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Abstract

We give an account of some results, both old and new, about any n× n Markov matrix that is
embeddable in a one-parameter Markov semigroup. These include the fact that its eigenvalues
must lie in a certain region in the unit ball. We prove that a well-known procedure for approxi-
mating a non-embeddable Markov matrix by an embeddable one is optimal in a certain sense.
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1 Introduction

A Markov (or row-stochastic) matrix A is defined to be a real n× n matrix with non-negative entries
satisfying
∑n

j=1 Ai, j = 1 for all i. Equivalently 0 ≤ v ∈ Rn implies 0 ≤ Av, and A1 = 1, where
1 denotes the column vector all of whose entries equal 1. The spectral properties of non-negative
matrices and linear operators and in particular of Markov matrices have been studied in great detail,
because of their great importance in finance, population dynamics, medical statistics, sociology and
many other areas of probability and statistics. Theoretical accounts of parts of the subject may be
found in [1; 2; 6; 19]. This paper develops ideas of [13], which investigated when the pth roots
of Markov matrices were also Markov; this problem is related to the possibility of passing from
statistics gathered at certain time intervals, for example every year, to the corresponding data for
shorter time intervals.

A real n× n matrix B is said to be a Markov generator if its off-diagonal entries are all non-negative
and its row sums all vanish; the last condition is equivalent to B1 = 0. It is known that these
conditions are equivalent to the assumption that eBt is a Markov matrix for all t ≥ 0. We then say
that the family of matrices eBt , t ≥ 0, is a Markov semigroup.

Given an empirical Markov matrix, three major issues discussed in [21] are embeddability, unique-
ness of the embedding and the effects of data/sampling error. All of these are also considered here.
We call a Markov matrix A embeddable if there exists a Markov generator B such that A = eB and
eBt is Markov for all t ≥ 0. Note that the matrix B involved need not be unique. In probabilistic
terms a Markov matrix A is embeddable if it is obtained by taking a snapshot at a particular time of
an autonomous finite state Markov process that develops continuously in time. On the other hand
a Markov matrix might not be embeddable if it describes the annual changes in a population that
has a strongly seasonal breeding pattern; in such cases one might construct a more elaborate model
that incorporates the seasonal variations. Embeddability may also fail because the matrix entries are
not accurate; in such cases a regularization technique might yield a very similar Markov matrix that
is embeddable; see [18] for examples arising in finance. Although this paper is entirely concerned
with finite-dimensional problems, embeddability has also been investigated in infinite dimensional
spaces [8; 11].

Theorem 9 describes some spectral consequences of embeddability. The earliest analysis of the
structure of the set E of embeddable n× n Markov matrices and its topological boundary in the set
of all Markov matrices was given by Kingman [17], who concluded that except in the case n = 2
it seemed unlikely that any very explicit characterisation of E could be given; see [15] for further
work on this problem. Theorem 13 proves that a well-known method of approximating a Markov
matrix by an embeddable Markov matrix is optimal in a certain sense. Many of the results in the
present paper appear in one form or other in papers devoted to the wide variety of applications, and
it is hoped that collecting them in one place may be of value.

2 The main theorem

For the sake of definiteness we define the principal logarithm of a number z ∈ C\(−∞, 0] to be the
branch of the logarithm with values in {w : |Im(w)| < π}. We define the principal logarithm of an
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n× n matrix A such that Spec(A)∩ (−∞, 0] = ; to be that defined by the functional integral

log(A) =
1

2πi

∫

γ

log(z)
zI − A

dz (1)

using the principal logarithm of z and a simple closed contour γ in C\(−∞, 0] that encloses the
spectrum of A. This formula goes back to Giorgi in 1926; see [7, Theorem VII.1.10 and notes,
p.607]. If A= T DT−1 where D is diagonal, this is equivalent to log(A) = T log(D)T−1 where log(D)
is obtained from D by applying log to each diagonal entry of D. See [21] for a discussion of the
definition (1) when A is not diagonalisable.

