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1 Introduction

We consider a Hausdorff topological space X and a σ-finite positive Borel measure m on X. Let
(E ,F) be a (symmetric) Dirichlet form on L2(X;m), namely, E is a Markovian closed symmetric
form with domain F linear dense in L2(X;m). In this paper, we follow exclusively [MR 92] for
the definition of E-quasi notions. For a closed set F ⊂ X, we set

FF = {u ∈ F : u = 0 m−a.e. on X \ F} Fb,F = FF ∩ L∞(X;m).

An increasing family {Fn} of closed sets is called an E-nest if the space ∪∞
n=1FFn is E1-dense in

F . A set N ⊂ X is said to be E-exceptional if N ⊂ ∩∞
n=1F

c
n for some E-nest {Fn}. ‘E-quasi-

everywhere’ or ‘E-q.e.’ will mean ‘except for an E-exceptional set’. A function defined E-q.e.
on X is said to be E-quasicontinuous if there exists an E-nest {Fn} such that the restriction of
u to each set Fn is continuous there. When the Dirichlet form is quasi-regular in the sense of
[MR 92], any u ∈ F admits an E-quasicontinuous version which will be denoted by u∗.

We consider a quasi-regular Dirichlet form (E ,F) and an associated standard process M =
(Xt, Px) on X. A purpose of the present paper is to prove that, for u ∈ F , the additive
functional(AF in abbreviation)

A
[u]
t = u∗(Xt) − u∗(X0) (1)

of the process M is a semimartingale ,namely, a sum of a martingale and a process of bounded
variation, if and only if there exists an E-nest {Fn} and positive constants Cn, n = 1, 2, · · · such
that u satisfies

|E(u, v)| ≤ Cn ‖v‖∞, ∀v ∈ Fb,Fn , n = 1, 2, · · · , (2)

where ‖v‖∞ denotes the m-essential sup norm of v ∈ L∞(X;m).

The existence of a special standard process associated with a quasi-regular Dirichlet form is
well known [MR 92]. In the present paper, we give another construction of an associated tight
special standard process as an image by a quasi-homeomorphism of a Hunt modification of a
Ray process. The importance of the notion of quasi-regularity of a Dirichlet form is in that it
is not only sufficient but also necessary for the existence of an associated right process which is
m-special standard and m-tight ([AM 91],[MR 92]). For instance, given simply an m-symmetric
right process M on a Lusin topological spaceX, M automatically becomesm-tight andm-special
standard, and consequently the associated Dirichlet form E on L2(X;m) becomes quasi-regular
and M can be modified outside some E-exceptional set to be a tight special standard process
([MR 92], [Fi 97]).

We note here that, when the Dirichlet space is regular in the sense of [FOT 94], the E-quasi
notions of [MR 92] defined above can be identified with those classical quasi notions introduced
for instance in [FOT 94] in terms of the (E1-)capacity. Indeed, an increasing sequence of closed
sets is an E-nest iff it is a generalized nest in the sense of [FOT 94], a set is E-exceptional iff it
is of zero capacity, and a function is E-quasicontinuous iff it is quasi continuous in the sense of
[FOT 94] (see Lemma 2.1). We shall take those identifications for granted for the moment.

When the Dirichlet space is regular and M is an associated Hunt process, the following facts
are already known ([F 80], [FOT 94, Theorem 5.4.2]): the AF A[u] for u ∈ F can be uniquely
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decomposed as

A[u] = M [u] +N [u], (3)

where M [u] is a martingale AF of finite energy and N [u] is a continuous AF of zero energy. N [u]

needs not be of bounded variation. It is of bounded variation if and only if there exists a set
function ν on X and an E-nest {Fn} such that ν|Fn is a finite signed measure for each n and ν
charges no E-exceptional set (such a set function ν is called a smooth signed measure with an
attached E-nest {Fn}) and further

E(u, v) = −
∫
X
v∗(x)dν(x), ∀v ∈ ∪∞

n=1Fb,Fn . (4)

In this case moreover, expressing ν as a difference ν1 − ν2 of two positive smooth measures and
denoting by Ak the positive continuous AF associated with νk by the Revuz correspondence,
k = 1, 2, it holds that

N [u] = A1 −A2. (5)

The above mentioned facts for a regular Dirichlet form and an associated Hunt pro-
cess will be systematically extended in §5 to a general quasi-regular Dirichlet space
and an associated standard process. Here we will make use of a regular representa-
tion and an associated quasi-homeomorphism of the underlying spaces as will be formu-
lated in §2 following [F 71a], [F 71b], [FOT 94], [CMR 94]. Such a method was already
adopted in [MR 92] in their specific context of a (local) compactification where a quasi-
homeomorphism is realized by an embedding, and they called it a transfer method. But we
would like to use this term in the present more general context. A Dirichlet space is called
strongly regular if the associated resolvent admits a version possessing a Ray property (see §2
for precise definition). In §4, we crucially need a refined transfer method involving a strongly
regular representation.

