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Abstract

The high-density plaquette percolation model in d dimensions contains a surface that is home-
omorphic to the (d − 1)-sphere and encloses the origin. This is proved by a path-counting
argument in a dual model. When d = 3, this permits an improved lower bound on the critical
point pe of entanglement percolation, namely pe ≥ µ−2 where µ is the connective constant for
self-avoiding walks on Z3. Furthermore, when the edge density p is below this bound, the radius
of the entanglement cluster containing the origin has an exponentially decaying tail.
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1 Introduction and results

The plaquette percolation model is a natural dual to bond percolation in two and more dimensions.
Let Zd be the integer lattice; elements of Zd are called sites. For any site z, let Q(z) := [−1

2
, 1

2
]d + z

be the topologically closed unit d-cube centred at z. A plaquette is any topologically closed unit
(d − 1)-cube in Rd that is a face of some Q(z) for z ∈ Zd . Let Πd be the set of all plaquettes.
For a set of plaquettes S ⊆ Πd , we write [S] :=

⋃

π∈S π for the associated subset of Rd . In the
plaquette percolation model with parameter p ∈ [0,1], each plaquette of Πd is declared occupied
with probability p, otherwise unoccupied, with different plaquettes receiving independent states;
the associated probability measure is denoted Pp.

The `s-norm on Rd is denoted ‖ ·‖s. A sphere of Rd is a simplicial complex, embedded in Rd , that is
homeomorphic to the unit sphere {x ∈ Rd : ‖x‖2 = 1}. By the Jordan-Brouwer separation theorem,
the complement in Rd of a sphere has a bounded and an unbounded path-component, which we
call respectively its inside and outside. The (`1-)radius of a set A ⊆ Rd with respect to the origin
0 ∈ Rd is

rad A= rad0A := sup{‖x‖1 : x ∈ A}.

Let µd be the connective constant of Zd , given as

µd := lim
k→∞

σ(k)1/k,

where σ(k) is the number of (`1-)nearest-neighbour self-avoiding paths from the origin with length
k in Zd ; it is a straightforward observation that µd ∈ [d, 2d−1], and stronger bounds may be found,
for example, in [20].

Theorem 1. Let d ≥ 2, and consider the plaquette percolation model. If p < µ−2
d then almost surely

there exists a finite set S of unoccupied plaquettes whose union [S] is a sphere with 0 in its inside.
Moreover S may be chosen so that

Pp
�

rad [S]≥ r
�

≤ Cαr , r > 0,

for any α ∈ (µd p, 1), and some C = C(p, d,α)<∞.

When d = 2, the first assertion of Theorem 1 amounts to the well known fact that there exists a
suitable circuit of unoccupied bonds of the dual lattice (see, e.g., [8]). The result is more subtle in
higher dimensions.

When d = 3, Theorem 1 has an application to entanglement percolation, which we explain next.
Define a bond to be the topologically closed line segment in Rd joining any two sites x , y ∈ Zd

with ‖x − y‖1 = 1. Let Ld be the set of all bonds. In the bond percolation model, each bond
is declared occupied with probability p, otherwise unoccupied, with the states of different bonds
being independent. For a set of bonds K , write [K] :=

⋃

e∈K e. We say that K contains a site x if
x ∈ [K].
We say that a sphere Z ⊂ Rd separates a set A⊂ Rd if A intersects both the inside and the outside of
Z , but not Z itself. (We write A⊂ B if A⊆ B and A 6= B.) Let d = 3. We say that a set of bonds K ⊆ L3
is 1-entangled if no sphere of R3 separates [K]. The idea of this definition is that a 1-entangled
set of bonds, if made of string or elastic, cannot be continuously “pulled apart”. Any connected
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set of bonds is evidently 1-entangled. The simplest disconnected set that is 1-entangled consists of
two linked loops. The prefix “1” reflects the fact that other natural definitions of entanglement are
possible; see [10] and the discussion in Section 2 for more details. Entanglement of sets of bonds is
intrinsically a three-dimensional issue, and therefore we shall always take d = 3 when discussing it.