Proposition 1. If A is a Markov matrix and Spec(A) ∩ (−∞, 0] = ; then the principal logarithm
L = log(A) lies in the set L of all real n× n matrices L such that

∑

1≤ j≤n Li, j = 0 for every i.

Proof. We use the formula (1) and take the contour γ to be symmetrical with respect to reflection
about the x-axis. The statements of the proposition follow directly from two properties of the
resolvent matrices.

The first is the identity
((zI − A)−1)i, j = (zI − A)−1)i, j (2)

This holds for large |z| by virtue of the identity

(zI − A)−1 = z−1
∞
∑

n=0

(A/z)n (3)

and (2) then extends to all z /∈ Spec(A) by analytic continuation.

The second identity needed is
(zI − A)−11= (z− 1)−11,

whose proof follows the same route, using (3) and analytic continuation.

The results in our next proposition are all well known and are included for completeness.

Proposition 2. If A is embeddable then 0 is not an eigenvalue of A and every negative eigenvalue has
even algebraic multiplicity. Moreover det(A) > 0. If A is embeddable and Ai, j > 0, A j,k > 0 then
Ai,k > 0.

Proof. The first statement follows from the fact that if A= eB where B is a Markov generator then

Spec(A) = exp(Spec(B)).

Given an eigenvalue λ < 0 of A let

S+ = {z ∈ Spec(B) : ez = λ and Im(z)> 0},
S− = {z ∈ Spec(B) : ez = λ and Im(z)< 0},

and let L± be the spectral projections of B associated with S±. Since ez = λ implies that Im(z) 6= 0,
we can deduce that L− ∩L+ = 0 and thatM =L− +L+ is the spectral projection of A associated
with the eigenvalue λ. Since B is real L− may be obtained from L+ by complex conjugation, so

dimM = dim(L+) + dim(L−) = 2dim(L+).
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See [9].

By combining the reality of B with the formula det(A) = etr(B) we obtain det(A)> 0. See [17].

The last statement follows from the general theory of Markov chains and is due to Ornstein and
Levy, independently; see [2, Section 2.5, Theorem 2] and [6, Theorem 13.2.4]. We first note that
one may write B = C −δI where all the entries of C are non-negative and δ ≥ 0. Hence

eBt = e−δt
∞
∑

n=0

Cn tn/n!

where each entry of each Cn is non-negative. This implies that if (eBt)i, j > 0 for some t > 0 the
same holds for all t > 0. This quickly yields the final statement.

Kingman [17] has shown that the set E of embeddable Markov matrices is a closed subset of the set
of all n× n Markov matrices. The matrix norm used throughout this paper is

‖M‖=max{‖M v‖∞ : ‖v‖∞ ≤ 1}= max
1≤i≤n

§

∑n

j=1
|Mi, j|
ª

. (4)

Lemma 3. The set S of all A∈ E with no negative eigenvalues is a dense relatively open subset of E .

Proof. If A ∈ S then a simple perturbation theoretic argument implies that there exists ε > 0 such
that C has no negative eigenvalues for any n× n matrix satisfying ‖A− C‖< ε. This implies that S
is relatively open in E .

If A ∈ E then A = eB for some Markov generator B. If {xr + i yr}nr=1 is the set of eigenvalues of B
and t > 0 then eBt has a negative eigenvalue if and only if t yr = π(2m+ 1) for some r and some
integer m. The set of such t is clearly discrete. It follows that eBt ∈ S for all t close enough to 1
except possibly for 1 itself. Since limt→1 ‖eBt − A‖= 0, we conclude that S is dense in E .

The following example shows that the density property in Lemma 3 depends on the embeddability
hypothesis.

Example 4.

The Markov matrix

A=

�

1/3 2/3
2/3 1/3

�

has Spec(A) = {1,−1/3}. If 0 < ε < 1/3, any matrix close enough to A also has a single eigenvalue
λ satisfying |λ+ 1/3| < ε by a standard perturbation theoretic argument. Since A has real entries
the complex conjugate of λ is also an eigenvalue, so λ must be real and negative. Therefore the set
of Markov matrices with no negative eigenvalues is relatively open but not dense in the set of all
Markov matrices, at least for n = 2. The example may be used to construct a similar example for
every n> 2.

