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Abstract

Consider the random walk on the permutation group obtained when the step distribution is
uniform on a given conjugacy class. It is shown that there is a critical time at which two phase
transitions occur simultaneously. On the one hand, the random walk slows down abruptly: the
acceleration (i.e., the second time derivative of the distance) drops from 0 to −∞ at this time
as n → ∞. On the other hand, the largest cycle size changes from microscopic to giant. The
proof of this last result is considerably simpler and holds more generally than in a previous
result of Oded Schramm [19] for random transpositions. It turns out that in the case of random
k-cycles, this critical time is proportional to 1/[k(k− 1)], whereas the mixing time is known to
be proportional to 1/k.
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1 Introduction

1.1 Basic result

Let n ≥ 1 and let Sn be the group of permutations of {1, . . . , n}. Consider the random walk on Sn
obtained by performing random transpositions in continuous time, at rate 1. That is, let τ1, . . . be a
sequence of i.i.d. uniformly chosen transpositions among the n(n− 1)/2 possible transpositions of
the set V = {1, . . . , n}, and for all t ≥ 0, set

σt = τ1 ◦ . . . ◦τNt

where (Nt , t ≥ 0) is an independent Poisson process with rate 1 and ◦ stands for the usual composi-
tion of permutations. It is well-known that the permutation σt is approximately a uniform random
permutation (in the sense of total variation distance) after time (1/2)n log n (see [9]). In particular,
this means that at this time, most points belong to cycles which are of macroscopic size O(n), while
initially, in the permutation σ0 which is the identity permutation, every cycle is microscopic (being
of size 1). How long does it take for macroscopic cycles to emerge? Oded Schramm, in a remarkable
paper [19], proved that the first giant cycles appear at time n/2.

More precisely, answering a conjecture of David Aldous stated in [3], he was able to prove the
following: if t = cn with c > 1/2, then there exists a number θ = θ(c) ∈ (0, 1) and a (random) set
W ⊂ {1, . . . , n} satisfying σt(W ) =W , such that |W | ∼ θn. Furthermore, the cycle lengths of σt |W ,
rescaled by θn, converge in the sense of finite-dimensional distributions towards a Poisson-Dirichlet
random variable. (The Poisson-Dirichlet distribution describes the limiting cycle distribution of a
uniform random permutation, see [19]. The number θ(c) in this result is the survival probability
of a Galton-Watson branching process with Poisson offspring with mean 2c > 1.) In particular, this
implies that σt contains giant cycles with high probability if t = cn with c > 1/2. On the other hand
it is easy to see that no macroscopic cycle can occur if c < 1/2.

His proof is separated into two main steps. The first step consists in showing that giant cycles do
emerge prior to time cn when c > 1/2. The second step is a beautiful coupling argument which
shows that once giant cycles exist they must quickly come close to equilibrium, thereby proving
Aldous’ conjecture. Of these two steps, the first is the more involved. Our main purpose in this
paper is to give an elementary and transparent new proof of this fact. Let Λ(t) denote the size of
the largest cycle of σt . For δ > 0, define

τδ = inf{t ≥ 0 : Λ(t)> δn}. (1)

Theorem 1. If c > 1/2, then τδ < cn with probability tending to 1, where

δ =
θ(c)2

8
> 0,

where θ(c) is the survival probability of a Galton-Watson branching process with Poisson offspring with
mean 2c > 1.

The result also trivially holds if c ≤ 1/2 since θ(c) = 0 then. The number δ = θ(c)2/8 is somewhat
arbitrary. It is likely that the result holds with any δ < θ(c), although our proof does not show this.
Our proof is completely elementary and in particular requires few estimates. As a consequence, it
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is fairly robust and it is reasonable to hope that it extends to further models. We demonstrate that
this is indeed the case by applying it to more general random walks on Sn, whose step distribution
is uniform on a given conjugacy class of the permutation group (definitions will be recalled below).
We also show that the emergence of giant cycles coincides with a phase transition in the acceleration
of the random walk, as measured by the second derivative of the distance (on the graph metric)
between the position of the random walk at time t, and its starting point. This phase transition in the
acceleration is the exact analogue of the phase transition described in [3] for random transpositions.

We mention that Theorem 1 is the mean-field analogue of a question arising in statistical mechan-
ics in the study of Bose-Einstein condensation and the quantum ferromagnetic Heisenberg model
(see Tòth [20]). Very few rigorous results are known about this model on graphs with non-trivial
geometry, with the exception of the work of Angel [1] for the case of a d-regular tree with d suf-
ficiently large. We believe that the proof of Theorem 1 proposed here opens up the challenging
possibility to prove analogous results on graphs that are “sufficiently high-dimensional" such as a
high-dimensional hypercube, for which recent progress has been made about the emergence of a
giant component under the percolation process: see, e.g., Borgs et al. [6].

1.2 Random walks based on conjugacy classes.

Fix a number k ≥ 2, and call an element γ ∈ Sn a k-cycle, or a cyclic permutation of length k, if there
exist pairwise distinct elements x1, . . . , xk ∈ {1, . . . , n} such that γ(x) = x i+1 if x = x i (where 1 ≤
i ≤ k and xk+1 := x1) and γ(x) = x otherwise. Thus for k = 2, a 2-cycle is simply a transposition.
If σ is a permutation then σ can be decomposed into a product of disjoint cyclic permutations
σ = γ1 ◦ . . . ◦ γr where ◦ stands for the composition of permutations. (This decomposition being
unique up to the order of the terms). A conjugacy class Γ ⊂ Sn is any set that is invariant by
conjugacy σ 7→ π−1σπ, for all π ∈ Sn. It easily seen that a conjugacy class of Sn is exactly a set
of permutations having a given cycle structure, say (c2, . . . , cJ ), i.e., consisting of c2 cycles of size 2,
. . ., cJ cycles of size J in their cycle decomposition (and a number of fixed points which does not
need to be explicitly stated). Note that if Γ is a fixed conjugacy class of Sn, and m > n, Γ can also
be considered a conjugacy class of Sm by also considering the set of permutatinons in Sm with c2
cycles of size 2, . . . , cJ cycles of size J .

Let Γ be a fixed conjugacy class, and consider the random walk in continuous time on Sn where the
step distribution is uniform on Γ. That is, let (γi , i ≥ 1) be an i.i.d. sequence of elements uniformly
distributed on Γ, and let (Nt , t ≥ 0) be an independent rate 1 Poisson process. Define a random
process:

σt := γ1 ◦ . . . ◦ γNt
, t ≥ 0, (2)

where ◦ stands for the composition of two permutations. Thus the case where Γ consists only of
transpositions (i.e. c2 = 1 and c j = 0 if j ≥ 2) corresponds to the familiar random process on Sn
obtained by performing random transpositions in continuous time, and the case where Γ contains
only one nontrivial cycle of size k ≥ 2 will be referred to as the random k-cycles random walk. The
process (σt , t ≥ 0) may conveniently be viewed as a random walk on Gn, the Cayley graph of Sn
generated by Γ. Note that if K :=

∑J
j=2( j−1)c j is odd, the graph Gn is connected but it is not when

K is even: indeed, in that case, the product of random p-cycles must be an even permutation, and
thus σt is then a random walk on the alternate groupAn of even permutations. This fact will be of
no relevance in what follows.
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In this paper we study the pre-equilibrium behaviour of such a random walk. Our main result in this
paper for this process is that there is a phase transition which occurs at time tcn, where

tc =







J
∑

j=2

j( j− 1)c j







−1

. (3)

This transition concerns two distinct features of the walk. On the one hand, giant cycles emerge at
time tcn precisely, as in Theorem 1. On the other hand, the speed of the walk changes dramatically
at this time, dropping below 1 in a non-differentiable way. We start with the emergence of giant
cycles, which is analogue to Theorem 1. Recall the definition of τδ in (1).