In the bond percolation model in d = 3, let η1(p) be the probability that there exists an infinite
1-entangled set of occupied bonds containing the origin 0, and define the 1-entanglement critical
probability p1

e := sup{p : η1(p) = 0}. The maximal 1-entangled set of occupied bonds containing a
site x is called the 1-entanglement cluster at x .

Corollary 2. The 1-entanglement critical probability in three dimensions satisfies

p1
e ≥ µ

−2
3 .

Moreover, if p < µ−2
3 , the 1-entanglement cluster E at the origin satisfies

Pp
�

rad [E]≥ r
�

≤ Cαr , r > 0,

for any α ∈ (µ3p, 1), and some C = C(p,α)<∞.

The connective constant of Z3 satisfies the rigorous bound µ3 ≤ 4.7387 (see [20]). Therefore,
Corollary 2 gives

p1
e ≥ 0.04453 · · ·>

1

23
.

This is a significant improvement on the previous best lower bound of [4], namely p1
e > 1/597,

which in turn substantially improved the first non-zero lower bound, p1
e ≥ 1/15616, proved in [14].

In each case, the improvement is by a factor of approximately 26.

In Section 2 we discuss some history and background to our results. In Section 3 we prove Theorem
1 and Corollary 2. If p satisfies the stronger bound p < (2d − 1)−2, we shall see that our methods
yield versions of these results with explicit formulae for the constants C and α. In Section 4 we
consider the critical value of p associated with the event in Theorem 1, and its relationship to
certain other critical values.

2 Remarks

2.1 Duality

To each bond e ∈ Ld there corresponds a unique plaquette π(e) ∈ Πd that intersects e. It is therefore
natural to couple the bond and plaquette percolation models with common parameter p in such
a way that π(e) is occupied if and only if e is occupied. If p is less than the critical probability
pc for standard bond percolation (see, e.g., [8]), the connected component of occupied bonds at
the origin is almost surely finite, and it is a straightforward consequence that there exists a finite
set of unoccupied plaquettes whose union encloses the origin (i.e., the origin lies in some bounded
component of its complement). Indeed, such plaquettes may be chosen so as to form a ‘surface’
enclosing the origin (although precise definition of such an object requires care). However, such
a surface might be homeomorphic to a torus, or some other topological space. It is a key point of
Theorem 1 that the surface [S] is a sphere.
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2.2 Entanglement

Entanglement in three-dimensional percolation was first studied, in a partly non-rigorous way, in
[17] (some interesting remarks on the subject appeared earlier in [2]). The rigorous theory was
systematically developed in [10], and further rigorous results appear in [3; 13; 14; 15; 16]. A
discussion of physical applications of entanglement percolation may be found in [4].

As mentioned in Section 1, there are several (non-equivalent) ways of defining the property of
entanglement for infinite graphs. One of these, namely 1-entanglement, was presented in that
section, and a second follows next. We say that a set of bonds K ⊆ L3 is 0-entangled if every
finite subset of K is contained in some finite 1-entangled subset of K . It was shown in [10] that the
notions of 0-entanglement and 1-entanglement are extremal members of a certain class of natural
candidate definitions, called entanglement systems, and furthermore that these two entanglement
systems correspond (respectively) in a natural way to free and wired boundary conditions.

By combining inequalities of [3; 10; 14], we find that

0< p1
e ≤ pEe ≤ p0

e < pc < 1,

where p0
e , p1

e , and pEe are the critical probabilities for 0-entanglement, 1-entanglement, and for an
arbitrary entanglement system E , respectively. The inequality p0

e ≤ pc reflects the straightforward
fact that every connected set of bonds is 0-entangled. It was strengthened to the strict inequality
p0

e < pc in [3; 16]. In [17] it was argued on the basis of numerical evidence that pc−pe ≈ 1.8×10−7,
for a certain notion of ‘entanglement critical probability’ pe. It is an open question to decide whether
or not p0

e = p1
e .