Thus we basically need to show for u ∈ F the equivalence between the inequality (2) and the
existence of a signed smooth measure ν satisfying equation (4). This will be done in §3 and
§4. While the inequality (2) follows readily from the equation (4), the proof of the converse
implication, especially the derivation of the smoothness of a signed measure is a very delicate
matter. It has been known however that a kind of strong Feller property of the resolvent of
the associated Markov process M yields the desired smoothness( [CFW 93], [FOT 94, Theorem
5.4.3], [F 97a]). In §3, we shall work with a strongly regular Dirichlet space to show that this
requirement can be weakened to a Ray property of the resolvent of the associated process. We
shall then employ in §4 a transfer method involving a strongly regular representation of the
Dirichlet space prepared in §2 to complete the proof of the desired equivalence.

The condition (2) is accordingly more easily verifiable than the existence of a signed smooth
measure satisfying equation (4). Actually it is enough to require inequality (2) holding for v in
a more tractable dense subspace of Fb,Fn . For instance, consider the simple case that the nest is
trivial: Fn = X,n = 1, 2, · · · . Then (2) is reduced to the condition that, for u ∈ F , there exists
a positive constant C such that the inequality

|E(u, v)| ≤ C ‖v‖∞, (6)
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holds for any v in the space

Fb = F ∩ L∞(X;m).

As will be seen in §6, the above condition is equivalent to the one obtained by replacing the
space Fb with its subspace L satisfying

(L) L is an E1-dense linear subspace of Fb, and, for any ε > 0, there exists a real function φε(t)
such that

|φε(t)| ≤ 1 + ε, t ∈ R; φε(t) = t, t ∈ [−1, 1];
0 ≤ φε(t) − φε(s) ≤ t− s, s < t, s, t ∈ R,

and φε(L) ⊂ L.

We shall further see in §6 that inequality (6) holding for v ∈ L is not only sufficient but also
necessary for the AF N

[u]
t to be of bounded variation with an additional property that

lim
t↓0

1
t
Em

(∫ t

0
|dN [u]

s |
)
<∞, (7)

where the integral inside the braces denotes the total variation of N [u] on the interval [0, t]. The
property (7) says that this PCAF has a finite Revuz measure.

When X is an infinite dimensional vector space and E is obtained by closing a pre-Dirichlet form
defined for smooth cylindrical functions on X, we may take as L the set of all smooth cylindrical
functions to check inequality (6).

When the Dirichlet space is regular, a natural choice of L is a dense subspace of C0(X) satifying
the condition (L). In this case, inequality (6) for L is evidently equivalent to the existence of a
unique finite signed measure ν satisfying the equation (4) for all v ∈ L. Our general theorem
in §4 assures that this ν is automatically smooth, namely, it charges no set of zero E1-capacity.
When the Dirichlet space is not only regular but also strongly local, we shall extend in §6 the
last statement to a function u ∈ Floc satisfying equation (4) for a signed Radon measure ν and
for all v belonging to a more specific subspace L of F ∩C0(X). We will see that this property of
u is equivalent to the condition that N [u]

t is of bounded variation and satisfies, for any compact
set K,

lim
t↓0

1
t
Em

(∫ t

0
IK(Xs)|dN [u]

s |
)
<∞. (8)

In §7 we will apply the last theorem of §6 to the energy forms E and the associated distorted
Brownian motions M living on closed subsets of Rd. In particular, we shall improve those
results obtained in [F 97a],[F 97b] to complete stochastic characterizations of BV functions and
Caccioppoli sets.

Finally we mention a celebrated paper [CJPS 80], in which it was already proved that, given a
general Markov process M = (Xt, Px) on a general state space X, a function u on X produces
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a semimartingale u(Xt) under Px for every x ∈ X if and only if there exist finely open sets En
with

∪∞
n=1En = X, Px( lim

n→∞ τEn = ∞) = 1 ∀x ∈ X

such that u is a difference of two excessive functions on each set En. In the present paper, we
restrict ourselves to the case that M is symmetric and the semimartingale property of u(Xt) is
required to hold only for E-q.e. starting point x ∈ X. As is clear from the above explanations,
our necessary and sufficient conditions of the type (2) are more easily verifiable in many cases
where X are of higher dimensions.