Theorem 2. Let t < tc . Then there exists β > 0 such that P(sups≤tnΛ(s) ≤ β log n)→ 1, where Λ(s)
is the maximal cycle size at time s ≥ 0. On the other hand for any t > tc there exists δ > 0 such that
τδ < tn with high probability.

We now state our result for the speed. Denote by d(x , y) the graph distance between two vertices
x , y ∈ Sn, and for t ≥ 0, let

d(t) = d(o,σt).

where o is the identity permutation of Sn. Recall that a sequence of random functions Xn(t) con-
verge uniformly on compact sets of S ⊂ R in probability (u.c.p. for short) towards a random function
X (t) if for all compact subsets K ⊂ S, P(supt∈K |Xn(t)− X (t)|> ε)→ 0 as n→∞ for all ε > 0.

Theorem 3. Let tc be as in (3), and fix t > 0. Then there exists an interval I ⊂ (tc ,∞), bounded
away from tc and ∞, and a nonrandom continuous function ϕ(t) satisfying ϕ(t) = t for t ≤ tc and
ϕ(t)< t for t > tc , such that

1

n
d(tn)−→ ϕ(t), t ∈ R \ I (4)

uniformly on compact sets in probability as n→∞. Furthermore ϕ is C∞ everywhere except at t = tc ,
where the acceleration satisfies ϕ′′(t+c ) = −∞. In the case of random k-cycles (k ≥ 2), I = ; so the
convergence holds uniformly on compact sets in R.

Remark 4. We believe that I = ; in all cases, but our proof only guarantees this in the case of
random k-cycles and a few other cases which we have not tried to describe precisely. Roughly
speaking there is a combinatorial problem which arises when we try to estimate the distance to
the identity in the case of conjugacy classes which contain several non-trivial cycles of distinct sizes
(particularly when these are coprime). This is explained in more details in the course of the proof.
The above result is enough to prove that there is a phase transition for d(tn) when t = tc , but does
not prevent other phase transitions after that time.

In the case of random k-cycles, we have tc = 1/[k(k − 1)] and the function ϕ has the following
explicit expression:

ϕ(t) := 1−
∞
∑

s=0

((k− 1)s+ 1)s−2

s!
(kt)se−kt(s(k−1)+1) (5)

It is a remarkable fact that for t ≤ tc a cancellation takes place and ϕ(t) = t. One can also check
with Stirling’s formula that ϕ is differentiable at tc . The case k = 2 of random transpositions
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matches Theorem 4 from [3]. In the general conjugacy class case, ϕ may be described implicitly as
follows. For t ≥ 0 and z ∈ [0,1], let Gt(z) = exp(t

∑J
j=2 jc j(z j−1− 1)), and let ρ(t) be the smallest

solution of the equation (in z ∈ [0,1]): Gt(z) = z. Then ϕ is defined by

ϕ(t) =
1

K

∫ t

0

J
∑

j=2

c j( jρ(s)−ρ(s) j)ds, (6)

where K :=
∑J

j=2 c j( j − 1). It is a fact that ρ(t) < 1 if and only if t > tc , hence ϕ(t) = t for t ≤ tc
and ϕ(t)< t for t > tc . As we will see later, ρ(t) is the extinction probability of the Gatson-Watson
process with generating function Gt(z).

1.3 Heuristics

The k-cycle random walk is a simple generalization of the random transpositions random walk on
Sn, for which the phase transition in Theorem 3 was proved in [3]. Observe that any k-cycle
(x1, . . . , xk) may always be written as the product of k− 1 transpositions:

(x1, . . . , xk) = (x1, x2) . . . (xk−1, xk)

This suggests that, qualitatively speaking, the k-cycle random walk should behave as “random trans-
positions speed up by a factor of (k− 1)", and thus one might expect that phase transitions occur at
a time that is inversely proportional to k. This is for instance what happens with the mixing time

tmix =
1

k
n log n (7)

for the total variation distance. This was recently proved in [4] and was previously known [17] for
k ≤ 6, the particular case k = 2 being the celebrated Diaconis-Shahshahani theorem [9]. See [14]
and [8] for an excellent introduction to the general theory of mixing times, and [18] in particular
for mixing times of random walks on groups. The comparison to mixing times is not fortuitous: it
is explained in [4] how the value of the mixing time is connected to Schramm’s result [19] about
Poisson-Dirichlet structure within the giant component. It may therefore come as a surprise that
tc = 1/[k(k− 1)] rather than tc = 1/k (although note that, of course, mixing occurs on a different
time scale as specified by (7)). As it emerges from the proof, the reason for this fact is as follows. We
introduce a coupling of (σt , t ≥ 0) with a random hypergraph process (Ht , t ≥ 0) on V = {1, . . . , n},
which is the analogue of the coupling between random transpositions and Erdős-Renyi random
graphs introduced in [3]. As we will see in more details, hypergraphs are graphs where edges (or
rather hyperedges) may connect several vertices at the same time. In this coupling, every time a cycle
(x1, . . . , xk) is performed in the random walk, Ht gains a hyperedge connecting x1, . . . , xk. This is
essentially the same as adding the complete graph Kk on {x1, . . . , xk} in the graph Ht . Thus the
degree of a typical vertex grows at a speed which is k(k − 1)/2 faster than in the standard Erdős-
Renyi random graph. This results in a giant component occurring k(k − 1)/2 faster as well. This
explains the formula t−1

c = k(k− 1), and an easy generalisation leads to (3).

Organisation of the paper: The rest of the paper is organised as follows. We first give the proof
of Theorem 1. In the following section we introduce the coupling between (σt , t ≥ 0) and the
random hypergraph process (Ht , t ≥ 0). In cases where the conjugacy class is particularly simple
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(e.g. random k-cycles), a combinatorial treatment analogous to the classical analysis of the Erdős-
Renyi random graph is possible, leading to exact formulae. In cases where the conjugacy class is
arbitrary, our method is more probabilistic in nature (relying primarily on martingale methods) and
the formulae take a different form (Ht is then closer to the Molly and Reed model of random graphs
with prescribed degree distribution, [15] and [16]). The proof is thus slightly different in these
two cases (respectively dealt with in Section 3 and 4), even though conceptually there are no major
differences between the two cases.

2 Emergence of giant cycles in random transpositions

In this section we give a full proof of Theorem 1. As the reader will observe, the proof is really
elementary and is based on well-known (and easy) results on random graphs. Consider the random
graph process (Gt , t ≥ 0) on V = {1, . . . , n} obtained by putting an edge between i and j if the
transposition (i, j) has occurred prior to time t. Then every edge is independent and has probability
pt = 1− e−t/(n2), so Gt is a realisation of the Erdős-Renyi random graph G(n, pt).