2.3 Spheres, lower bounds, and exponential decay

The inequality p1
e > 0 expresses the fact that, for a sufficiently small density p of occupied bonds,

there is no infinite entangled set of bonds. Prior to the current paper, proofs of this seemingly
obvious statement have been very involved.

The proof in [14] employs topological arguments to show that, for p < 1/15616, almost surely the
origin is enclosed by a sphere that intersects no occupied bond. The argument is specific to three
dimensions, and does not resolve the question of the possible existence of a sphere of unoccupied
plaquettes enclosing the origin. (See [10] for more on the distinction between spheres intersecting
no occupied bond, and spheres of unoccupied plaquettes.) In [10], related arguments are used
to show that, for sufficiently small p, the radius R of the 1-entanglement cluster at the origin has
‘near-exponential’ tail decay in that

P(R> r)< exp
�

−cr/ log · · · log r
�

for an arbitrary iterate of the logarithm, and for some c > 0 depending on p and the number of
logarithms.

In the recent paper [4], the above results are substantially improved in several respects. The lower
bound on the critical point is improved to approximately p1

e > 1/597, and it is proved also that
the radius of the 1-entanglement cluster at the origin has exponential tail decay for p below the
same value. The key innovation is a proof of an exponential upper bound on the number of possible
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1-entangled sets of N bonds containing the origin, thereby answering a question posed in [10]. The
method of proof is very different from that of [14].

In the current article, we improve on the proofs mentioned above in several regards. The lower
bound on the critical point is further improved to approximately p1

e > 1/23, and we establish ex-
ponential decay of the 1-entanglement cluster-radius at the origin for p below this value. We prove
the existence of a sphere of unoccupied plaquettes enclosing the origin (rather than just a sphere
intersecting no occupied bond), and we do so for all dimensions. Finally, our proofs are very simple.
Our methods do not appear to imply the key result of [4] mentioned above, namely the exponential
bound for the number of entangled sets containing the origin.

3 Proofs

The geometric lemma below is the key to our construction of a sphere. For x , y ∈ Rd , write y � x
if for each i = 1,2, . . . , d we have |yi| ≤ |x i| and x i yi ≥ 0 (equivalently, y lies in the closed cuboid
with opposite corners at 0 and x). For a bond e ∈ Ld , recall that π(e) ∈ Πd is the unique plaquette
that intersects it.

Proposition 3. Let d ≥ 2. Suppose K ⊂ Zd is a finite set of sites containing 0, with the property that,
if x ∈ K, then every y ∈ Zd with y � x lies in K. Let

S :=
�

π(e) : e is a bond with exactly one endvertex in K
	

. (1)

Then [S] is a sphere with 0 in its inside.

Proof. Let U :=
⋃

x∈K Q(x) be the union of the unit cubes corresponding to K . Note that [S] is the
topological boundary of U in Rd . Let Σ := {z ∈ Rd : ‖z‖2 = 1} be the unit sphere; we will give an
explicit homeomorphism between [S] and Σ.

We claim first that U is strictly star-shaped, which is to say: if x ∈ U then the line segment {αx : α ∈
[0, 1)} is a subset of the topological interior of U (i.e., of U \ [S]). To check this, suppose without
loss of generality that x is in the non-negative orthant [0,∞)d . By the given properties of K , the
open cuboid

H :=
d
∏

i=1

�

− 1
2

, x i ∨
1
2

�

is a subset of U (here it is important that the origin is at the centre of a cube, rather than on a
boundary); now, H clearly contains the aforementioned line segment, and the claim is proved. In
the above, x ∨ y denotes the maximum of x and y .

