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1 Introduction

Fix θ ∈ (0, π). Consider the following random walk on the unit sphere S2 in R3, whose steps
are geodesic arcs of length θ. (Such arcs subtend an angle of θ at the center of the sphere).
The random walk starts at the north pole, and at each step a uniformly random direction is
chosen and the walk moves a geodesic distance θ in that direction. We refer to this walk as the
drunkard’s walk on the sphere.

The purpose of this paper is to develop techniques for bounding the discrepancy metric for
random walks on Gelfand pairs, using the drunkard’s walk as an example. Our bounds are
sharp enough to give a rate of convergence. Let D(k) denote the discrepancy distance (defined
later) between the k-th step probability distribution of the drunkard’s walk and the uniform
(rotation-invariant) measure on S2. We show the following:

Theorem 1 For the drunkard’s walk on the unit sphere S2 with step size θ, the discrepancy of
the walk after k steps satisfies, for k = C

sin2 θ
,

0.4330 e−C/2 ≤ D(k) ≤ 4.442 e−C/8.

Thus order C/ sin2 θ steps are both necessary and sufficient to make the discrepancy distance of
this walk from its limiting distribution uniformly small. The result makes intuitive sense, since
the number of steps to random should be large when θ is close to 0 or π, and small when θ is
close to π/2. Moreover, if θ ≈ 1/n for large n, then this result shows that order n2 steps are
necessary and sufficient; this is similar to nearest-neighbor random walks on Z/nZ (e.g., see [4]).
We also note that given θ this walk does not exhibit a sharp cutoff phenomenon.

We frame our analysis in the context of a random walk on a homogeneous space, i.e., a space
with a transitive group action. S2 is a homogeneous space by the action of SO(3). Although
the drunkard’s walk is not generated by a group action, we show its equivalence with a walk
that is.

For random walks on groups, Fourier analysis is often used to obtain rates of convergence. On
homogeneous spaces, we can lift the walk to acting group and do Fourier analysis there, although
for non-commutative groups the group representations can be quite complicated. However, when
the homogeneous space is a Gelfand pair (as in this case), Fourier transforms of bi-invariant mea-
sures and functions on the group simplify greatly, allowing for tractable computations involving
the spherical functions. In our example, the generating measure on SO(3) can be made bi-
invariant, and the spherical functions are Legendre polynomials.

Much of the literature on random walks on Gelfand pairs is limited to discrete homogeneous
spaces. Diaconis [4] presents a survey and an annotated bibliography; applications include walks
on subspaces of vector spaces over finite fields [11] and walks on r-sets of an n-set [5]. Rates are
given in the total variation metric.

Continuous examples have been addressed by Voit, who studied families of isotropic random
walks on spheres [23, 25] and other homogeneous spaces [24]. Central limit theorems are obtained
using convergence in distribution or total variation as the dimension n → ∞. Such results differ
from ours in that: (1) we work with a specific walk rather than a family, e.g., we obtain explicit
bounds for a specific n rather than asymptotic results for large n, (2) we focus on rates of
convergence of the walk on the homogeneous space, rather than convergence of a central limit
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theorem on the double coset space as in [23, 24], and (3) we use the discrepancy metric to measure
convergence. We argue that it is a natural metric to use for walks on homogeneous spaces, and
develop techniques to bound it. While we only illustrate our methods on the 2-sphere, similar
methods can be used to give explicit discrepancy bounds for walks on high-dimensional spheres
and other Gelfand pairs.

For walks on continuous groups, we mention the work of Rosenthal [19] and Porod [17, 18],
who obtain total variation rates of convergence for random walks on SO(n) and other compact
groups where the generating measures are conjugate-invariant; this is another situation where
the representations simplify enough to get Fourier bounds.

This paper is organized as follows. Section 2 gives background on the discrepancy metric and
justifies its use over other common metrics on probabilities. Section 3 develops several equivalent
formulations for the drunkard’s walk. Section 4 gives a formulation with a bi-invariant generating
measure. This simplifies the Fourier analysis in Section 5, where matching upper and lower
bounds for the convergence rate of the drunkard’s walk are derived (Theorems 9 and 10). We
summarize our methods for handling random walks on arbitrary Gelfand pairs in Section 6.

For the uninitiated, Appendix A collects relevant background on Fourier analysis on groups,
Gelfand pairs, and representations of SO(3) that are needed to make this paper self-contained.
Appendix B contains proofs of technical results that are not central to the development of the
ideas in this paper.

Acknowledgement The author thanks Persi Diaconis for suggesting this problem, Ken Ross
for useful feedback, and the Cornell School of Operations Research for hospitality during a
sabbatical where this was completed.

2 The discrepancy metric

Let (X, d) be a metric space with metric d. Given any two probability measures P,Q on X,
define the discrepancy distance between P and Q by:

D(P,Q) = sup
all balls B

|P (B) − Q(B)|

where a “ball” in X denotes any subset of the form {x : d(x, x0) ≤ r} for some x0 ∈ X and real
number r ≥ 0. It is easy to check that the discrepancy is a metric on probability measures.

When X is the unit cube in Rn and Q is Lebesgue measure on X, this definition reduces to
the notion of discrepancy commonly used by number theorists to study uniform distribution of
sequences in the unit cube (e.g., see [8, 16]). Diaconis [4] was perhaps the first to suggest the
use of discrepancy to measure rates of convergence of random walks. Su [20, 21, 22] explored
properties of this metric and obtained sharp rates of convergence for certain random walks on
the hypercube, circle, and torus.