For t ≥ 0 and i ∈ V , let Ci denote the cycle that contains i. Recall that if Ci = C j then a transposition
(i, j) yields a fragmentation of Ci = C j into two cycles, while if Ci 6= C j then the transposition (i, j)
yields a coagulation of Ci and C j . It follows from this observation that every cycle of σt is a subset
of one of the connected components of Gt . Thus let N(t) be the number of cycles of σt and let N̄(t)
denote the number of components of Gt . Then we obtain

N(t)≥ N̄(t), t ≥ 0. (8)

Now it is a classical and easy fact that the number N̄(t) has a phase transition at time n/2 (cor-
responding to the emergence of a giant component at this time). More precisely, let θ(c) be the
asymptotic fraction of vertices in the giant component at time cn, so θ(c) is the survival probability
of a Poisson Galton-Watson process with mean offspring 2c (in particular θ(c) = 0 if c < 1/2).

Let c > 1/2 and fix an interval of time [t1, t2] such that t2 = cn and t1 = t2− n3/4. Our goal will be
to prove that a cycle of size at least δn appears during the interval I = [t1, t2], where δ = θ(c)2/8.

Lemma 5. For any c > 1/2, with t1 and t2 as above,

N̄(t1)− N̄(t2)∼ (t2− t1)[1− θ2(c)]

in the sense that the ratio of these two quantities tends to 1 in probability as n→∞.

Proof. This lemma follows easily from the following observation. The total number of edges that
are added during I is a Poisson random variable with mean t2− t1. Now, each time an edge is added
to Gt , this changes the number of components by -1 if and only if the two endpoints are in distinct
components (otherwise the change is 0). Thus if a transposition is applied at time s ∈ [t1, t2],
then given Fs (where Fs denotes the σ-field generated by the entire process up to time s), the
conditional probability that it will change the number of components is 1−

∑

i x2
i (s), where x i(s)

denotes the rescaled component sizes at time s, ordered in decreasing sizes. We claim that this
converges in probability to 1 − θ(c)2 uniformly over s ∈ [t1, t2]. Indeed observe first that this
quantity is monotone in s, so it suffices to establish the claim for s = t1 and s = t2. We only treat
s = t2 for simplicity. It is clear that

∑

i x2
i ≥ x2

1 → θ(c)2. Moreover, E(
∑

i x2
i ) → θ(c)2 as the
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second largest component has rescaled size smaller than β log n/n with high probability (see, e.g.,
Theorem 2.3.2 in [10]). Hence

∑

i≥2 x2
i → 0 in expectation and hence in probability, so the claim is

proved. The law of large numbers now concludes the proof: fix ε > 0 and consider the event E that
∑

i x2
i ∈ [θ

2− ε,θ2+ ε] for all s ∈ [t1, t2], so P(E)→ 1. On this event, the number of times that Gt
changes (in which case it changes by -1) is stochastically dominated above and below by a Poisson
random variable with mean (t2− t1)(1− θ2(c)± ε). The lemma follows easily.

Lemma 6.

E
�

sup
t≤cn
|N(t)− N̄(t)|

�

≤ (4c+ 1)n1/2.

Proof. We already know that N(t) ≥ N̄(t) for all t ≥ 0. It thus suffices to show that the excess
number of cycles is never more than (4c + 1)n1/2 in expectation. Call a cycle good if it never
experienced a fragmentation and let N go(t) be the number of good cycles at time t. Call it excess
otherwise, and let N ex(t) be the number of such cycles at time t. It is clear that points in a standard
cycle are part of the same connected component in Gt , which does not contain any additional vertex.
Thus every good cycle may be associated to one connected component of Gt in such a way that no
two good cycles are associated to the same component of Gt . Hence N(t) = N go(t) + N ex(t) ≤
N̄(t) + N ex(t), so that |N(t)− N̄(t)| ≤ N ex(t). Note also that there can never be more than n1/2

cycles of size greater than n1/2. Thus it suffices to count the number N ex
↓ (t) of excess cycles of size

≤ n1/2:
|N(t)− N̄(t)| ≤ N ex

↓ (t) + n1/2.

These excess cycles of size ≤ n1/2 at time t must have been generated by a fragmentation at some
time s ≤ t where one of the two pieces was smaller than n1/2. But at each step, the probability
of making such a fragmentation is smaller than 2n−1/2. Indeed, given the position of the first
marker i, there are at most 4n1/2 possible choices for j which result in a fragmentation where
one of the two pieces is of size smaller than n1/2. To see this, note that if a transposition (i, j) is
applied to a permutation σ, and Ci = C j , so σk(i) = j for some 1 ≤ k ≤ |C |, then the two pieces
are precisely given by (σ0(i), . . . ,σk−1(i)) and (σ0( j), . . . ,σ|C |−k−1( j)). Thus to obtain two pieces
of size k and |C | − k there are at most two possible choices, which are σk(i) and σ−k(i). Thus
E(F↓(cn))≤ cn ·4n−1/2, where F↓(cn) is the total number of fragmentation events where one of the
pieces is smaller than n1/2 by time cn. Since

sup
t≤cn

N ex
↓ (t)≤ F↓(cn)

this finishes the proof.

Proof of Theorem 1. Applying Markov’s inequality in Lemma 6, we see that since n1/2 � n3/4 =
t2− t1, we also have

N(t1)− N(t2)∼ (t2− t1)(1− θ2(c))

in probability, by Lemma 5. On the other hand, N(t) changes by -1 in the case of a coalescence and
by +1 in the case of a fragmentations. Hence N(t1)−N(t2) = Poisson(t2− t1)−2F(I), where F(I)
is the total number of fragmentations during the interval I . We therefore obtain by the law of large
numbers for Poisson random variables:

F(I)∼
1

2
(t2− t1)θ(c)

2.
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But observe that if F(I) is large, it cannot be the case that all cycles are small - otherwise we would
very rarely pick i and j in the same cycle. Hence consider the decreasing events Es = {τδ > s} for
s ∈ [t1, t2] and let E = Et2

. On Es, the maximal cycle size up to time s is no more than δn. Hence at
the next transposition, the probability of making a fragmentation is no more than δ. We deduce that
on the event E, F(I) is stochastically dominated by a Poisson random variable with mean (t2− t1)δ.
Thus, on E ∩ E′ where P(E′)→ 1, F(I) ≤ 2δ(t2 − t1). Since 2δ = θ(c)2/4, it follows immediately
that P(E)→ 0 as n→∞. This completes the proof.

Remark 7. This proof is partly inspired by the calculations in Lemma 8 of [2].

3 Random hypergraphs and Theorem 3.

We now start the proof of Theorem 3 in the case of random k-cycles. We first review some relevant
definitions and results from random hypergraphs.

A hypergraph is a graph where edges can connect several vertices at the same time. Formally:

Definition 1. A hypergraph H = (V, E) is given by a set V of vertices and a subset E of P (V ), where
P (V ) denotes the set of all subsets of V . The elements of E are called hyperedges. A d-regular hyper-
graph is a hypergraph where all edges connect d vertices, i.e. for all e ∈ E, |e|= d.