It follows that, for any point z ∈ Σ, the ray {αz : α ∈ [0,∞)} has exactly one point of intersection
with [S]. Denote this point of intersection f (z). Clearly f is a bijection from Σ to [S]; we must
prove that it is a homeomorphism. Since Σ and [S] are compact metric spaces, it suffices to express
them as finite unions Σ =

⋃r
j=1 X j and [S] =

⋃r
j=1 Yj , where the X j and Yj are compact, and such

that f restricted to X j is a homeomorphism from X j to Yj , for each j. This is achieved by taking
{Y1, . . . , Yr} equal to the set of plaquettes S. Any plaquette in Πd is a subset of some (d − 1)-
dimensional affine subspace (hyperplane) of Rd that does not pass through 0 (here the offset of 1

2
is

again important) and it is elementary to check that the projection through 0 from such a subspace
to Σ is a homeomorphism to its image in Σ.
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Finally, we must check that 0 lies in the inside of the sphere [S]; this is clear because 0 ∈ U \ [S],
and any unbounded path in Rd starting from 0 must leave U at some point, and thus must intersect
[S].

The next lemma is closely related to a recent result on random surfaces in [7]. Consider the bond
percolation model with parameter p on Ld . By a path we mean a self-avoiding path comprising sites
in Zd and bonds in Ld . Recall that σ(k) is the number of paths starting at the origin and having k
edges, and

µd := lim
k→∞

σ(k)1/k

is the connective constant. Let 0 = v0, v1, . . . , vk be the sites (in order) of such a path. We call the
path good if, for each i satisfying ‖vi−1‖1 < ‖vi‖1, the bond with endpoints vi−1, vi is occupied.

Lemma 4. Let K be the set of sites u ∈ Zd for which there is a good path from 0 to u. If p < µ−2
d then

K is a.s. finite, and moreover,
Pp(rad K ≥ r)≤ C ′αr , r ≥ 0, (2)

for any α ∈ (µd p, 1), and some C ′ = C ′(p, d,α) < ∞. If p < (2d − 1)−2 then (2) holds with α =
p(2d − 1) and C ′ = 2/[1− p(2d − 1)2].

Proof. Let N(r) be the number of good paths that start at 0 and end on the `1-sphere {x ∈ Zd :
‖x‖1 = r}. Then,

Pp(rad K ≥ r)≤ Pp(N(r)> 0)≤ EpN(r).

For any path π with vertices 0= v0, v1, . . . , vk = u with ‖u‖1 = r, let

A := #{i : ‖vi‖1 > ‖vi−1‖1}; B := #{i : ‖vi‖1 < ‖vi−1‖1}

be respectively the number of steps Away from, and Back towards, the origin 0. Note that k = A+B,
and ‖u‖1 = A− B. Thus, the probability that π is good is pA, while the number of possible paths
having given values of A and B is at most σ(A+ B). Hence,

EpN(r)≤
∑

A,B≥0:
A−B=r

σ(A+ B)pA =
∑

B≥0

σ(2B+ r)pB+r . (3)

For any ε > 0, we have σ(k) ≤ (µ+ ε)k for k sufficiently large, where µ = µd . Therefore, (3) is at
most

∑

B≥0

(µ+ ε)2B+r pB+r =
[(µ+ ε)p]r

1− (µ+ ε)2p

provided (µ+ε)2p < 1 and r is sufficiently large; thus we can choose C ′ so that the required bound
(2) holds for all r ≥ 0.

The claimed explicit bound in the case p < (2d − 1)−2 follows similarly from (3) using σ(k) ≤
(2d)(2d − 1)k−1 ≤ 2(2d − 1)k.

Proof of Theorem 1. Couple the bond and plaquette percolation models by considering e to be occu-
pied if and only π(e) is occupied. Let p < µ−2

d and let K be the random set of sites u for which there
exists a good path from 0 to u. By Lemma 4, K satisfies (2) with the given constants α, C ′.
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Since a good path may always be extended by a step towards the origin (provided the new site is
not already in the path), K satisfies the condition that x ∈ K and y � x imply y ∈ K . Therefore,
Proposition 3 applies. If e is a bond with exactly one endvertex in K , then by the definition of a good
path, it is the end closer to 0 that is in K , and e must be unoccupied. Therefore, all plaquettes in the
set S in (1) are unoccupied. Finally, the tail bound in (2) implies the bound in Theorem 1 because
rad [S]≤ rad K + d/2.