We shall be concerned with the case where X = S2 and the metric on S2 is inherited from its
inclusion in R3. Thus balls may be visualized as spherical “caps” on the sphere. As noted later,
the group of rotations SO(3) acts on S2 in a natural way and the metric on S2 is invariant under
this action. Thus images of balls under this action are still balls, so the discrepancy metric on
measures inherits this rotation invariance.
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Unlike the total variation metric (which is in more frequent use among probabilists), the dis-
crepancy metric recognizes both the topology and the group action on the underlying space.
For infinite compact state spaces this can be important. For instance, if P is a probability
measure on S2 supported on a finite set of points, and Q is the uniform (rotation-invariant)
probability measure, then the total variation distance between P and Q remains equal to 1 no
matter how the points are arranged. On the other hand, the discrepancy D(P,Q) will capture
how “well-distributed” the points in P are. Another example is a simple random walk on the
circle generated by an irrational rotation (see [21]), which converges weak-* to Haar measure;
discrepancy captures this convergence, but total variation is blind to it. Thus the discrepancy
metric is well-suited to studying random walks on continuous state spaces generated by isometric
group actions.

We favor the use of discrepancy over other common metrics (e.g., the Prokhorov, Wasserstein
metrics) because there are tractable bounding techniques for discrepancy involving Fourier co-
efficients. In fact, one of the main goals of this paper is to show that we can develop upper and
lower bounds for discrepancy which give sharp rates of convergence in many cases because the
dominant terms in each expression match.

We remark that discrepancy bounds can be used to bound other metrics by exploiting known re-
lationships between them [10]; for instance, the discrepancy is bounded above by total variation,
so discrepancy lower bounds also offer a way to obtain total variation lower bounds.

A property that will be needed later is that on groups, discrepancy decreases with convolution:

Theorem 2 If P,Q, ν are arbitrary probability measures on a compact group G, then

D(P ∗ ν,Q ∗ ν) ≤ D(P,Q).

Hence when Q = U , the uniform (Haar) measure, we have

D(P ∗ ν, U) ≤ D(P,U). (1)

See [21] for a proof.

3 The Drunkard’s Walk and Equivalent Formulations

The drunkard’s walk on the sphere is not a random walk generated by a group action. However,
we show in this section that it is equivalent to one that is, in the sense that the two random
walks generate the same k-th step probability distribution even though their observed behaviors
may appear quite different.

Readers familiar with hypergroups may not be surprised by the equivalence and the ensuing
analysis, since the associated double coset space of this walk is a commutative hypergroup, and
much of our analysis can be framed in that language. We have avoided it; interested parties are
referred to [2].

Let N be the isotropy subgroup of SO(3) fixing n, the north pole. Let E ⊂ SO(3) denote the set
of all rotations which fix a point on the equator and move the north pole by geodesic distance θ
along the surface of the sphere. Let Q denote the probability distribution supported on E that
is left N -invariant.
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Formulation 1. The Drunkard’s Walk. This is the walk considered at the opening of this
paper; a drunkard starts at the north pole and at each step picks a uniformly random direction
and advances along the sphere in that direction by geodesic distance θ.

Let Yk for k = 0, 1, 2, ... denote random variables which describe the location of the drunkard
at time k. Thus Y0 = n. If gi is an SO(3)-valued random variable with values in E and
distribution Q, the position of the drunkard at time k is given by Yk = g1g2 · · · gkn. Thus, this
walk is not a random walk in which the next position is generated by applying group actions to
the current position in the walk. However, the following random walk is:

Formulation 2. The Potted Plant. Consider a potted plant initially at the north pole. At
each step, a rotation is chosen randomly from E according to Q and performed on the sphere.
Thus the point currently over the north pole moves a distance θ in any direction. This induces
a motion of the potted plant, wherever it currently is.

Note that with the given generating set E, the potted plant is moved a geodesic distance less
than or equal to θ at every step, since for each rotation in E, n is on the equator of the rotation
axis and hence moves the farthest.

If gi is a SO(3)-valued random variable with distribution Q, the position of the potted plant at
time k is given by Yk = gkgk−1 · · · g1n. Since the gi are independent and identically distributed,
this shows that Formulations 1 and 2 are equivalent and generate the same k-th step probability
distribution on the sphere. This may be surprising in light of the fact that the steps of the
random walk in Formulation 2 are smaller than in Formulation 1.

The next random walk, while not essential in what follows, also generates the same k-th step
probability distribution and we mention it for the sake of interest.

Formulation 3. Rotate and Spin. Fix any rotation Rθ which displaces the current north pole
by geodesic distance θ. Start the random walk at the north pole, and at each step perform Rθ

followed by a uniform spin around the north-south axis. (The uniform spin moves the random
walk to a random point anywhere on the same latitude.)

Though Rθ is not necessarily contained in the set E defined earlier, it does yield the same k-th
step probability distribution as the previous formulations. This may be seen as follows.

Consider the double coset space SO(3)//N . Each double coset is characterized by the lat-
itude to which it sends the north pole. Thus Rθ = n′g0n

′′ for some n′, n′′ ∈ N and a
g0 ∈ E. Then E = Ng0. Let ni denote an N -valued random variable distributed accord-
ing to Haar measure on N . The walk description shows that at the i-th step, nin

′g0n
′′

acts on the random walk’s current position. Therefore its position at time k is given by
Yk = (nk n′g0n

′′)(nk−1 n′g0n
′′) · · · (n1 n′g0n

′′)n. Since nin
′g0 and n′′nin

′g0 are identically
distributed according to Q and n′′n = n, the above random variable has the same k-th step
distribution as the other formulations above.

Our original goal was to study Formulation 1, the drunkards’ walk. Via the above equivalence
we choose instead to study Formulation 2, because it is a random walk generated by a group
action. However, the generating measure Q, while left N -invariant, is not bi-invariant. In light
of Theorem 12, a bi-invariant generating measure would greatly simplify the ensuing Fourier
analysis. (See Appendix A for background material on Fourier analysis on compact groups and
bi-invariant measures). In the next section, we remedy this problem by introducing a fourth
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random walk (Formulation 4) which is equivalent to Formulation 2 and whose generating measure
is bi-invariant.