For a given d ≥ 2 and 0 < p < 1, we call Gd(n, p) the probability distribution on d-regular hyper-
graphs on V = {1, . . . , n} where each hyperedge on d vertices is present independently of the other
hyperedges with probability p. Observe that when d = 2 this is just the usual Erdős-Renyi random
graph case, since a hyperedge connecting two vertices is nothing else than a usual edge. For basic
facts on Erdős-Renyi random graphs, see e.g. [5].

The notion of a hypertree needs to be carefully formulated in what follows. We start with the
d-regular case. The excess ex(H) of a given d-regular hypergraph H is defined to be

ex(H) = (d − 1)h− r (9)

where r = |H| and h is the number of edges in H.

Observe that if H is connected then ex(H) ≥ −1 as can be easily seen by induction on h (each new
hyperedge adds at most d − 1 new vertices to H).

Definition 2. We call a connected d-regular hypergraph H a hypertree if ex(H) =−1.

Likewise if ex(H) = 0 and H is connected we will say that H is unicyclic and if the excess is positive
we will say that the component is complex.

Remark 8. This is the definition used by Karoński and Luczak in [13], but differs from the definition in
their older paper [11] where a hypertree is a connected hypergraph such that removing any hyperedge
would make it disconnected.

In the case where H is not necessarily regular, the excess of a connected hypergraph H made up of
the hyperedges h1, . . . , hn is defined to be ex(H) =

∑n
i=1(|hi| − 1)− |H|, where |hi| denotes the size

of the hyperedge hi and |H| is the cardinality of the vertex set of H. Then ex(H)≥−1 and H is said
to be a hypertree if ex(H) =−1.
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3.1 Critical point for random hypergraphs

We start by recalling a theorem by Karoński and Luczak [13] concerning the emergence of a giant
connected component in a random hypergraph process (Ht , t ≥ 0) where random hyperedges of
degree d ≥ 2 are added at rate 1.

Theorem 9. Let c > 0 and let t = cn.

- When c < cd = 1/[d(d − 1)] then a.a.s then Ht contains only trees and unicyclic components.
The largest component has size O(log n) with high probability.

- When c > cd then there is with high probability a unique complex component, of size θn asymp-
totically, where θ = θd(c) > 0. All other component are not larger than O(log n) with high
probability.

Note that with high probability, if c < cd then the number of unicyclic components is no more than
C ′ log n for some C ′ > 0 which depends on c. Indeed, at each step the probability of creating a cycle
is bounded above by C log n/n since the largest component is no more than O(log n) prior to time
cn. Since there are O(n) steps this proves the claim. We will need a result about the evolution of
the number of components N̄(t) in (Ht , t ≥ 0).

Proposition 10. Let t > 0. Then as n→∞,

1

n
N̄(tn)−→

∞
∑

h=0

((d − 1)h+ 1)h−2

h!
(d t)he−d t(h(d−1)+1) (10)

uniformly on compacts in probability.

Proof. By Theorem 9 and since there are no more than C log n complex components, it is enough to
count the number of hypertrees Ñ(s) in Hs where s = tn. We will first compute the expected value
and then prove a law of large numbers using a second moment method.

Let h ≥ 0, we first compute the number of hypertrees with h hyperedges (h = 0 corresponds to
isolated vertices). These have r = (d−1)h+1 vertices. By Lemma 1 in Karoński-Luczak [12], there
are

(r − 1)!rh−1

h![(d − 1)!]h
(11)

trees on r = (d−1)h+1 labeled vertices (this is the analogue to Cayley’s (1889) well-known formula
that there are kk−2 ways to draw a tree on k labeled vertices). If T is a given hypertree with h edges
on vertices in V = {1, . . . , n}, there are a certain number of conditions that must be fulfilled in order
for T to be one of the components of Hs: (i) The h hyperedges of T must be open, (ii)

�r
d

�

− h
hyperedges must be closed inside the rest of T , (iii) T must be disconnected from the rest of the
graph. Thus hyperedges containing exactly 1, 2, . . . , d−1 vertices in T must be closed. This requires
closing

�r
1

��n−r
d−1

�

+
�r

2

��n−r
d−2

�

+ . . .+
� r

d−1

��n−r
1

�

∼ r
�n−r

d−1

�

hyperedges.

Now, remark that at time s = tn, because the individual Poisson clocks are independent, each
hyperedge is present independently of the others with probability p = 1−exp

�

−s/
�n

d

�

�

∼ d!t/nd−1.
It follows that the probability that T is one of the components of Ht is

ph(1− p)(
r
d)−h+(r1)(

n−r
d−1)+...+( r

d−1)(
n−r

1 ). (12)
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Hence the expected number of trees in Hs with h edges is

E[Ñh(tn)] =
�

n

r

�

(r − 1)!rh−1

h![(d − 1)!]h
ph(1− p)(

r
d)−h+(r1)(

n−r
d−1)+...+( r

d−1)(
n−r

1 ) (13)

∼ n
rh−2

h!
(d t)he−dr t

Write C for the set of connected components of Hs. Note that if T1 and T2 are two given hypertrees
on V with disjoint vertex sets and with h hyperedges each, then

P(T1 ∈ C and T2 ∈ C ) =
P(T ∈ C )2

(1− p)e(T1,T2)
,

where e(T1, T2) denotes the number of hyperedges in V that intersect both T1 and T2. Hence
e(T1, T2) =

∑

1≤ j≤d−1

∑

1≤k≤d− j

�r
j

��r
k

�� n−r
d− j−k

�

∼ r2nd−2. Since p = O(n−(d−1)), we deduce that
cov(1{T1∈C},1{T2∈C}) → 0 uniformly in h ≤ h0, for all fixed h0 ≥ 0. On the other hand, if T1 and
T2 are distinct hypertrees that share at least one common vertex, then P(T1 ∈ C ; T2 ∈ C ) = 0 and
hence cov(1{T1∈C},1{T2∈C}) ≤ 0. Therefore, var(Ñh(s)) = o(n2). Thus, by Chebyshev’s inequality,
for all h0 ≥ 0:

1

n

h0
∑

h=0

Ñh(s)−→p

h0
∑

h=0

((d − 1)h+ 1)h−2

h!
(d t)he−d t(h(d−1)+1), (14)

in probability as n → ∞. Let Ñ>h0
(s) be the number of trees greater than h0. Then we obviously

have Ñ>h0
(s) ≤ n/h0. Choosing h0 large enough that 1/h0 < ε and the finite sum in the right-hand

side of (14) lies within ε of the infinite series, the proof of the pointwise convergence in (10) follows
directly. Since n−1N̄(tn) is a decreasing function of time for every n and since the limiting function
in the right-hand side of (10) is continuous, the uniform convergence on compact sets in probability
follows automatically (see, e.g., [7]).

3.2 Bounds for the Cayley distance on the symmetric group

In the case of random transpositions we had the convenient formula that if σ ∈ Sn then d(o,σ) =
n− N(σ) where N(σ) is the number of cycles of σ, a formula originally due to Cayley. In the case
of random k-cycles with k ≥ 3, unfortunately there is to our knowledge no exact formula to work
with. However this formula stays approximately true, as shown by the following proposition.

Proposition 11. Let k ≥ 3 and let σ ∈ Sn. (If k is odd, assume further that σ ∈An). Then

1

k− 1
(n− N(σ))≤ d(o,σ)≤

1

k− 1
(n− N(σ)) + C(k)|Rk(σ)|

where C(k) is a universal constant depending only on k, and Rk(σ) is the set of cycles of σ whose length
` 6= 1 mod k− 1.