We will need Lemma 5 and its corollary in the proof of Theorem 7.
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Lemma 5. There exists a polynomial p in the coefficients of an n× n matrix such that A has a multiple
eigenvalue in the algebraic sense if and only if p(A) = 0. We call p(A) the discriminant of A.

Proof. A has a multiple eigenvalue if and only if its characteristic polynomial qA(z) = zn + a1zn−1 +
. . .+ an has a multiple root; the coefficients ar of qA are themselves polynomials in the entries of
A. Moreover qA has a multiple root if and only if its discriminant (the square of its Vandermonde
determinant) vanishes, and the discriminant of qA is a polynomial in a1, . . . , an.

Corollary 6. If A0, A1 are two n×n matrices then either Az = (1−z)A0+zA1 has a multiple eigenvalue
for all z ∈ C or this happens only for a finite number of z.

Proof. The discriminant of Az is a polynomial in z, which has a finite number of roots unless it
vanishes identically.

Theorem 7. The set T of all n× n embeddable Markov matrices that have n distinct eigenvalues is
relatively open and dense in the set E of all embeddable Markov matrices.

Proof. A standard argument from perturbation theory establishes that T is relatively open in E , so
we only need to prove its density.

Let A= eB0 where B0 is a Markov generator, and let ε > 0. Then put Bt = (1− t)B0+ tB1 where

(B1)r,s =







−1 if r = s,
1 if r + 1= s,
1 if r = n, s = 1,
0 otherwise.

One sees immediately that Bt is a Markov generator for all t ∈ [0, 1] and that it has n distinct
eigenvalues if t = 1. Corollary 6 now implies that the eigenvalues of Bt are distinct for all sufficiently
small t > 0. By further restricting the size of t > 0 we may also ensure that ‖eBt − A‖< ε/2.

Having chosen t, we put B = sBt where s ∈ R is close enough to 1 so that ‖eBt − eB‖< ε/2; we also
choose s so that if λ1, λ2 are any two eigenvalues of Bt then s(λ1 − λ2) /∈ 2πiZ. These conditions
ensure that ‖eB − A‖< ε and that eB has n distinct eigenvalues.

The following proposition may be contrasted with the fact that a complex number λ such that |λ|= 1
is the eigenvalue of some n× n Markov matrix if and only if λr = 1 for some r ∈ {1,2, . . . , n}; see
[19, Chap 7, Theorem 1.4]. Permutation matrices provide examples of such spectral behaviour. The
proposition has been extended to an infinite-dimensional context in [5].

Proposition 8 (Elfving, [9]). If A is an embeddable Markov matrix and λ 6= 1 is an eigenvalue of A
then |λ|< 1.

Proof. Our hypotheses imply by [6, Lemma 12.3.5] that Spec(A) = exp(Spec(B))where B = c(C−I),
c > 0 and C is a Markov matrix. Since C is a contraction when considered as acting in Cn with the
l∞ norm, Spec(C) ⊂ {z : |z| ≤ 1}. Therefore every eigenvalue λ of B except 0 satisfies Re(λ) < 0.
The proposition follows.
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The main application of the following theorem may be to establish that certain Markov matrices
arising in applications are not embeddable, and hence either that the entries are not numerically
accurate or that the underlying process is not autonomous. The theorem is a quantitative strength-
ening of Proposition 8. It is of limited value except when n is fairly small, but this is often the case
in applications.

Theorem 9 (Runnenberg, [20; 21]). If n ≥ 3 and the n× n Markov matrix A is embeddable then its
spectrum is contained in the set

{reiθ :−π≤ θ ≤ π, 0< r ≤ r(θ)}

where
r(θ) = exp(−θ tan(π/n)).