4 A Bi-invariant Formulation

We are interested in the discrepancy distance between the k-th step distribution of the drunkard’s
walk and US2, the uniform (rotation-invariant) distribution on S2. To simplify notation, we write

D(k) = D(L(Yk), US2) (2)

where L(Yk) denotes the distribution of the random variable Yk in Formulation 2. We investi-
gate the behavior of D(k) as a function of the number of steps k.

Recall that the homogeneous space S2 can be regarded as the left cosets of N in SO(3), so that
the quotient map SO(3) → S2 sends a rotation g to the point gn ∈ S2. A random walk on
S2 generated by an SO(3)-action (such as Formulation 2) may then be regarded as a random
walk “upstairs” on SO(3) with an initial distribution UN , Haar measure on N (which is the
pre-image of the starting point n). The probability distribution upstairs evolves as usual for a
random walk on a group, so that after one step the distribution is given by Q ∗ UN and after k
steps by Q∗k ∗ UN . The probability of finding the original walk in a ball B ⊂ S2 is the same as
finding the lifted walk on SO(3) in B̃ = BN ⊂ SO(3). Hence

D(k) = sup
B̃

|Q∗k ∗ UN (B̃) − U(B̃)|. (3)

where U is Haar measure on SO(3) and the supremum is taken over all B̃, pre-images of balls
under the quotient map SO(3) → S2.

At this point we would appeal to Fourier analysis to deal with the convolutions above. However,
Q is left N -invariant but not bi-invariant; recall that we desire bi-invariance to simplify the
Fourier analysis.

The following proposition shows that for random walks on groups, averaging the generating
measure Q to make it bi-invariant will affect the rate of convergence in discrepancy by at most
one step. This result is the analogue of a result of Greenhalgh [11], who obtained a similar result
for the total variation distance.

Proposition 3 Let Q denote any left N -invariant probability measure on a group G, let U and
UN denote Haar measure on G and N respectively. If Q̄ = Q ∗ UN , then Q̄ is N -bi-invariant
and

D(Q̄∗k, U) ≤ D(Q∗k, U) ≤ D(Q̄∗(k−1), U).

Proof Left invariance for Q means UN ∗ Q = Q. We use this to establish bi-invariance for
Q̄, which means UN ∗ Q̄ ∗ UN = Q̄. This follows from UN ∗ Q̄ ∗ UN = UN ∗ (Q ∗ UN ) ∗ UN =
(UN ∗ Q) ∗ (UN ∗ UN ) = Q ∗ UN = Q̄.

For the second assertion, note that

Q̄∗k = (Q ∗ UN )∗k = Q ∗ (UN ∗ Q)∗(k−1) ∗ UN = Q∗k ∗ UN .

Q∗k = Q ∗ (UN ∗ Q)∗(k−1) = (Q ∗ UN )∗(k−1) ∗ Q = Q̄∗(k−1) ∗ Q.
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Using Theorem 2 we obtain D(Q∗k∗UN , U) ≤ D(Q∗k, U) and D(Q̄∗(k−1)∗Q,U) ≤ D(Q̄∗(k−1), U),
which with the above equations yield the desired conclusion. �

Thus a random walk on a group with generating measure Q differs by no more than one step
from a random walk proceeding according to Q̄, which may be viewed as the average of the
measure Q over the left cosets of N .

However, for a random walk on a homogeneous space, even more can be said if the walk begins
at the point fixed by the isotropy subgroup:

Proposition 4 Suppose X be a homogeneous G-space with isotropy subgroup N fixing x0 ∈ X,
and Q is a left-invariant probability on G. Let D(k) denote the discrepancy of the random walk
starting at x0 and evolving via a group action with elements chosen according to Q. Let D̄(k)
denote the discrepancy of the random walk starting at x0, but evolving according to Q̄. Then

D̄(k) = D(k).

Proof This follows from the fact shown in the previous proof, that

Q̄∗k = Q∗k ∗ UN .

The right side, when regarded as a measure on S2, describes the location of the Q-generated
walk. But by the right invariance of Q̄, the left side is equal to Q̄∗k ∗UN , which when regarded
as a measure on S2, describes the location of the Q̄-generated walk. �

This shows that the following is equivalent to Formulation 2.

Formulation 4. Let Ē denote the set of all rotations in SO(3) which move the north pole n by
a fixed angle θ. Let Q̄ = Q ∗ UN be the bi-invariant generating measure obtained by averaging
Q from Formulation 2. Consider a potted plant which starts at n and is moved according to the
following rule: at each step, a rotation is chosen randomly from Ē according to Q̄ and performed
on the sphere. This induces a motion of the potted plant to a new location.

Observe that we are able to throw extra rotations in “for free” and still obtain the same k-th
step probability distribution. This may be surprising because with the extra generating elements
the step size of the potted plant is no longer bounded by θ, as it was in Formulation 2. In fact,
the potted plant could be moved around rather wildly at each step.

Exploiting this equivalence, we shall, in the sequel, work with Formulation 4. To save notation
we write Q for the bi-invariant measure Q̄. Right-invariance for Q yields Q = Q ∗ UN , which
when substituted into (3) gives

D(k) = sup
B̃

|Q∗k(B̃) − U(B̃)|. (4)

where the supremum is taken over all ball pre-images B̃. Hence, the discrepancy D(k) as defined
in (2) can now be analyzed using expression (4).

7



5 A Rate of Convergence

We now proceed to derive a rate of convergence for the drunkard’s walk on the sphere. Sev-
eral calculations require the facts reviewed in Appendices A and B; we alert the reader with
references.