Proof. We start by proving the lower-bound. Note that multiplication of σ by a k-cycle can increase
the number of cycles by at most k − 1. Hence, after p multiplications the resulting permutation
cannot have more than N(σ) + p(k− 1) cycles. Therefore the distance must be at least that k0 for
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which N(σ) + k0(p− 1) ≥ n, since the identity permutation has exactly n cycles. The lower-bound
follows.

For the upper-bound, we need a few notations. Suppose c = (x1, . . . , x`) is a cycle of length ` =
d(k−1)+r, where r ∈ [2, k−1]. [This is not exactly the usual Euclidean division of ` by k−1, as we
choose r = k−1 rather than r = 0 if ` is a multiple of k−1.] Let D(c) = (x1, . . . , xd(k−1)+1), and let
R(c) = (xd(k−1)+1, . . . , x`). Note that c = D(c)◦R(c), the product of the permutation D(c) with R(c).
Since cycles with disjoint support commute, we may write σ = D(σ)◦R(σ) with D(σ) =

∏

c∈σ D(c)
and R(σ) =

∏

c∈σ R(c). Now notice that for a cycle c = (x1, . . . , x`) of length ` = d(k − 1) + r as
above, if r = 1 we may write

c = (x1, . . . xk) ◦ (xk, . . . , x2(k−1)+1) ◦ . . . ◦ (x(d−1)(k−1)+1, . . . , xd(k−1)+1)

and thus obtain c as a product of k-cycles with exactly d factors. Thus the permutation D(σ) may
be constructed as a product of k-cycles D(σ) = π1 . . .πd containing exactly

d =
∑

c∈σ

|D(c)| − 1

k− 1
≤
∑

c∈σ

|c| − 1

k− 1
=

n− N(σ)
k− 1

factors, where |D(c)| denotes the length of the cycle D(c). The permutation R(σ), on the other
hand, may be written as a product of k-cycles R(σ) = π′1 . . .π′r , where r ≤ C(k)|Rk(σ)|. To see
this, note that only cycles c /∈ Rk(σ) contribute a term to R(σ). This term is then a cycle of length
|R(c)| ∈ [2, k − 1]. Then if k is even, one can take C(k) to be the maximal number of k-cycles
needed to create a cycle of length between 2 and k− 1, which is less than (say) the diameter of Sk
generated by the set of k-cycles. If k is odd, so that σ ∈ An, then note that D(σ) ∈ An and hence
R(σ) ∈ An. Thus there is an even number of cycles c ∈ σ such that |R(c)| is even. By considering
such cycles in pairs, whose product is in An, we see that we can take C(k) to be the diameter of
Ak generated by k-cycles. Hence we may construct a path of length d + r between the identity and
σ by considering σ = π1 . . .πdπ

′
1 . . .π′r . Since d ≤ (n− N(σ))/(k − 1) and r ≤ C(k)|Rk(σ)|, the

upper-bound is proved.

3.3 Phase transition for the 3-cycle random walk

We now finish the proof of Theorem 3 in the case of random k-cycles.

Proof of Theorem 3 if c j = 1{ j=k}. The proof follows the lines of Lemma 6. Let N(t) be the number
of cycles of σ and let N̄(t) be the number of components in Ht , where (Ht , t ≥ 0) is the ran-
dom k-regular hypergraph process obtained by adding the edge {x1, . . . , xk} whenever the k-cycle
(x1, . . . , xk) is performed. Note again that every cycle of σt is a subset of a connected component
of Ht , so N(t) ≥ N̄(t). (Indeed, this property is a deterministic statement for transpositions, and a
sequence of random k-cycles can be decomposed as a sequence (k− 1) times as long of transposi-
tions.)

Repeating the argument in Lemma 6, we see that

n−3/4

�

sup
t≤cn
|N(t)− N̄(t)|

�

→ 0, (15)

162



in probability. This is proved in greater generality (i.e., for arbitrary conjugacy classes) in Lemma
14. Moreover, any c ∈ Rk(σt) must have been generated by fragmentation at some point (otherwise
the length of cycles only increases by k− 1 each time). Thus Rk(σt)≤ N(t)− N̄(t), and Theorem 3
now follows.

4 Proofs for general conjugacy classes

4.1 Random graph estimates

Let Γ = (c2, . . . , cJ ) be our fixed conjugacy class. A first step in the proof of Theorems 3 and 2 in
this general case is again to associate a certain random graph model to the random walk. As usual,
we put a hyperedge connecting x1, . . . , xk every time a cycle (x1 . . . xk) is applied as part of a step of
the random walk. Let Hs be the random graph on n vertices that is obtained at time s. A first step
will to prove properties of this random graph Hs when s = tn for some constant t > 0. Recall our
definition of tc:

t−1
c =

J
∑

j=2

c j j( j− 1), (16)

and that 1− θ(t) be the smallest solution of the equation (in z): Gt(z) = z, where

Gt(z) = exp(t
J
∑

j=1

jc j(z
j−1− 1)). (17)

We will see that Gt(z) is the generating function of the degree of any vertex at time tn.

Lemma 12. If t < tc then there exists β > 0 such that all clusters of Htn are smaller than β log n with
high probability. If t > tc , then there exists β > 0 such that all but one clusters are smaller than β log n
and the largest cluster Ln(t) satisfies

Ln(t)
n
−→ θ(t)

as n→∞ in probability.

Proof. We first consider a particular vertex, say v ∈ V , and ask what is its degree distribution in Htn.
Writeσt = γ1 . . .γNt

where (γi , i ≥ 1) is a sequence of i.i.d. permutations uniformly distributed on Γ,
and (Nt , t ≥ 0) is an independent Poisson process. Note that for t ≥ 0, #{1≤ i ≤ Nt : v ∈ Supp(γi)}
is a Poisson random variable with mean t

∑J
j=2 jc j/n. Thus by time tn, the number of times v has

been touched by one of the γi is a Poisson random variable with mean t
∑J

j=2 jc j . For each such γi ,

the probability that v was involved in a cycle of size exactly ` is precisely `c`/
∑J

j=2 jc j . Thus, the
number of hyperedges of size j that contain v in Htn is Pj , where (Pj , j = 2, . . . , J) are independent
Poisson random variables with parameter t jc j . Since each hyperedge of size j corresponds to j − 1
vertices, we see that the degree of v in in Htn, Dv , has a distribution given by

Dv =
∑̀

j=2

( j− 1)Pj . (18)
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Now, note that by definition of tc (see (16)),

E(Dv)> 1 ⇐⇒ t > tc .

The proof of Theorem 3.2.2 in Durrett [10] may be adapted almost verbatim to show that there is a
giant component if and only if E(Dv) > 1, and that the fraction of vertices in the giant component
is the survival probability of the associated branching process. Note that the generating function
associated with the progeny (18) is

Gt(z) := E(zD) =
J
∏

j=2

E(z( j−1)Pj ) =
∏̀

j=2

exp(t jc j(z
j−1− 1))

thus 1− θ(t) is the smallest root of the equation Gt(z) = z. From the same result one also gets that
the second largest cluster is of size no more than β log n with high probability, for some β > 0.