2 Representation and quasi-homeomorphism

We say that a quadruplet (X,m, E ,F) is a Dirichlet space if X is a Hausdorff topological space
with a countable base, m is a σ-finite positive Borel measure on X and E with domain F is a
Markovian closed symmetric form on L2(X;m). The inner product in L2(X;m) is denoted by
(·, ·)X and we let

Eα(·, ·) = E(·, ·) + α(·, ·)X α > 0.

We note that the space Fb = F ∩ L∞(X;m) is an algebra.

Given two Dirichlet spaces

(X,m, E ,F), (X̃, m̃, Ẽ , F̃),

we call them equivalent if there is an algebraic isomorphism Φ from Fb onto F̃b preserving three
kinds of metrics: for u ∈ Fb

‖u‖∞ = ‖Φu‖∞, (u, u)X = (Φu,Φu)X̃ , E(u, u) = Ẽ(Φu,Φu).

One of the two equivalent Dirichlet spaces is called a representation of the other.

The underlying spaces X, X̃ are said to be quasi-homeomorphic if there exist E-nest {Fn},
Ẽ-nest {F̃n} and a one to one mapping q from X0 = ∪∞

n=1Fn onto X̃0 = ∪∞
n=1F̃n such that its

restricition to each Fn is homeomorphic to F̃n.

We say that the equivalence as above is induced by a quasi-homeomorphism if there exists a
mapping q as above such that

Φu(x̃) = u(q−1(x̃)) x̃ ∈ X0.

Then m̃ is the image measure of m by q and (Ẽ , F̃) is the image of (E ,F) by q. Furthermore q
is quasi-notion preserving ([CMR 94, Cor.3.6]):

1. Let {En} be an increasing sequence of closed subsets of X. It is an E-nest if and only if
{q(Fn ∩ En)} is an Ẽ-nest.

2. N ⊂ X is E-exceptional if and only if q(X0 ∩N) is Ẽ-exceptional.
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3. A function f , E-q.e. defined on X, is E-quasicontinuous if and only if f ◦ q−1 is Ẽ-
quasicontinuous.

Let us now recall three kinds of regularity of Dirichlet spaces. We call a Dirichlet space
(X,m, E ,F) quasi-regular if there exists an E-nest consisting of compact sets, each element
in a certain E1 dense subspace of F admits its E-quasicontinuous version and there exists an
E-nest {Fn} such that the points of ∪∞

n=1Fn are separated by a certain coutable familiy of E-
quasicontinuous functions belonging to F . Every element of F then admits a quasicontinuous
version.

When X is locally compact, we denote by C0(X) (resp. C∞(X)) the space of continuous
functions on X with compact support (resp. vanishing at infinity). We call a Dirichlet space
(X,m, E ,F) regular if X is a locally compact separable metric space, m is a positive Radon
measure on X with full support and the space F ∩C0(X) is E1-dense in F and uniformly dense
in C0(X).

A submarkovian resolvent kernel Rα(x,B) is said to be a Ray resolvent if

Rα(C∞(X)) ⊂ C∞(X) α > 0

and there is a countable family C1 of non-negative function in C∞(X) separating points of X∆

such that

αRα+1u ≤ u u ∈ C1 α > 0.

Such a family C1 is said to be attached to the Ray resolvent Rα(x,B).

A Dirichlet space (X,m, E ,F) is called a strongly regular if X is a locally compact separable
metric space, m is a positive Radon measure on X with full support and the associated L2-
resolvent is generated by a Ray resolvent and a set C1 attached to this Ray resolvent is contained
in the space F ∩C∞(X). Any strongly regular Dirichlet space is regular (cf.[F 71b, Remark 2.2]
and [FOT 94, Lemma 1.4.2]).

We shall prove the following two theorems by combining those results in [F 71a], [F 71b],
[FOT 94] and [CMR 94].

Theorem 2.1 Any Dirichlet space admits its strongly regular representation.

Theorem 2.2 A Dirichlet space is quasi-regular if and only if some (and
equivalently any) of its regular representations is induced by a quasi-
homeomorphism.