Proof of Corollary 2. Couple the bond and plaquette models as usual. Let p < µ−2
3 , and let S be

the set of plaquettes from Theorem 1. The sphere [S] intersects no occupied bond and has 0 in its
inside, hence it has [E] in its inside.

4 Critical values

We consider next the critical value of p for the event of Theorem 1, namely the event that there
exists a finite set S of unoccupied plaquettes whose union [S] is a sphere with 0 in its inside. In
so doing, we shall make use of the definition of a good path from Section 3. We shall frequently
regard Zd as a graph with bond-set Ld . A directed path of Zd is called oriented if every step is in
the direction of increasing coordinate-value.

Let d ≥ 2, and (as after Theorem 1) declare a bond of Ld to be occupied with probability p.
We write v →oo w (respectively, v →oo ∞) if there exists an oriented occupied path from v to w
(respectively, an infinite oriented occupied path from v). Let ~pc(d) denote the critical probability of
oriented percolation on Zd .

Let θg(p) be the probability that there exists an infinite good path beginning at the origin. Since θg
is a non-decreasing function, we define a critical value

pg := sup{p : θg(p) = 0}.

Note that
µ−2

d ≤ pg ≤ ~pc(d). (4)

That µ−2
d ≤ pg follows by Theorem 1; the second inequality pg ≤ ~pc(d) holds since every oriented

occupied path from 0 is necessarily good.

For x = (x1, x2, . . . , xd) ∈ Zd , let

s(x) :=
d
∑

i=1

x i ,

and let

Hn := {x ∈ Zd : s(x) = n}; H := {x ∈ Zd : s(x)≥ 0};
H+ := H \H0.

A finite or infinite path v0, v1, . . . is called admissible if, for each i satisfying s(vi−1) < s(vi), the
bond with endpoints vi−1, vi is occupied. If there exists an admissible path from x to y , we write
x →a y; if such a path exists using only sites in some set S, we write x →a y in S.
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Let e := (1, 1, . . . , 1) and
R := sup{n≥ 0 : 0→a ne}.

Let θa(p) := Pp(R=∞), with associated critical value

pa := sup{p : θa(p) = 0}.

By the definition of admissibility,

θa(p) = Pp(∀x ∈ Zd , 0→a x), (5)

and indeed the associated events are equal.

If x →a y by an admissible path using only sites of H+ except possibly for the first site x , we write
x →H

a y . We write x →H
a ∞ if x is the endvertex of some infinite admissible path, all of whose

vertices except possibly x lie in H+. Let θH
a (p) = Pp(0→H

a ∞), with associated critical value

pH
a := sup{p : θH

a (p) = 0}.

Also define the orthant
K := {x ∈ Zd : x i ≥ 0 for all i}.

Let θ K
a (p) be the probability of an infinite admissible path in K starting at 0, and let pK

a be the
associated critical value. Since K ⊆ H+ ∪ {0}, we have θH

a ≥ θ
K
a and pH

a ≤ pK
a .

Theorem 5. For d ≥ 2 we have pa ≤ pH
a = pK

a .

Since every admissible path in the orthant K is good, we have that pg ≤ pK
a , and therefore pg ≤ pH

a
by Theorem 5. We pose two questions.

Open Question 1. For d ≥ 3, is it the case that pa = pH
a ?

Open Question 2. For d ≥ 3, is it the case that pg = pH
a ?

These matters are resolved as follows when d = 2.

Theorem 6. For d = 2 we have pg = pH
a = pa = 1− ~pc(2).

In advance of the proofs, we present a brief discussion of Open Question 1 above. By Proposition
7(b) below, one has that

lim
n→∞
Pp(0→H

a Hn)

(

= 0 if p < pH
a ,

> 0 if p > pH
a .