Let By,r denote a ball of geodesic radius r centered at y ∈ S2. Such balls look like spherical
“caps” on S2. Let B̃y,r denote its pre-image “upstairs” in SO(3). To reduce notation, write
B̃r = B̃n,r for the pre-image of a ball centered around n. Let δr denote the indicator function
of B̃r on SO(3).

A key observation (see [1]) for evaluating measures on balls is they can be regarded as convolu-
tions with indicator functions on those balls, i.e., for any right-invariant measure ν on SO(3),

ν(B̃y,r) = ν ∗ δr(ỹ) (5)

for any ỹ ∈ yN . This follows from ν ∗ δr(ỹ) =
∫
g∈B̃r

dν(ỹg−1) = ν(ỹ · B̃r).

From (4) we have

D(k) = sup
y,r

∣∣∣Q∗k(B̃y,r) − U(B̃y,r)
∣∣∣

= sup
y,r

∣∣∣Q∗k ∗ δr (ỹ) − U(B̃y,r)
∣∣∣ . (6)

We wish to use Fourier inversion to derive bounds for these expressions in terms of the Fourier
coefficients. We need continuity of Q∗k ∗ δr for k ≥ 2:

Proposition 5 Let Q be defined as in Formulation 4, and let δr be denote the indicator function
of B̃r. Then Q∗k ∗ δr is continuous for k ≥ 2.

This is proved in Appendix B.

Hereafter, assume k ≥ 2. We shall also assume for the moment that Q∗k ∗ δr has an absolutely
convergent Fourier series, which will be verified later in the course of our computations. Since
Q∗k ∗ δr is a continuous function for k ≥ 2, it is exactly equal to its Fourier series (Theorem 11),
so that from (6) and (16) we have

D(k) = sup
y,r

∣∣∣∣∣
∞∑

n=1

(2n + 1) Tr
[
Q̂k(ρn) δ̂r(ρn) ρn(ỹ)

]∣∣∣∣∣
≤ sup

y,r

∞∑
n=1

(2n + 1)
∣∣∣ Tr

[
Q̂k(ρn) δ̂r(ρn) ρn(ỹ)

]∣∣∣ (7)

where ρn is the irreducible representation of SO(3) of dimension (2n + 1). The trivial represen-
tation ρ0 does not appear here since it was cancelled in (6) by U(B̃y,r).

Remark 6 Since Q and δr are both N -bi-invariant on SO(3), by Theorem 12 there is a basis for
the representations such that their transforms are identically zero except in the (1, 1)-th entry.
Any such basis (e.g., the spherical harmonics) has its first basis element given by the Legendre
polynomials, which are the spherical functions for the Gelfand pair (SO(3), N).
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Hence ρn(ỹ)(1,1) = Pn(cos γ), where γ is the geodesic distance of y from n. Since the product
of the transforms of Q̂k and δr are identically zero except for the (1, 1)-th element, the only
diagonal element changed by multiplication by ρn(ỹ) is the (1, 1)-th entry. Hence the trace (7)
reduces to

D(k) ≤ sup
y,r

∞∑
n=1

(2n + 1)
∣∣∣Q̂k(ρn)(1,1) δ̂r(ρn)(1,1) Pn(cos γ)

∣∣∣
≤ sup

r

∞∑
n=1

(2n + 1)
∣∣∣Q̂k(ρn)(1,1) δ̂r(ρn)(1,1)

∣∣∣ (8)

where the second inequality follows from (22). Notice that the sum in (8) is precisely the sum in
Theorem 11 that needs to be checked for convergence in verifying that Q∗k ∗δr has an absolutely
convergent Fourier series. Hence when we bound the above expression we will also have validated
our use of Fourier inversion in our computations.

From (20), we have
Q̂(ρn)(1,1) = Pn(cos θ) (9)

since Pn is constant on the support of Q. Also, for a ball Br of geodesic radius r and n ≥ 1,
formula (21) gives

∣∣∣δ̂r(ρn)(1,1)

∣∣∣ =
∣∣∣∣12

∫ 1

cos r
Pn(x) dx

∣∣∣∣
=

|Pn−1(cos r) − Pn+1(cos r)|
2(2n + 1)

(10)

≤ 1
2n + 1

. (11)

The integral of Pn follows from (23) and noting that Pn(1) = 1, and the inequality follows from
(22).

Substitution of (9) and (11) into (8) yields

D(k) ≤
∞∑

n=1

|P k
n (cos θ)|. (12)

To bound the Legendre polynomials, we use the following well-known bound (see Jackson [14,
p.63]):

Proposition 7 For Pn, the n-th Legendre polynomial, and any θ,

|Pn(cos θ)|2 ≤ 2
πn sin2 θ

.

We derive an alternate bound, suitable for small θ:

Proposition 8 For Pn, the n-th Legendre polynomial, and n sin2 θ ≤ .9,

|Pn(cos θ)|2 ≤ 1 − n sin2 θ

4
.
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This bound is better than Proposition 7 when n sin2 θ < 2 −
√

4 − 8
π ≈ .794. It is proved in

Appendix B. Using Propositions 7 and 8 and the bound 1 − x ≤ e−x, the sum in (12) can be
estimated:

∞∑
n=1

|P k
n (x)| ≤

∑
n≤B/ sin2 θ

e−nk sin2 θ/8 +
∑

n>B/ sin2 θ

(
2

πn sin2 θ

)k/2

≤ e−k sin2 θ/8

1 − e−k sin2 θ/8
+

(
2

π sin2 θ

)k/2 ∑
n>B/ sin2 θ

1
nk/2

where B = .9. Note that

∑
n>B/ sin2 θ

1
nk/2

≤
∫ ∞

B
sin2 θ

dx

xk/2
+

(
sin2 θ

B

) k
2

=
2

k − 2

(
sin2 θ

B

) k
2
−1

+
(

sin2 θ

B

) k
2

.