Proof. This depends on two facts, firstly that Spec(A) = exp(Spec(B)) where B = c(C− I), c > 0 and
C is a Markov matrix. Secondly

Spec(C − I) ⊆ {z : |arg(z)| ≥ π/2+π/n} (5)

= {−u+ iv : u≥ 0, |v| ≤ u cot(π/n)}. (6)

by applying a theorem of Karpelevič to C and then deducing (6) from that; see [16] or [19, Chap. 7,
Theorem 1.8]. The relevant boundary curve (actually a straight line segment from 1 to e2πi/n) in
the proof and notation of Karpelivič is the case q = 0, p = 1 and r = n of λq(λp − t)r = (1− t)r ,
where 0≤ t ≤ 1. The small part of the theorem of Karpelevič that we need was proved by Dmitriev
and Dynkin; see [19, Chap. 8, Theorem 1.7].

We turn now to the question of uniqueness. The first example of a Markov matrix A that can be
written in the form A = eB for two different Markov generators was given by Speakman in [22];
Example 17 provides another. The initial hypothesis of our next result holds for most embeddable
Markov matrices by Theorem 7.

Corollary 10. Let A be an invertible n× n Markov matrix with distinct eigenvalues λ1, . . . ,λn.

1. The solutions of eB = A form a discrete set and they all commute with each other and with A.

2. Only a finite number of the solutions of eB = A can be Markov generators.

3. If
|λr |> exp(−π tan(π/n)) (7)

for all r then only one of the solutions of eB = A can be a Markov generator, namely the principal
logarithm.

Proof. 1. Since Spec(A) = exp(Spec(B)), each B must have n distinct eigenvalues µ1, . . . ,µn and
the corresponding eigenvectors form a basis in Cn. These eigenvectors are also eigenvectors
for A and

λr = eµr (8)

for all r. It follows that B can be written as a polynomial function of A. For each λr , the
equation (8) has a discrete set of solutions µr .
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2. If A is an invertible Markov matrix with distinct eigenvalues and the solution B of eB = A is
a Markov generator then every eigenvalue µr of B lies in the sector {−u+ iv : u ≥ 0, |v| ≤
u cot(π/n)} by (6). Combining this restriction on the imaginary parts of the eigenvalues with
(8) reduces the set of such B to a finite number. See [14, Theorem 6.1] for items 1 and 2, and
for an algorithm that finds all the solutions B in item 2.

3. We continue with the assumptions and notation of item 2. The assumption (7) implies that if
µr = −ur + ivr then ur < π tan(π/n). The proof of item 2 now yields |vr | < π. Hence µr is
the principal logarithm of λr and B is the principal logarithm of A.

The conclusions of the above corollary do not hold if A has repeated eigenvalues or a non-trivial
Jordan form; see [4; 14]. For example the n× n identity matrix has a continuum of distinct loga-
rithms B which do not all commute; if the eigenvalues of B are chosen to be {2πri : 1 ≤ r ≤ n},
then the possible B are parametrized by the choice of an arbitrary basis as its set of eigenvectors.
The general classification of logarithms is given in [10] and [12, Theorem 1.28]. These comments
reveal a numerical instability in the logarithm of a matrix if it has two or more eigenvalues that are
very close to each other.

The following provides a few other conditions that imply the uniqueness of a Markov generator B
such that A= eB.

Theorem 11 (Cuthbert, [3; 4]). Let A = eB where B is a Markov generator. Then
(9)⇒(10)⇒(11)⇒(12), where

e−π < det(A) ≤ 1, (9)

−π < tr(B) ≤ 0, (10)

‖B+ β I‖ < π, where β = max
1≤i≤n

{|Bi,i|}, (11)

Spec(B) ⊆ {z : |Im(z)|< π}. (12)

If A is diagonalisable and satisfies (9) then B = log(A), the principal logarithm of A.

Proof. (9)⇒(10) This uses det(A) = etr(B).
(10)⇒(11) This uses the fact that B + β I has non-negative entries and its row sums all equal β ,
which satisfies β < π.
(11)⇒(12) follows directly from Spec(B+ β I)⊆ {z : |z|< π}.
The final statement of the theorem follows the proof of Corollary 10.

If At is a one-parameter Markov semigroup then for every t > 0 one may define L(t) to be the num-
ber of Markov generators B such that eBt = At . Some general theorems concerning the dependence
of L(t) on t may be found in [4; 21].