Now,

Pp(0→a ne)≤
∑

x∈H0

Pp(x →H
a ne)

=
∑

x∈H0

Pp(0→H
a ne− x) =

∑

x∈Hn

Pp(0→H
a x).

If one could prove that
∑

x∈Hn

Pp(0→H
a x)→ 0 as n→∞,
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whenever p < pH
a , it would follow by Theorem 5 that pa = pH

a . This is similar to the percolation
problem solved by Aizenman–Barsky and Menshikov, [1; 18; 19] (see also [8, Chap. 5]). It seems
possible to adapt Menshikov’s proof to prove an exponential-decay theorem for admissible paths (as
in [11, Thm 2]), but perhaps not for admissible connections restricted to H.

The proofs of the two theorems above will make use of the next proposition. Let d ≥ 2 and 0≤ a <
b ≤∞. Define the cone Ka,b to be the set of sites x = (x1, x2, . . . , xd) ∈ Zd satisfying:

x1 ≥ 0, and ax1 ≤ x j ≤ bx1 for j = 2,3, . . . , d. (6)

The subgraph of Zd induced by Ka,b comprises a unique infinite component, denoted I(Ka,b), to-
gether with a finite number of finite components. This may be seen as follows. The set of x ∈ Ka,b
with x1 = k is the set Sk of all integer-vectors belonging to {k}× [ak, bk]d−1. Each Sk is connected,
and, for sufficiently large k, Sk is connected to Sk+1.

Proposition 7. Let d ≥ 2 and 0≤ a ≤ 1< b ≤∞.

(a) If p > ~pc(d), then

Pp(Ka,b contains some infinite oriented occupied path) = 1,

and for all v ∈ I(Ka,b),
Pp(v→oo∞ in Ka,b)> 0.

(b) If p > pH
a , then

Pp(Ka,b contains some infinite admissible path) = 1,

and for all v ∈ I(Ka,b),
Pp(v→a∞ in Ka,b)> 0.

The remainder of this section is set out as follows. First, we deduce Theorems 5 and 6 from Propo-
sition 7. The proof of Proposition 7 is not presented in this paper, since it would be long and
would repeat many constructions found elsewhere. Instead, this section ends with some comments
concerning that proof.

Proof of Theorem 5. As noted before the statement of Theorem 5, K ⊆ H+ ∪ {0}, whence pH
a ≤ pK

a .
Let p > pH

a . By Proposition 7(b), we have θ K
a (p)> 0, so that p ≥ pK

a . Therefore, pH
a = pK

a .

There is more than one way of showing pa ≤ pH
a , of which the following is one. Let d ≥ 3; the proof

is similar when d = 2. Let p > pH
a and fix 0 < a ≤ 1 < b <∞ arbitrarily. By Proposition 7(b), Ka,b

contains a.s. some infinite admissible path π. Any infinite path π in Ka,b has the property that, for
all x ∈ Zd , there exists z ∈ π with x ≤ z (in that x i ≤ zi for every coordinate i). By (5), θa(p) > 0,
so that p ≥ pa and pH

a ≥ pa as claimed.

Proof of Theorem 6. We shall make extensive use of two-dimensional duality. We call the graph Z2

the primal lattice, and we call the shifted graph Z2 + (1
2
, 1

2
) the dual lattice. Thus, the dual bonds

are precisely the plaquettes of Π2. Recall that a dual bond is declared occupied if and only if the
primal bond that crosses it is occupied. For consistency with standard terminology, we now call a
dual bond open if and only if it is unoccupied (so a dual bond is open with probability q := 1− p).
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Figure 1: The diagonal lines D+ (top left) and D− (bottom right), a directed dual path (dashed) in
H from D+ to D−, and a primal path (solid) in H+ from the origin (centre).

We assign directions to dual bonds as follows: a horizontal dual bond is directed from left to right,
and a vertical bond from top to bottom.