Let N̄(s) be the number of clusters at time s in Hs, and let

u(t) = 1−
∫ t

0

J
∑

j=2

c j( jρ(s)−ρ(s) j)ds, (19)

where ρ(s) = 1 − θ(s). Note that that u(0) = 1, and for t ≤ tc we have u(t) = 1 − K t where
K :=

∑J
j=2 c j( j− 1) since ρ(t) = 1 for t ≤ tc . Moreover u(t)> 1− K t for t > tc .

Lemma 13. As n→∞, we have
1

n
N̄(tn)−→ u(t),

uniformly on compacts in probability.

Proof. Let H denote a hypergraph on {1, . . . , n}, and let h = h1 ∪ . . . ∪ h` be a set of hyperedges.
Denote by H ′ = H + h the graph obtained from H by adding the hyperedges h1, . . . , h` to H. Let
(x1, . . . , xn) be a discrete partition of unity, i.e., a non-increasing sequence of numbers such that
∑n

i=1 x i = 1 and such that for all 1 ≤ i ≤ n, nx i is a nonnegative integer. Define a function
f (x1, . . . , xn) as follows. Let H be any hypergraph for which x i are the normalized cluster sizes. Let
h= h1∪ . . .∪h` be a collection of hyperedges of sizes 2, 3, . . . , J (with size j being of multiplicity c j),
where the hyperedges hi are sampled uniformly at random without replacement from {1, . . . , n}. Let
H ′ = H + h. Then we define f by putting

f (x1, . . . , xn) := E(|H ′| − |H|)

where |H| denotes the number of clusters of H. Then we have that

Mt :=
1

n
|H(tn)| −

∫ t

0

f (x1(sn), . . . , xn(sn))ds (20)

is a martingale, if (x1(s), . . . , xn(sn)) denote the ordered normalized cluster sizes of H(s). (Note that
M0 = 1.)
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We claim that, as n→∞, for every s fixed,

f (x1(sn), . . . , xn(sn))→−
J
∑

j=2

c j( jρ(s)−ρ(s) j) (21)

in probability, where ρ(s) = 1 − θ(s). To see this, take h = h1 ∪ . . . ∪ h` a collection of random
hyperedges as above, and for 1 ≤ i ≤ `, write hi = {x i

1, . . . , x i
j} if hi is of size j. Let Ai be the

event that no two points of hi fall in the same nongiant component: that is, if x i
q and x i

q′ are not

in the largest component and q 6= q′, then the components containing x i
q and x i

q′ are distinct. Let

A = ∩`i=1Ai . Note that by Lemma 12, P(A )→ 1. Moreover, onA , then |H ′|−|H|=
∑`

i=1 X i . Here
X i = Yi ∧ ( j − 1), where Yi is the number of points of hi that do not fall in the largest component of
H (and j is the size of hi). Thus

E(X i)→ E(( j− 1)∧ Binomial( j,ρ)) = jρ−ρ j .

Since there are c j hyperedges of size j, (21) follows. Note that the quantity f (x1(sn), . . . , xn(sn)) is
a.s. monotone as a function of s because H(sn) is a purely coalescing process, and that the right-
hand side of (21) is continuous. We deduce immediately that the convergence (21) holds uniformly
on compacts in probability, and hence also, trivially,

∫ t

0

f (x1(sn), . . .)ds −→−
∫ t

0

J
∑

j=2

c j( jρ(s)−ρ(s) j)ds, (22)

uniformly on compacts in probability.

Moreover, note that
var(|H ′| − |H|)≤ C (23)

for some constant C which depends only on (c2, . . . , cJ ), since |H ′| may differ from |H| only by a
bounded amount. By Doob’s inequality, if M̄s = n(Ms − 1):

P
�

sup
s≤t
|(Ms − 1)|> ε

�

= P
�

sup
s≤t
|M̄s|2 > n2ε2

�

≤
4var(M̄t)

n2ε2

≤
4C t

nε2 . (24)

The last line inequality is obtained by conditioning on the number of steps N between times 0 and
tn, noting that after each step, the variance of M̄t increases by at most C by (23). (The value of the
constant C may change from line to line). Combining (24), (22) and the definition of M in (20), we
obtain the statement of Lemma 13.

4.2 Random walk estimates

Lemma 14. Let N(t) be the number of cycles of σ(tn). Then we have, as n→∞:

1

n3/4
(N(tn)− N̄(tn))−→ 0, u.c.p. (25)
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Proof. This is very similar to Lemma 6. Say that a cycle is large or small, depending on whether it
is bigger or smaller than

p
n. To start with, observe that there can never be more than

p
n large

cycles. As usual, we have that N(t) ≥ N̄(t), and we let N ex(t) be the number of excess cycles, i.e.,
those which have experienced at least one fragmentation during their evolution up to time t. Then
we have, as before, N− N̄(t)≤ N ex(t). We can in turn decompose N ex(t) = N ex

↑ (t)+N ex
↓ (t), where

the subscripts ↑ and ↓ refer to the fact that the cycles are either small or large. Thus we have

N ex
↑ (t)≤

p
n,

and the problem is to control N ex
↓ (t). Writing every cycle of size j as a product of j−1 transpositions,

we may thus write σt =
∏mt

i=1τi , for a sequence of transpositions having a certain distribution (they
are not independent). Then N ex

↓ (t) ≤ F↓(t), where F↓(t) is the number of times 1 ≤ i ≤ mt that
the transposition τi yields a fragmentation event for which one of the fragments is small. Now,
conditionally on τ1, . . . ,τi−1, the conditional probability that τi yields such a fragmentation is at
most 4n1/2/(n− (2K + 1)), where as before K =

∑J
j=2( j− 1)c j . Indeed, even though the τ j are not

independent, the following holds. Write τ j = (x j , y j) for all j ≥ 1. Then given τ1, . . . ,τi−1, and
given x i , then yi is sampled uniformly from {1, . . . , n} \ I where I = {x j , y j , i′ ≤ j ≤ i − 1} ∪ {x i}
and i′ = sup{ j ≤ i, j multiple of K}. (Thus I never contains more than 2K + 1 points). Moreover, at
most 4

p
n choices for y j will generate a fragmentation where one of the pieces is small.

Since mt = KNt , where Nt is a Poisson random variable with mean t, it follows that for n large
enough

E(sup
s≤tn

F↓(s))≤ K tn
4n1/2

n− (2K + 1)
≤ 5K t

p
n.

Thus by Markov’s inequality,

P
�

sup
s≤tn

F↓(s)> n3/4

�

−→ 0. (26)

Hence, n−3/4|N(tn)− N̄(tn)| converges to 0 u.c.p, which concludes the proof by Lemma 14.

Note in particular that by combining Lemma 13 with Lemma 14, we get that

1

n
N(tn)→ u(t), u.c.p. (27)

Lemma 15. Let t > tc . Then τδ < tn with high probability, where

δ :=
1

3K t

∫ t

0

θ2(s)ds > 0, (28)

where K =
∑J

j=2( j− 1)c j .

Remark 16. Note that Lemma 15 immediately implies Theorem 2.