Thus
∞∑

n=1

|P k
n (x)| ≤ e−k sin2 θ/8

1 − e−k sin2 θ/8
+

(
2

πB

)k/2 (
2B

(k − 2) sin2 θ
+ 1

)
.

Note that
(

2
πB

)1/2
< e−1/8 < e− sin2 θ/8. For k = C

sin2 θ
and C ≥ 4, one sees that (k−2) sin2 θ ≥ 2

and k ≥ 4, so that
∞∑

n=1

|P k
n (x)| ≤ e−k sin2 θ/8

(
1

1 − e−1/2
+ B + 1

)

≤ 4.442 e−C/8.

The above bound, together with (12), proves the following theorem. (Note that the C ≥ 4
restriction above is not needed below because the discrepancy D(k) never exceeds 1.)

Theorem 9 For the drunkard’s walk on the sphere with step size θ, the discrepancy after k
steps satisfies, for k = C

sin2 θ
,

D(k) ≤ 4.442 e−C/8.

Thus order C
sin2 θ

steps are sufficient to make the discrepancy uniformly small. The following
lower bound confirms the order is correct.

Theorem 10 For the drunkard’s walk on the sphere with step size θ, the discrepancy after k
steps satisfies, for k ≥ 2,

D(k) ≥
√

3
4

| cos θ|k.
For k = C

sin2 θ
, we have

D(k) ≥ 0.4330 e−C/2.
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Thus order C
sin2 θ

steps are needed to make the discrepancy distance uniformly small. Together,
Theorems 9 and 10 prove Theorem 1.

One way to obtain a lower bound for discrepancy is to evaluate the difference of Q∗k and U on
well-chosen ball. The same idea can be used for the total variation; one way to choose such a
ball (see [4, p.29]) is to take a set cut out by a random variable consisting of the dominant terms
in the Fourier series of Q∗k. The mean and variance of the random variable and an appeal to
Chebyshev’s inequality yield an estimate for Q∗k on that set.

However, the proof of Theorem 10 illustrates a different approach using ideas similar to those
used in [22] for bounds on the torus. We construct a “local discrepancy” function which at each
point evaluates the discrepancy of the measure on a set of geodesic radius r centered at that
point. The function is bounded above by the total discrepancy. As before, it can be rewritten in
terms of a convolution of the original measure and the indicator function of the set. An appeal
to Plancherel’s identity gives a sum with only non-negative terms, so the dominant term can be
pulled out as a lower bound for discrepancy.

We remark that since discrepancy is a lower bound for total variation, this lower bounding
technique can also be used to obtain lower bounds for random walks under total variation.

Proof Define, for g ∈ SO(3),

∆r(g) = Q∗k(B̃y,r) − U(B̃y,r)

where y is the image of g under the quotient map from SO(3) to S2. From (4), we see that
∆r(x) ≤ D(k), and hence for all r,∫

SO(3)
∆2

r(g) dµ ≤ D(k)2. (13)

On the other hand, Plancherel’s identity on SO(3) [9, p.256] yields∫
SO(3)

∆2
r(g) dµ =

∞∑
n=0

(2n + 1) Tr
[
∆̂r(ρn)∆̂r(ρn)∗

]
(14)

where the ∗ denotes the conjugate transpose (here only). Notice that ∆r may be rewritten as:

∆r(x) = Q∗k ∗ δB̃r
(x) − U ∗ δB̃r

(x) = (Q∗k − U) ∗ δB̃r
(x).

Then ∆̂r may be computed as ∆̂r(ρn) = ( Q̂k(ρn) − Û(ρn) ) δ̂B̃r
(ρn).

For n = 0, ∆̂r(ρ0) = 0 since Q̂k(ρ0) − Û(ρ0) = 1 − 1 = 0.

For n 6= 0, a trivial computation shows Û(ρn) = 0, and thus

∆̂r(ρn) = Q̂k(ρn) δ̂B̃r
(ρn).

Remark 6 and the computations from Equations (9) and (10), when substituted into (14), and
combined with (13), give

D(k)2 ≥
∞∑

n=1

(2n + 1)
∣∣∣∣P k

n (cos θ)
(

Pn−1(cos r) − Pn+1(cos r)
2(2n + 1)

)∣∣∣∣2 (15)
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where r may be chosen arbitrarily. Taking only the dominant term (n = 1) in the above
expression, and letting r = π/2, we have cos r = 0, P0(0) = 1, P2(0) = −1/2, and P1(x) = x. It
follows that

D(k) ≥
√

3
4

| cos θ|k

as was to be shown. The second inequality in the theorem follows from | cos θ|k = e
k
2

ln cos2 θ ≥
e−

k
2

sin2 θ, using the fact that ln(1 − x) ≥ −x for all x. �

For a tighter lower bound, one may use more terms in (15) and adjust the choice of r; however,
the dominant term sufficed to obtain matching upper and lower bounds for this random walk.

6 Conclusion

A similar analysis can be carried out for the discrepancy convergence of any random walk on
a Gelfand pair, when the spherical functions are known. Proposition 4 shows that making
a generating measure bi-invariant will not affect the rate of convergence. The upper bound
is obtained via (5), Fourier inversion to yield (12), and bounds on the appropriate spherical
function (e.g., Prop. 8). The lower bound is obtained via Plancherel’s identity applied to the
square of the local discrepancy function, e.g., equations (13) and (14), then choosing as many
terms as needed.