We prepare a lemma about identifications of quasi-notions in the regular case. Suppose
(X,m, E ,F) is a regular Dirichlet space. The associated capacity Cap is defined for any open
set A ⊂ X by

Cap(A) = inf{E1(u, u) : u ∈ F , u ≥ 1A} inf φ = ∞
and for any set B ⊂ X by

Cap(B) = inf{Cap(A) : B ⊂ A open }.
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In [FOT 94], ‘q.e.’ means ‘except for a set of zero capacity’. A family {Fn} of increasing closed
subsets of X is then said in [FOT 94] to be a nest if

lim
n→∞Cap(X \ Fn) = 0

and to be a generalized nest if for any compact set K ⊂ X

lim
n→∞Cap(K \ Fn) = 0.

A function u defined ‘q.e.’ on X is said in [FOT 94] to be quasicontinuous if for any ε > 0 there
exists an open set A with Cap(A) < ε such that u|X−A is continuous.

Lemma 2.1 Suppose (X,m, E ,F) is regular, then

(i) a family of increasing closed sets is an E-nest iff it is a generalized nest in the sense of
[FOT 94],

(ii) N ⊂ X is E-exceptional iff Cap(N) = 0,

(iii) a function on X is E-quasicontinuous iff it is quasicontinuous in the sense of [FOT 94].

Proof. Let M = (Xt, Px) be a Hunt process on X which is associated with the form E in the
sense that the transition semigroup ptf of the process M is a version of the L2 semigroup Ttf
associated with E for any non-negative Borel function f ∈ L2(X;m).

(i) Denote by σE the hitting time of a set E:

σE = inf{t > 0 : Xt ∈ E} (inf φ = ∞).

In view of Lemma 5.1.6 of [FOT 94], we know that an increasing sequence {Fn} of closed sets
is a generalized nest iff

Px( lim
n→∞σX−Fn < ζ) = 0 q.e. x ∈ X, (9)

where ζ denotes the life time of M.

If (9) is true, then, for any bounded Borel ϕ ∈ L2(X;m), the function

R
(n)
1 ϕ(x) = Ex

(∫ σX−Fn

0
e−tϕ(Xt)dt

)
, x ∈ X, (10)

belongs to the space FFn and converges as n → ∞ to the 1-resolvent R1ϕ of M m-a.e. and in
E1-metric as well. Here we set the value of ϕ at the cemetery ∆ to be zero. Since the family
R1ϕ is dense in F , {Fn} is an E-nest.

If conversely {Fn} is an E-nest, then, for σ = limn→∞ σX−Fn , the function

u(x) = Ex

(∫ ζ

σ∧ζ
e−tϕ(Xt)dt

)
(11)

must vanish m-a.e. because u ∈ F is E1-orthogonal to ∪∞
n=1FFn . Since u is quasicontinuous, it

vanishes q.e. Choosing ϕ in (11) to be strictly positive on X, we arrive at the property (9).
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(ii) If N is E-exceptional, then

N ⊂ ∩∞
n=1(X − Fn) (12)

for some generalized nest {Fn} by virtue of (i). Then Cap(K ∩N) = 0 for any compact set K
and hence Cap(N) = 0. Conversely, any set N of zero capacity satisfies the inclusion (12) for a
certain nest {Fn} in the sense of [FOT 94] ,which is an E-nest by (i). Hence N is E-exceptional.

To see the equivalence (iii), let u be E-quasicontinuous with associated E-nest {Fn}. Since {Fn}
is a generalized nest by (i), u is quasicontinuous in the sense of [FOT 94] on each relatively
compact open subset of X, which in turn readily implies that it is quasicontinuous on X in the
sense of [FOT 94]. The converse implication is trivial as in the proof of (ii). 2

For a regular Dirichlet space, the notion ‘q.e.’ now becomes a synomym for ‘E-q.e.’ Further the
condition (9) with ‘q.e.’ being replaced by ‘E-q.e.’ becomes a stochastic characterization of an
E-nest.

Proof of Theorem 2.1 Given a general Dirichlet space (X,m, E ,F), a subalgebra L of
L∞(X;m) is said to satisfy condition (L) if
(L.1) L is a countably generated closed subalgebra of L∞(X;m),
(L.2) F ∩ L is dense both in (F , E1) and in (L, ‖ · ‖∞),
(L.3) L1(X;m) ∩ L is dense in (L, ‖ · ‖∞).

Denote by L∞
0 (X;m) the closure of L2 ∩L∞ in L∞ and by Ḡα the extension of the L2 resolvent

operator Gα associated with E from L2∩L∞ to L∞
0 . A closed subalgebra L of L∞

0 (X;m) is said
to satisfy condition (R) if
(R.1) Ḡα(L) ⊂ L for any α > 0,
(R.2) L is generated by a countable subset L0 of F ∩ L such that each u ∈ L0 is non-negative
and satisfies

αḠα+1u ≤ u, α > 0.