Consider the sets

D+ := {(−u, u) + (−1
2
, 1

2
) : u≥ 0},

D− := {(u,−u) + (1
2
,−1

2
) : u≥ 0},

of dual sites. The primal origin 0 lies in some infinite admissible path in H+ ∪ {0} if and only if no
site of D+ is connected by an directed open dual path of H to some site of D− (see Figure 1). If
1− p < ~pc (respectively, 1− p > ~pc) the latter occurs with strictly positive probability (respectively,
probability 0). Therefore, pH

a = 1− ~pc.

We show next that pg = pH
a . Since pg ≤ pH

a , it suffices to show that pg ≥ 1− ~pc. Let p < 1− ~pc, so
that 1− p > ~pc. We shall prove the required inequality p ≤ pg. Define the set of dual sites

Q :=
�

(x , y) + (1
2
, 1

2
) : x , y ∈ Z, x , y ≥ 0

	

.

Let B(k)⊆Q be given by B(k) := ([0, k]∩Z)2+(1
2
, 1

2
). For n≥ 0, let Cn be the event that there exists

a directed open dual path from vn := (0, n) + (1
2
, 1

2
) to wn := (n, 0) + (1

2
, 1

2
) lying entirely within the

region B(n) \ B(1
3
n). We claim that there exists β > 0 such that

Pp(Cn)≥ β , n≥ 1, (7)

and the proof of this follows.

Let Vn be the event that there exists a directed open dual path from vn to the line {(n, k) + (1
2
, 1

2
) :

0 ≤ k ≤ n} lying entirely within the cone {(x , y) + (1
2
, 1

2
) : 0 ≤ n− y ≤ x , x ≥ 0}; let Wn be the

event that such a path exists to wn from some site on the line {(k, n) + (1
2
, 1

2
) : 0 ≤ k ≤ n}, this path

lying entirely within {(x , y) + (1
2
, 1

2
) : n− x ≤ y <∞, x ≤ n}. By Proposition 7(a), Pp(Vn) ≥ δ for

some δ = δ(p) > 0 not depending on n. By reversing the directions of all dual bonds, we see that
Pp(Wn) = Pp(Vn). On the event Vn∩Wn, there exists a directed open dual path of B(n)\B(1

3
n) from

vn to wn, and hence, by the Harris–FKG inequality,

Pp(Cn)≥ Pp(Vn)Pp(Wn)≥ δ2,
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as required for (7).

By considering corresponding events in the other three quadrants of Z2 (with appropriately chosen
bond-orientations), we conclude that each annulus of R2 with inner (respectively, outer) `∞-radius
1
3
n (respectively, n+ 1

2
) contains, with probability at least (1− p)4β4, a dual cycle blocking good

paths from the origin. It follows that p ≤ pg as required.

Finally we show that pa = 1 − ~pc. Since pa ≤ pH
a by Theorem 5, we have only to show that

pa ≥ 1 − ~pc. This follows by (5) and the fact that, when q = 1 − p > ~pc, there exists Pp-a.s. a
doubly-infinite directed open dual path intersecting the positive y-axis. Here is a proof of the latter
assertion. Let ψ(q) be the probability that there exists an infinite oriented path from the origin in
oriented percolation with density q. By reversing the arrows in the fourth quadrant, the probability
that 0 lies in a doubly-infinite directed open path of Z2 is ψ2. The event

J := {there exists a doubly-infinite open dual path}

is a zero–one event and Pp(J) ≥ ψ2, so that Pp(J) = 1. Let J+ (respectively, J−) be the event that
such a path exists and intersects the positive (respectively, the non-positive) y-axis. By reversing the
directions of bonds, we have that Pp(J+) = Pp(J−). By the Harris–FKG inequality,

0= Pp(J) = Pp(J+ ∩ J−)≥ Pp(J+)Pp(J−) = Pp(J+)
2,

so that Pp(J+) = 1.