We remark that our pair of strategies often works well for obtaining matching upper and lower
bounds because if there is a dominant Fourier coefficient, it appears to the same order in both
upper and lower bounds. In our example, Q̂(1) was the dominant term; compare the upper
bound (12) and lower bound (15). See [12, 21, 22] for more examples of this phenomenon in
discrepancy bounds for random walks on groups.

Appendix A.

This appendix reviews material on harmonic analysis, homogeneous spaces, Gelfand pairs, rep-
resentations of SO(3), and Legendre polynomials.

Fourier Analysis on a Compact Group

A standard reference is the encyclopedic account by Hewitt and Ross [13]. Diaconis [4] gives
a concise introduction to Fourier analysis on finite groups. Dym and McKean [9] is a readable
introduction to Fourier series on SO(3).

We assume henceforth that all compact groups are separable and metrizable. For any compact
group G there is a unique measure µ on G, called (normalized) Haar measure, such that µ is
G-invariant and µ(G) = 1.

Let V be a finite dimensional vector space over C, the complex numbers. Recall that a repre-
sentation of a group G on V is a homomorphism ρ : G → GL(V ). If V has dimension n, then
ρ is said to have dimension n. A basis for V can be chosen so that the image of ρ with respect
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to this basis are unitary matrices. If there is no non-trivial subspace of V invariant under the
action of G, then ρ is said to be irreducible; otherwise ρ decomposes as a direct sum of irreducible
representations. (One can similarly define a representation ρ of G on a Hilbert space, though if
G is compact ρ decomposes into a direct sum of unitary representations of finite dimension.)

Two representations ρ on V and ρ′ on V ′ are equivalent if there is an isomorphism τ : V → V ′

such that τ ◦ρ = ρ′◦τ . Let Σ denote a the set of equivalence classes of irreducible representations
of G. For a compact group, Σ is countable and furthermore, all the irreducible representations
are finite dimensional.

Definition 1 The Fourier transform of a complex-valued function f on a compact group G at
a representation ρ of G is defined by

f̂(ρ) =
∫

g∈G
f(g) ρ(g−1) dµ

where µ is Haar measure on G.

Similarly, the Fourier transform of a measure ν on G at ρ is defined by

ν̂(ρ) =
∫

g∈G
ρ(g−1) dν(g).

We show how a function may be recovered from its Fourier transforms at irreducible representa-
tions. Let dρ denote the dimension of a representation ρ. For any operator A, let Tr[A] denote
the trace of A, and let ‖A‖ϕ1 denote the sum of the eigenvalues of the operator square root of
AA∗. (Here, ∗ denotes conjugate transpose.)

Definition 2 For any f ∈ L1(G,µ), the series∑
ρ∈Σ

dρ Tr
[
f̂(ρ) ρ(g)

]
(16)

is called the Fourier series of f . (There is mild abuse of notation here: by ρ ∈ Σ, we really
mean to choose a representative ρ from each class of irreducible representations in Σ.) If∑

ρ∈Σ

dρ ‖f̂(ρ)‖ϕ1 < ∞ , (17)

then f is said to have an absolutely convergent Fourier series [13, (34.4)].

Theorem 11 (Fourier inversion) If a function f on G has an absolutely convergent Fourier
series, then the Fourier series of f(g) converges uniformly to a continuous function f̄(g), and
f(g) = f̄(g) almost everywhere on G with respect to Haar measure µ.

Proof This theorem is embedded in Hewitt and Ross [13], but obscured by their exotic notation.
We briefly indicate how to “prove” this theorem from results cited in [13].

The set of functions with absolutely convergent Fourier series is denoted in [13] by a symbol
that resembles R(G), defined in (34.4). Theorem (34.6) in [13] shows that any f ∈ R(G) is
equal almost everywhere to its Fourier series. Theorem (34.5.ii) shows that this Fourier series
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converges uniformly to a continuous function that we have denoted f̄ . �

We remark that since the notation in Hewitt and Ross [13] is cumbersome and tough to wade
through, for the sake of probabilists we have simplified it by following the notation of Diaconis
[4]. To aid the reader wishing to follow the results quoted above, we provide a “dictionary”
between the two sets of notation: in Hewitt and Ross [13, (27.3)], σ denotes a class of equivalent
irreducible representations in Σ and U is a representative of that class; we avoid reference to σ
(to eliminate an unnecessary layer of notation) and use ρ instead of U . Hewitt and Ross denote
an arbitrary element of a group G by x ∈ G; we use g ∈ G. Their notations Aσ and U

(σ)
x refer

to operators that correspond to our f̂(ρ) and ρ(g), respectively (see [13, (34.1.i), (34.4.a)]).

Note that if f is continuous, Theorem 11 implies that if f has an absolutely convergent Fourier
series, it equals its Fourier series at every point.

Homogeneous Spaces and Gelfand Pairs

Diaconis [4, Chap. 3F] provides an introduction to Gelfand pairs on finite groups and an an-
notated bibliography. Dieudonne [7] is a concise introduction to Gelfand pairs on compact and
locally compact groups.

Definition 3 Let G be a compact group and X be a topological space. An action of G on X
is a continuous mapping from G × X → X denoted by (s, x) 7→ s · x = sx such that id · x = x
and s · (t · x) = (st) · x.

If G acts transitively on X, that is, if for any x, y ∈ X there exists an s such that sx = y, we
call X a homogeneous space.

Given a point x0 ∈ X, let N denote the isotropy subgroup of G with respect to x0, i.e., the
set of group elements which fix x0. By construction, N is a closed subset of G. The canonical
isomorphism of X onto G/N , the left cosets of N , respects the action of G. Thus g : xN 7→
(gx)N .

Let µX denote the G-invariant measure on X induced by Haar measure on G. Let L2(X) denote
the space of all complex-valued square-integrable functions on X with respect to µX . The action
of G on X induces an action of G on L2(X) by g · f(x) = f(g−1x). This action is a 1-to-1 linear
mapping of the vector space L2(X) into itself and so defines a representation of G.