3 Regularization

Let G denote the set of n× n Markov generators; following the notation of Proposition 1, G is the
set of G ∈ L such that Gi, j ≥ 0 whenever i 6= j.
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Let A be a Markov matrix satisfying the assumptions of Proposition 1, for which L = log(A) does not
lie in G . There are several regularizations of L, that is algorithms that replace L by some G ∈ G
that are (nearly) as close to L as possible. Kreinin and Sidelnikova [18] have compared different
regularization algorithms for several empirical examples arising in finance and it appears that they
all have similar accuracy. The best approximation must surely depend on the matrix norm used, but
if one considers the physically relevant matrix norm (4) then we prove that the simplest method,
called diagonal adjustment in [18], also produces the best possible approximation. We emphasize
that although G is a closed convex cone, this does not imply that the best approximation is unique,
because the matrix norm (4) is not strictly convex.

Theorem 12. Let L ∈ L and define B ∈ G by

Bi, j =

¨

Li, j if i 6= j and Li, j ≥ 0,
0 if i 6= j and Li, j < 0,

together with the constraint
∑n

j=1 Bi, j = 0 for all i. Then

‖L− B‖=min{‖L− G‖ : G ∈ G}.

Proof. It follows from the definition of the matrix norm that we can deal with the matrix rows one
at a time. We therefore fix i and put

` j = Li, j ,

P = { j : j 6= i and ` j ≥ 0},
N = { j : j 6= i and ` j < 0},

`P =
∑

j∈P

` j ≥ 0,

`N = −
∑

j∈N

` j ≥ 0,

so that `i = `N − `P . We next put b j = Bi, j , where B is defined as in the statement of the theorem.
Thus

b j =







` j if j ∈ P,
0 if j ∈ N ,
−`P if j = i.

A direct calculation shows that

` j − b j =







0 if j ∈ P,
` j if j ∈ N ,
`N if j = i.

Therefore
‖`− b‖1 = 2`N .
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Finally given G ∈ G we define g j = Gi, j for all j. We have

‖`− g‖1 =
∑

j 6=i

|` j − g j|+ |
∑

j 6=i

(` j − g j)|

≥
∑

j∈P

|` j − g j|+
∑

j∈N

|` j − g j|

+
∑

j∈N

(` j − g j) −
∑

j∈P

(` j − g j)

≥
∑

j∈P

|` j − g j|+ `N

+
∑

j∈N

` j −
∑

j∈P

|` j − g j|

= 2`N .

Theorem 13. Let A be a Markov matrix such that Spec(A)∩(−∞, 0] = ; and put L = log(A). If B ∈ G
and ‖L− B‖= ε then

‖A− eB‖ ≤min{2, eε − 1} ≤min{2,2ε}.

Proof. If we put E = L− B then the series expansion

eL = eB +

∫ 1

t=0

eB(1−t)EeBt dt +

∫ 1

t=0

∫ t

s=0

eB(1−t)EeB(t−s)EeBs dsdt + . . .

given in [6, Theorem 11.4.1] yields

‖A− eB‖ = ‖eL − eB‖
≤ ‖E‖+ ‖E‖2/2!+ . . .

= e‖E‖− 1.

The other part of the estimate uses ‖A‖= 1 and ‖eB‖= 1.

4 Some Numerical Examples

Example 14.

The Markov matrix

A=







0.30 0.45 0.25
0.14 0.84 0.02
0.14 0.52 0.34






.

has eigenvalues 1,0.32, 0.16, exactly. The matrix L = log(A) is given to four decimal places by

L =







−1.5272 0.5991 0.9281
0.3054 −0.2371 −0.0683
0.3054 0.9023 −1.2078






,
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and has a negative off-diagonal entry. The closest Markov generator B to L as described above is

B =







−1.5272 0.5991 0.9281
0.3054 −0.3054 0
0.3054 0.9023 −1.2078






.

and the embeddable Markov matrix eA= eB (where B is entered to full precision) is given by

eA=







0.3000 0.4383 0.2617
0.1400 0.8046 0.0554
0.1400 0.5057 0.3543






.