Proposition 7 may be proved by the dynamic-renormalization arguments developed for percolation
in [5; 12], for the contact model in [6], and elaborated for directed percolation in [9]. An account of
dynamic renormalization for percolation may be found in [8]. The proof of Proposition 7 is omitted,
since it requires no novelty beyond the above works, but extensive duplication of material therein.
The reader is directed mainly to [9], since the present proposition involves a model in which the
edge-orientations are important. The method yields substantially more than the statement of the
proposition, but this is not developed here.

We highlight several specific aspects of the proof of Proposition 7, since they involve minor variations
on the method of [9]. First, since Proposition 7 is concerned with admissible paths in sub-cones of
the orthant K , we require a straightforward fact about oriented percolation on sub-cones of Z2,
namely that the associated critical probability is strictly less than 1. This weak statement leads via
renormalization to the stronger Proposition 7. The following lemma is slightly stronger than the
minimum needed for the proof of Proposition 7, and the proof is given at the end of this section.

Lemma 8. Let 0≤ a < b ≤∞, and let Ka,b be the cone of Z2 containing all sites (x , y) with ax ≤ y ≤
bx and x ≥ 0. There exists ε= εa,b > 0 such that: if p > 1− ε,

Pp(Ka,b contains some infinite oriented occupied path) = 1,

and for all v ∈ I(Ka,b),
Pp(v→oo∞ in Ka,b)> 0.

Our second remark is concerned with part (a) of Proposition 7. It is proved in [9] that, when
p > ~pc(d), there exists a.s. an infinite oriented occupied path within some two-dimensional slab of
Zd of the form S×[−A, A]d−2 for some A<∞ and some sub-cone S of the orthant [0,∞)2. In order
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0

S

R

Figure 2: The subgraph π connecting 0 to R and to S.

to build such a path within Ka,b, one adapts the construction of [9] using the so-called ‘steering’
arguments of [5; 6; 8; 12].

Our final two remarks are concerned with part (b) of Proposition 7. For y ∈ H, write

↓y = {x ∈ H0 : x ≤ y},

where x ≤ y means that no coordinate of x exceeds that of y . Let Jl = {x ∈ H0 : ‖x‖∞ ≤ l}. The
box BL,K of [9, Sect. 4] is replaced by

Bl,k := {y ∈ H : s(y)≤ k, ↓y ⊆ Jl},

with an amended version of [9, Lemma 4.1]. Finally, the current proof uses the technique known as
‘sprinkling’, in a manner similar to that of the proofs presented in [12] and [8, Sect. 7.2].

Proof of Lemma 8. Let r = r2/r1, s = s2/s1 be rationals (in their minimal representation with pos-
itive integers ri , si) satisfying a < r < s < b. Since r < s, we may choose a rational β/α such
that

s1

r1
<
β

α
<

s2

r2
.

We set R= (β r1,β r2), S = (αs1,αs2), and note that β r1 > αs1 and β r2 < αs2. Let π be the oriented
subgraph of Z2 comprising the following:

(a) the horizontal oriented path from 0 to (αs1, 0),

(b) the vertical oriented path from (αs1, 0) to S,

(c) the horizontal oriented path from (αs1,β r2) to R.

See Figure 2.

We may consider I(Ka,b) as the subgraph of Z2 induced by the corresponding site-set. Since π is
finite, we may choose v ∈ I(Ka,b) such that v +π is a subgraph of I(Ka,b), and we consider the set
vi, j := v+ iR+ jS, i, j ≥ 0, of sites of Ka,b. Let α= pN where N = |π|. By the definition of Ka,b, each
vi, j +π is a subgraph of I(Ka,b), and we declare vi, j black if every bond in vi, j +π is open. Note by
the construction of the set π that the states of different sites vi, j are independent.

If 1 − α < (1 − ~pc)2, the set of black vertices dominates (stochastically) the set of sites w of a
supercritical oriented percolation model with the property that both bonds directed away from w
are open. The claims of the lemma follow by standard properties of oriented percolation.
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