Definition 4 A function f on G is said to be N -bi-invariant if f(n′gn′′) = f(g) for all n′, n′′ ∈ N
and g ∈ G. A measure ν on G is N -bi-invariant if for any measurable set A in G, ν(n′An′′) =
ν(A) for all n′, n′′ ∈ N . Thus ν satisfies ν ∗ µ = µ ∗ ν = ν where µ is Haar measure on G.

In this paper bi-invariance on a homogeneous space G will be understood to mean with respect
to the isotropy subgroup N . Note that bi-invariant functions on G are constant on double cosets
NgN and may therefore be viewed as functions on the double coset space (denoted G//N), or
as left-invariant functions on X via its isomorphism with G/N .

Definition 5 The pair (G,N) is called a Gelfand pair if the convolution algebra L2(G//N) of
N -bi-invariant functions is commutative. We sometimes say X ∼= G/N is a Gelfand pair when
G is understood by context.
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The next fact about Gelfand pairs is the most important for our purposes. A similar result for
the finite group context may be found in [4, p.54].

Theorem 12 If (G,N) is a Gelfand pair, then for every irreducible representation ρ : G →
GL(V ) there is a basis of V such that for all functions f (resp. measures ν) bi-invariant with
respect to N , the Fourier transform f̂(ρ) (resp. ν̂(ρ)) in that basis contains only zeroes except
possibly for the (1, 1)-th entry.

Proof Dieudonne [6, (22.5.6)] shows the algebra L2(G//N) is commutative if and only if the
number of times the trivial representation appears in ρ|N , the the restriction of ρ to N , is zero
or one.

If one, this trivial representation corresponds to a one-dimensional subspace of V fixed by N ,
i.e., the left N -invariant functions on X; choose the unique function s(x) on X normalized so
that s(x0) = 1. This is sometimes called the spherical function of (G,N) corresponding to the
representation ρ. Complete s to a basis for V so that the matrices of ρ|N break into irreducible
“blocks”. Then for a right N -invariant function f :

f̂(ρ) =
∫

g∈G
f(g) ρ(g−1) dµ

=
∫

n∈N

∫
x∈G/N

f(xn) ρ(n−1x−1) dµX dµN

=
∫

n∈N
ρ(n−1) dµN ·

∫
x∈G/N

f(x)ρ(x−1) dµX , (18)

where µN is Haar measure on the subgroup N . The second equality is obtained by choosing a
coset representative x from each coset in G/N and expressing g = xn for some x and n ∈ N ,
and noting that Haar measure µ decomposes as a product measure µX ·µN . A similar argument
holds for a right-invariant measure ν, noting that ν decomposes as a product measure νX · µN

because of right-invariance.

By the orthogonality relations for matrix entries [6, (21.2.5.c)] of irreducible representations of
N , the left-most integral of (18) produces a matrix consisting of zeroes except possibly for the
(1, 1)-th entry. Thus f̂(ρ) (resp. ν̂(ρ)) has zero entries except possibly for the first row. A
similar argument using the left-invariance of f (resp. ν) shows that f̂(ρ) (resp. ν̂(ρ)) has zero
entries except possibly for the first column. Together, these statements imply that the only
entry that could possibly be non-zero is the (1, 1)-th entry.

If the trivial representation does not appear in the the restriction of ρ to N , the argument
above holds by ignoring the role of s when choosing a basis for V . Orthogonality then shows
that the left-most integral of (18) yields a zero matrix. �

There is thus one spherical function si(x) for every irreducible representation ρi appearing in
L2(X). These induce N -bi-invariant functions s̃i on G. In the theorem above the s̃i(g) appears
as the (1, 1)-th entry of ρi(g) for an appropriate basis. Hence for any measurable function f on
G, the (1, 1)-th entry of the Fourier transform at ρi satisfies

[f̂(ρi)](1,1) =
∫

g∈G
f(g) s̃i(g) dµ. (19)
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Similarly, for a measure ν on G,

[ν̂(ρi)](1,1) =
∫

g∈G
s̃i(g) dν. (20)

Dieudonne [7] is a readable introduction to the general theory of spherical functions; Letac [15]
computes them in several examples.

The sphere as a Gelfand pair

The rotation group SO(3) acts on the unit sphere S2 by the natural inclusion of S2 in R3.
This action is clearly transitive on S2, so S2 is a homogeneous space. In fact arises from the
Gelfand pair (G,N), where G is the rotation group SO(3), and N is the isotropy subgroup of
rotations fixing n, the north pole. By restriction to the plane orthogonal to n ∈ R3, we see
that N is isomorphic to the group SO(2). The sphere S2 may then be regarded as the space
SO(3)/SO(2). In fact, for all n ≥ 2, Dieudonne [7] shows that Sn ∼= SO(n + 1)/SO(n) is a
Gelfand pair.

Representations of SO(3)

For a good reference on representations of SO(3) and other compact Lie groups, see Brocker
and tom Dieck [3].

Let ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

be the Laplace operator on R3. The harmonic polynomials are the set
of all complex-valued homogeneous polynomials f in x1, x2, x3 of degree n such that ∆f = 0;
the restrictions of these functions to the sphere S2 form a set Vn, the spherical harmonics of
degree n (one of which is the spherical function sn).

The action of SO(3) on Vn is induced by its action on R3 in the manner described earlier:
g · f(x) = f(g−1x). Moreover, Vn is irreducible and finite-dimensional, and every irreducible
representation of SO(3) arises in this way. The dimension of Vn is 2n + 1.