One observes that all the entries of A− eA are less than 0.036 in absolute value.

The following exactly soluble example illustrates the use of some of our theorems.

Theorem 15. Let

Ls =







−1− s 1 s
s −1− s 1
1 s −1− s







where s ∈ R, and let As = eLs . Then

1. If s ≥ 0 then As is an embeddable Markov matrix.

2. If s < σ ∼−0.5712 then As has at least one negative entry.

3. If σ ≤ s < 0 then As is Markov but not embeddable.

Proof. Item 1 follows from the fact that Ls satisfies all the conditions for a Markov generator.

To prove item 2 we note that Ls = −(1+ s)I + B2 + sB where B is a permutation matrix. Let S be
the set of all s such that eLs is non-negative. If t ∈ S and s ≥ t then

Ls = Lt + (s− t)B− (s− t)I

where all the matrices commute, and

eLs = e−(s−t)eLt eB(s−t) ≥ 0,

so s ∈ S . Therefore S is an interval, which is obviously closed. A direct calculation shows that
all the entries of eL0 are greater than 0, so a perturbation argument implies that S contains all
sufficiently small negative numbers. Numerical calculations show that the smallest number σ ∈ S ,
which is necessarily negative, is approximately −0.5712. More rigorously if s <−1 then

det(As) = etr(Ls) = e−3(1+s) > 1

so As cannot be a Markov matrix and must have a negative entry. We conclude that −1≤ σ < 0.

Clearly Ls is not a Markov generator if σ ≤ s < 0. We prove item 3 by obtaining a contradiction
from the existence of a Markov generator Bs with eBs = As. Since

exp(Spec(Ls)) = Spec(As) = exp(Spec(Bs))
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we conclude that every eigenvalue of Ls differs from an eigenvalue of Bs by an integral multiple of
2πi. A direct computation shows that

Spec(Ls) =

¨

0,−
3(1+ s)

2
±
p

3(1− s)i
2

«

.

For s in the stated range, each non-zero eigenvalue λ of Ls satisfies |arg(λ)| < 5π/6 and the same
applies if one adds an integral multiple of 2πi to the eigenvalue. Hence each non-zero eigenvalue
λ of Bs satisfies |arg(λ)|< 5π/6 and (5) implies that Bs cannot be a generator.

Example 16.

The following illustrates the difficulties in dealing with Markov matrices that have negative eigen-
values. If c = 2π/

p
3 and

B = c







−1 1 0
0 −1 1
1 0 −1






,

then the eigenvalues of B are 0, −
p

3π ± πi. The matrix A = eB is self-adjoint with eigenvalues
1,−e−

p
3π,−e−

p
3π. If one uses Matlab’s ‘logm’ command to compute log(A), one obtains a matrix

with complex entries that is not close to B; it might be considered that ‘logm’ should produce a real
logarithm of a real matrix if one exists, but it is not easy to see how to achieve this.

Example 17.

We continue with the above example, but with the choice c = 4. The eigenvalues of B are now
0, −6± 3.4641i. Clearly A= eB is an embeddable Markov matrix. If one rounds to four digits one
obtains

A∼







0.3318 0.3337 0.3346
0.3346 0.3318 0.3337
0.3337 0.3346 0.3318






,

The use of ‘logm’ yields

log(A)∼







−4 0.3724 3.6276
3.6276 −4 0.3724
0.3724 3.6276 −4






,

which is also a Markov generator. We conclude that A is an embeddable Markov matrix in (at least)
two distinct ways.

This is not an instance of a general phenomenon. If one defines the 5× 5 cyclic matrix B by

Br,s =







−4 if r = s,
4 if r + 1= s,
4 if r = 5, s = 1,
0 otherwise,

then B is a Markov generator with eigenvalues 0, −7.2361±2.3511i, −2.7639±3.8042i. However
L = log(exp(B)), with the principal choice of the matrix logarithm, is a cyclic matrix with some
negative off-diagonal entries, so it cannot be a Markov generator.
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