random variable eζ such that P(eζ= ζ+) = P(eζ= ζ−) = 1/2, thus lowering the survival probability.
Then replace eζ by (eζ− ζ−)/(ζ+ − ζ−).
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The precise behavior of the survival probability in fact depends on the behavior of P(v ≤ ζ <
v∗). When there exists v < v∗ such that P(v ≤ ζ < v∗) = 0 there exists a constant Dζ such that

P0(A∞(v))≤ Dζ(v
∗− v).

When P(ζ = 0) = P(ζ = 1) = 1/2 this is the upper bound given by Proposition 2.4 of [29].
We get the previous result by coupling and rescaling as above.

When, on the contrary, P(v ≤ ζ < v∗) > 0 for all v < v∗ the survival probability can be larger.
Indeed, set pv = P(ζ ≥ v) > 1/2. The Galton-Watson process obtained by keeping all steps
greater or equal to v is supercritical. Denote by qv > 0 its survival probability. We have

(1− pv + pv(1− qv))
2 = (1− qv).

Therefore

qv =
2pv − 1

p2
v

.

We then have:

P0(A∞(v))≥ qv =
2pv − 1

p2
v
∼ 8P(v ≤ ζ < v∗)

(let us recall that P(ζ = v∗) = 1/2 and that P(ζ > v∗) = 0). Thus, the survival probability
P0(A∞(v)) can tend arbitrarily slowly to 0.

3. Supercritical case, i.e. P(ζ= ζ+)> 1/2. By Lemma 5 we have v∗ = ζ+, as in the critical case.
Let us denote by q > 0 the survival probability of the Galton-Watson tree. Then, we have:

P0(A∞(v))→ P0(A∞(v∗)) = q > 0.
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