Legendre polynomials

The spherical functions si on S2 are given by the well-known Legendre polynomials Pi in the
following way: for y ∈ S2, si(y) = Pi(x) where x = cos θy ∈ [−1, 1] and θy is the geodesic
distance between y and n on S2. Just as S2 is (isomorphic to) the left cosets of N in G, the set
[−1, 1] is the double coset space of this Gelfand pair.

Since Haar measure on SO(3) induces the uniform (rotation-invariant) probability measure on
S2 and uniform probability measure on [−1, 1], we can compute (19) as

[f̂(ρn)](1,1) =
∫

SO(3)
f(g)s̃n(g) dµ =

1
2

∫ 1

−1
f(x)Pn(x) dx (21)

where µ denotes normalized Haar measure on SO(3), dy denotes the uniform measure on S2,
and dx is Lebesgue measure on R. See [9, p.239].
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The Legendre polynomials have the generating function

∞∑
i=0

Pi(x) ri =
1

(1 − 2xr + r2)1/2

and the first few are: P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1), P3 = 1

2(5x3 − 3x). Furthermore,
for all n ≥ 0, Pn(1) = 1 and

|Pn(x)| ≤ 1 (22)

for x ∈ [−1, 1]. The following identity will be needed later. For n ≥ 1,

Pn(x) =
P ′

n+1(x) − P ′
n−1(x)

2n + 1
(23)

This follows from the generating function for Pn(x). A nice account of these and other properties
of Legendre polynomials may be found in Jackson [14].

Appendix B.

This appendix contains the proofs of some technical results (Proposition 5 and Proposition 8)
that are not central to the development above.

Proof of Proposition 5

To show that Q∗k ∗ δr (x) is continuous for k ≥ 2, we first require the following technical lemma.

Lemma 13 Let ν be a positive measure on a compact metric group G, and let f be any
measurable, bounded function f with discontinuities on a set Df . Let xD−1

f denote the set
{xd−1 : d ∈ Df}. Given x, if ν(xD−1

f ) = 0, then the convolution

h(x) = ν ∗ f (x) =
∫

G
f(z−1x) dν(z)

is continuous at x.

Proof To show h(x) is continuous at x, consider any sequence xn ∈ G such that xn → x. It
must be shown that h(xn) → h(x).

Let wn(z) = f(z−1xn) and w(z) = f(z−1x). Since f is bounded, all the wn and w, being
translates of f , are uniformly bounded by some constant function. This constant function is in
L1(G, ν), since G is compact.

Also, wn(z) → w(z) pointwise for all z 6∈ xD−1
f , since f is continuous at those points. By the

assumption on Df we have pointwise convergence almost everywhere. By Lebesgue’s dominated
convergence theorem,

∫
G wn(z) dν(z) → ∫

G w(z) dν(z), which is precisely the statement
h(xn) → h(x). This completes the proof of Lemma 13. �

We can now prove Proposition 5.
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Proof We apply Lemma 13 setting f(x) = δr(x) and ν = Q. By inspection, δr is bounded by
1. The lemma implies Q ∗ δr(x) is continuous everywhere except possibly at x = id. This may
be seen by observing that the discontinuity set of δr is ∂B̃r, the boundary of B̃r. This is the
pre-image of a circle on S2. On the other hand, Q regarded as a measure on S2 is uniformly
supported on a circle at latitude θ from the north pole. Any two circles on S2 intersect in at
most two points, unless they are identical. Hence Q(∂B̃r) = 0 unless the support of Q intersects
∂B̃r, which only occurs when B̃r = B̃n,θ. This corresponds to a discontinuity in Q ∗ δr(x) at
x = id when r = θ.
We now apply Lemma 13 again to show that Q∗k ∗ δr(x) is continuous for k = 2. The preceding
observations show that Q∗δr(x) is continuous almost everywhere (except possibly at the identity
which is not in the support of Q). It is bounded by 1. Applying the lemma for f(x) = Q ∗ δr(x)
and ν = Q shows that Q∗2 ∗ δr(x) is continuous everywhere.
Now proceed by induction on k. For k ≥ 3, let ν = Q and let f(x) = Q∗(k−1) ∗ δr(x), which is
continuous. Then Lemma 13 shows that ν ∗ f(x) = Q∗k ∗ δr(x) is continuous. �

Proof of Proposition 8

This proves a Legendre bound for small θ.
Proof Let x = cos θ. From [14, p.62],

|Pn(x)| ≤ 2
π

∫ π/2

0
e−nz2w2/2 dw

for z = 2
π (1 − x2)1/2. Substitute t = n1/2zw, and set A = n1/2zπ/2 = n1/2 sin θ. Obtain

|Pn(x)| ≤ 1
A

∫ A

0
e−t2/2 dt.

To estimate this integral, square both sides and consider the double integral over a square in
first quadrant of the plane, and then change to polar coordinates:

|Pn(x)|2 ≤ 1
A2

∫ A

0

∫ A

0
e(−t21−t22)/2 dt1 dt2

≤ 2
A2

∫ π/4

φ=0

∫ A/ cos φ

r=0
e−r2/2 r dr dφ

≤ 2
A2

∫ π/4

φ=0
(1 − e−A2/2 cos2 φ) dφ .

For 0 ≤ φ ≤ π/4, y = A2

2 sec2 φ ≤ A2 which by assumption is less than .9. Now for y < .9, the
inequality 1 − e−y ≤ y − 3y2

8 holds, and yields

|Pn(x)|2 ≤ 2
A2

∫ π/4

φ=0

(
A2

2
sec2 φ − 3A4

32
sec4 φ

)
dφ .

Integrating the right hand side gives

|Pn(x)|2 ≤
[
tan φ − 3A2

16

(
tan3 φ

3
+ tan φ

)]∣∣∣∣
π/4

0

≤ 1 − A2

4
. �
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