Proof. The proof is very similar to the proof of Theorem 1, with an additional martingale argument
to get sufficiently good concentration properties (this part of the argument being quite similar to
Lemma 13).
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Assume that a permutationσ has a cycle structure (C1, . . . , Cr) and that x1, . . . , xr are the normalized
cycle sizes, i.e., x i = |Ci|/n. Define a function g(x1, . . . , xr) by putting

g(x1, . . . , xr) := E(N(σ′)− N(σ)),

where σ′ = σ ◦ γ and γ is a uniform random element from Γ, while as usual N(σ) denotes the
number of cycles of σ. Then if we define a process

M ′t =
1

n
N(tn)−

∫ t

0

g(x1(sn), . . .)ds,

then (M ′t , t ≥ 0) is a martingale started from M ′0 = 1. Moreover, writing γ = τ1 ◦ . . . ◦ τK , where τi
are transpositions, and if we let σi = σ ◦τ1 . . .τi , so that σ0 = σ and σK = σ′, then

g(x1, . . . , xr) =
K
∑

i=1

E(N(σi)− N(σi−1)).

Recall that the transposition τi can only cause a coalescence or a fragmentation, in which case the
number of cycles decreases or increases by 1. If the normalized cycle sizes of σi−1 are given by
(y1, . . . , yr), it follows that

−1≤ E(N(σi)− N(σi−1))≤−1+ 2y∗i
n

n− i+ 1
,

where y∗i =max(y1, . . . , yr). Moreover, y∗i ≤ i y∗0 .

From this we obtain directly that with probability 1, for n sufficiently large (uniformly on t ≥ 0)

∫ t

0

g(x1(sn), . . .)ds ≤
∫ t

0

K
�

−1+ 3K x∗(sn)
�

ds, (29)

where x∗(s) = max(x1(s), . . . , xr(s)). On the other hand, using Doob’s inequality in the same way
as (24), we also have:

P
�

sup
s≤t
|(M ′s − 1)|> ε

�

≤
4C

nε2 . (30)

Combining this information with (27), we obtain, with high probability uniformly on compact sets:

∫ t

0

�

−1+ 3K x∗(sn)
�

ds ≥
∫ t

0

−1+ θ2(s)ds. (31)

From this we get, with high probability,

3K t sup
s≤tn

x∗(s)≥
∫ t

0

θ2(s)ds, (32)

i.e., τδ ≤ tn.
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4.3 Distance estimates

We are now ready to prove that
d(σtn)−→ ϕ(t),

uniformly on compact sets in probability as n → ∞ except possibly on some interval I ⊂ (tc ,∞)
bounded away from tc and∞, where

ϕ(t) =
1− u(t)

K
=

∫ t

0

J
∑

j=2

c j( jρ(s)−ρ(s) j)ds. (33)

The proof is analogous but more complicated (especially the upper-bound) than that of Proposition
11.

Proof of lower-bound. Note that if σ is a permutation, every transposition can at most increase the
number of cycles by 1. Hence if σ has N(σ) cycles, after one step s ∈ Γ, σ has at most N(σ) + K
cycles. Thus after p steps, the number of cycles of σ is at most N(σ) + Kp. Since the identity
permutation has exactly n cycles, we conclude that

d(σ)≥
1

K
(n− N(σ)). (34)

Together with Lemma 14 and the definition of ϕ(t), this proves the lower bound in Theorem 3.

Note that the bound (34) would be sharp if we could find a path from σ to the identity o which
produces K fragmentations at every step. The rest of this section is devoted to the upper-bound,
which shows that indeed such a path may be found except for an additional o(n) coagulation steps,
which is also enough. To do this we use a kind of greedy algorithm. Before we can explain the idea,
we need a few definitions. Call a component of Ht good if it is a hypertree and bad otherwise; a
hyperedge is good if its component is good. Likewise, call a cycle C of σ(t) good if its associated
component C̄ in Ht is a hypertree. Therefore, a good cycle is one which has never been involved in
fragmentations, i.e., its history consists only of coagulation events. Given a good cycle C of σ(t) we
can write uniquely C = c1 . . . cr , where the ci are the cycles whose coagulations yielded C , written
in the order in which they appeared. We call the collection (ci)1≤i≤r the subcycles of C . Finally, say
that a cycle is bad if it is not good.

4.3.1 Heuristics

We now proceed to describe heuristically our greedy algorithm for constructing a path between σtn
and the identity e. Naively, we think of each step as a combination of transpositions, and try to use
each such transposition to make a fragmentation. However, this has to be done carefully. Essentially,
good cycles need to be destroyed (i.e., fragmented) by reversing the way they were created, as made
precise by the following.

Fragmentation of good cycles. Let C = c1 . . . cr be a good cycle, where (ci)1≤i≤r are its subcycles. For
1 ≤ i ≤ r, let c′i = c−1

i , and consider C ◦ c′i : this is a permutation which has at most two non trivial
cycles, and each of which may be written as a product of a total of r − 1 subcycles, whose sizes are
identical to |c1|, . . . , |cr | except for |ci|. We will say that we have destroyed the subcycle ci , and still
speak of the two cycles of C ◦ c′i as good, and talk freely about their own subcycles. Repeating this
process, we are able to fragment C entirely without making a single coagulation.
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Fragmentation of bad cycles. On the other hand, to destroy a bad cycle C = (x1, . . . , x`), where ` is
typically very big, we can simply compose C with (x j , . . . , x1) where 2 ≤ j ≤ J . This has the effect
of reducing the length of C by j− 1. As a consequence, for an arbitrary cycle C , we get that

C can be destroyed in at most
|C |
K
+O(1) steps from Γ, (35)

where the term O(1) is nonrandom, uniformly bounded in |C | and n (but depends on Γ).

Order in which cycles are destroyed. It is tempting to first destroy all the good cycles and then all the
bad cycles. This is roughly what we will do. However, a difficulty arises in the case where Γ contains
cycles of different sizes. To illustrate the point, imagine that Γ is such that c2 = c3 = 1 and there are
no other nontrivial cycles in Γ. The subcycles of every good cycle consist of a number of 2-subcycles
and a number of 3-subcycles. These numbers may not be equal for every cycle, but the overall
frequency of 2-subcycles and 3-subcycles is equal when t < tc . However, if t > tc , then the graph
Htn contains a giant component, and nongiant components of Htn are now relatively less likely to
contain a 3-hyperedge. Thus the frequency of 3-subcycles will be strictly less than the frequency of
2-subcycles. Hence when t > tc it is impossible to destroy all good cycles without touching the bad
cycles at the same time (because every random walk step must use the same number of 3-cycles and
2-cycles, as these are the allowed steps under Γ). We will have to do so in a way that minimizes the
impact on good cycles, using bad cycles (which are large) as a "bank" when we need to complete a
step and no good subcycle of the required size remains.

4.3.2 Subcycle count.

To start with, we need the following lemma, which tells us the relative number of good subcycles of
size j for all 2≤ j ≤ J .

Lemma 17. Fix t > 0. Let j ≥ 2 such that c j > 0. Then the number U j(tn) of good subcycles of size j
in σtn, satisfies

U j(tn)

n
→ c j tρ(t)

j , (36)

uniformly on compacts in probability (u.c.p.), as n→∞.

Proof. It suffices to prove this result with U ′j(tn), the number of good hyperedges in Htn of size
j, in place of U j(tn). The number of j-edges that have been added to Htn is a Poisson random
variable with mean tnc j . For each such edge, the probability that it is not in the giant component
W converges to ρ(t) j .

To see this, note that by Lemma 12, it suffices to check that none of the j points are in a cluster of
size greater than β log n for β > 0 large enough. Checking this will involve revealing the connec-
tions of no more than jβ log n vertices in total. The exploration of the clusters can be done by using
the standard breadth-first search procedure (see, e.g., Chapter 2.2 in [10]). The breadth-first search
is well-approximated by a branching process with offspring distribution Dv from (18) until a vertex
is sampled twice by this procedure. By the birthday problem, this does not occur until more than
o(
p

n) vertices have been exposed with high probability. Since we are exposing at most only jβ log n
vertices, we can ignore this difference. Thus, the probability that none of those j vertices is con-
tained in a cluster of size greater than β log n is the probability that among j independent branching
processes, noone has a total progeny greater than β log n. This converges as n→∞ towards ρ(t) j .
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Thus E(U ′j(tn)) ∼ tnc jρ(t) j . Also, if e and e′ are two randomly chosen j-edges, P(e /∈ W, e′ /∈ W )
converges for the same reasons to ρ(t)2 j , so that cov(1{e⊂W},1{e′⊂W}) → 0. Thus the pointwise
convergence follows from the second moment method. The convergence in the u.c.p. sense follows
in a similar way after observing that if an edge added at time s is good at time t2 then it is also good
at time t1, where s ≤ t1 ≤ t2 are arbitrary.

4.3.3 Proof of Theorem 3

We now describe our algorithm more formally. We will assume for simplicity that Γ is an odd
conjugacy class that generates all of Sn, and that c2 > 0 (the arguments below can easily be adapted
otherwise).

Stage 1: reduction. Let σ = σtn, and work conditionally givenFtn. Our first step is to coagulate in
o(n) steps all bad cycles together, so that we work with good small cycles and one giant bad cycle.
Fix t > 0 and write (by analogy with the proof of Proposition 11) σ = D(σ) ◦ R(σ), where D(σ)
is the product of all good cycles of σ while R(σ) is the product of all bad cycles, say there are r of
them. Note that by (26), and recalling that there can never be more than

p
n cycles greater or equal

to
p

n, we have r ≤ n3/4 say on an event of high probability uniformly on compacts. (If this doesn’t
hold, declare the algorithm a failure). Moreover the total unnormalized mass of nontrivial cycles in
R(σ) (i.e., the combined sizes of all cycles of size greater or equal to 2) is

|R(σ)|= θ(t)n+ o(n), (37)

where o(1) stands for a term which, when divided by n, converges to 0 in probability, u.c.p.
Therefore (since r ≤ n3/4), in less than o(n) random walk steps, we can transform σ into
σ′ = D(σ) ◦ R′(σ), where R′(σ) is the permutation obtained from R(σ) by coagulating all its non-
trivial cycles.

Stage 2: Elimination of good cycles.

We remove one by one every (good) subcycle of size 2 from σ′. For each random walk step s =
γ1 . . .γp ∈ Γ that is applied, where p =

∑J
j=2 c j , we use γi , 1 ≤ i ≤ p, to destroy a subcycle of the

size of `i = |γi|, as described above in subsection 4.3.1. If no good subcycle of that size is available,
we then turn `i − 1 points from the bad cycle (bank) into fixed points, thereby reducing the size of
the bad cycle (or bank) by as much. We do so until there are no good 2-subcycles left. Declare this
a failure if at any time the bank runs out, i.e., if the bad cycle is not large enough to remove the
required number of points from it. If not, let Ri denote the state of the bad cycle after the application
of i random walk steps, and let R0 = R′(σ).

Let σ′′ be the resulting permutation. We also declare this a failure if σ′′ has a nontrivial cycle other
than Rm, where m is the total number of random walk steps performed in this stage of the algorithm.

Stage 3: elimination of bad cycle remainder.

If the algorithm has not failed during step 2, there is only one nontrivial cycle C = Rm left. We have
already argued that we can destroy C in no more than |C |/K +O(1) steps by (35), and thus make
no more than O(1) coagulations in this final step. At the end of step 3, the resulting permutation is
necessarily the identity permutation, as all nontrivial cycles have been fragmented. Moreover, the
total number of coalescences is no more than o(n)+O(1) = o(n) (all coming from the first and final
steps).
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Check that the algorithm is successful. It now suffices to prove that the algorithm does not fail
with high probability if t < tc + ε for some ε > 0 or if t is large enough. There are two possible
reasons for failure: one is the the bank runs out of mass, the other is that by the end of stage 2, there
is at least one other nontrivial cycle apart from C = Rm. But note that by Lemma 36, U j/c j > U2/c2
for all 2 < j ≤ J such that c j > 0, with high probability. On this event, by the time all good 2-
cubcycles have been removed, all subcycles of larger sizes have also been removed: thus σ′′ has
only one nontrivial cycle, Rm.

We now turn to the other possible reason for a failure, which is that the bank runs out of mass. The
total mass that is required from the bank in this procedure, |R0 \ Rm|, is precisely

M =
J
∑

j=2

( j− 1)
� c j

c2
U2(tn)− U j(tn)

�

.

The term of index j in this sum represents how much mass is taken away from the bank to cover
for the deficit in subcycles of size j from the good cycles: there are U2 subcycles of size 2 that need
to be removed. For each 2-subcycle we remove, we also need to remove c j/c2 subcycles of size j.
However, we have only U j of them, so the mass that is borrowed from the bank is the term of index
j in this sum. (Indeed we only take away j− 1 points from the bad cycle when we do so).

By (37), the initial mass of the bank is |R0|= θ(t)n+ o(n), hence it suffices to show that M defined
above satisfies

M ≤ θ(t)n+ o(n) (38)

with high probability. It thus remains solely to prove (38) if t < tc + ε for some ε > 0 and if t is
sufficiently large. We start by the former. By Lemma 36, and using 1− (1− x)α < αx if α ≥ 1 and
0< x < 1, we see that for all t > tc

M = tn
J
∑

j=2

( j− 1)c j(ρ
2−ρ j) + o(n)

≤ tn
J
∑

j=2

c j( j− 1)ρ2(1−ρ j−2) + o(n)

≤ tρ2n
J
∑

j=2

c j( j− 1)( j− 2)θ + o(n). (39)

Thus it suffices to prove that

tρ2
J
∑

j=2

c j( j− 1)( j− 2)< 1 (40)

for t < tc+ε. It is easy to check this when t ≤ tc , since then ρ = 0, hence this extends to t < tc+ε for
some ε > 0 by continuity (as ρ(t) is a continuous function). Alternatively, without using continuity
of ρ(t), (40) holds at t = tc by using ρ ≤ 1 and the value of tc . It is then obvious that the inequality
extends by continuity to a neighbourhood of tc .

In the case t → ∞, this comes from the fact that there exists c > 0 such that for t large enough
ρ(t) ≤ e−c t , so (40) also holds in this case. In turn, this follows from the fact that θ(t) is the
survival probability of a Galton-Watson process where the offspring distribution is (18) and can thus
be bounded below stochastically by a Poisson random variable with mean t. This finishes the proof
of Theorem 3.
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