Let L be a closed subalgebra of L∞(X;m) satisfying condition (L) and X̃ be its character space.
By virtue of [FOT 94, Th.A.4.1], there exists then a regular Dirichlet space with underlying
space X̃ which is equivalent to the given Dirichlet space. Such a regular Dirichlet space is called
a regular representation with respect to L. [F 71a, Th.3] went further asserting that there exists
a subalgebra L satisfying not only (L) but also (R), and the regular representation with respect
to this L becomes strongly regular.

[FOT 94, Th.A.4.1] is a reformulation of [F 71a, Th.2] just by removing the irrelevent assumption
that X is locally compact and m is Radon. In the same way, [F 71a, Th.3] can be reformulated.
2

Proof of Theorem 2.2 In view of [F 71b, Th.2.1] (c.f. [FOT 94, Th.A.4.2]), we see that,
whenever two regular Dirichlet spaces are equivalent, then the equivalence is induced by a
quasi-homeomorphism. Here, the quasi-homeomorphism was formulated by the nest defined
by the associated capacities, but it is a quasi-homeomorphism in the present sense because of
Lemma 2.1 (i).
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On the other hand, [CMR 94, Th.3.7] shows that a Dirichlet space is quasi-regular if and only if
it is equivalent to some regular Dirichlet space by means of a quasi-homeomorphism. We arrive
at Theorem 2.2 by combining those two facts. 2

Corollary 2.1 If two quasi-regular Dirichlet spaces are equivalent, then the equivalence is in-
duced by a quasi-homeomorphism.

Corollary 2.2 Any quasi-regular Dirichlet space is equivalent to a strongly regular Dirichlet
space by means of a quasi-homeomorphsim.

3 Smoothness of signed measures for a strongly regular Dirich-
let spaces

In this section, we work with a fixed strongly regular Dirichlet space
(X,m, E ,F). For the associated Ray resolvent Rα(x,B), there exists a substochastic ker-
nel µ(x,B) such that

lim
α→∞αRαf(x) =

∫
X
f(y)µ(x, dy) ∀f ∈ C∞(X).

A point x ∈ X is called a branching point if the measure µ(x, ·) is not concentrated on {x}. The
set Xb of all branching points is called the branch set. One can then construct a Markov process
M = (Xt, Px) on X called a Ray process with resolvent Rα(x,B), which is known to enjoy the
following specific properties ([R 59], [KW 67]). We denote by X∆ the one point compactification
of X and put ζ(ω) = inf{t ≥ 0 : Xt(ω) = ∆}.
(M.1) Px(X0 = x) = 1 x ∈ X −Xb.

(M.2) The sample path Xt = Xt(ω) is cadlag; Xt(ω) ∈ X∆ is right continuous for all t ≥ 0, and
have the left limit Xt−(ω) ∈ X∆ for all t > 0. Xt(ω) = ∆ for any t ≥ ζ(ω).

(M.3) Px(Xt ∈ X∆ −Xb) = 1 ∀x ∈ X, ∀t ≥ 0.

(M.4) M is strong Markov.

(M.5) (quasi-left continuity in a restricted sense)
If stopping times σn increase to σ, then, for any x ∈ X,

Px

(
lim
n→∞Xσn = Xσ|σ <∞, lim

n→∞Xσn ∈ X∆ −Xb

)
= 1.

A non-negative universally measurable function f on X is said to be 1-supermedian if

αRα+1f(x) ≤ f(x) α > 0, x ∈ X,

and to be 1-excessive if

αRα+1f(x) ↑ f(x) α→ ∞, x ∈ X.

For a 1-supermedian function f , f̂ denotes its 1-excessive regularization :

f̂(x) = lim
α→∞αRα+1f(x).
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Actually f̂ is then 1-excessive and f̂(x) ≤ f(x) x ∈ X. We shall use the following description
of the branch set(cf. [KW 67]). For the family C1(⊂ F ∩ C∞(X)) of 1-supermedian functions
attached to the Ray resolvent, we set

C ′
1 = {f ∧ c : f ∈ C1, c positive rational }.

Then

Xb =
⋃
g∈C′

1

{x ∈ X : g(x) > ĝ(x)}. (13)

For a Borel set B ⊂ X, we let

σB(ω) = inf{t > 0 : Xt ∈ B} σ̇(ω) = inf{t ≥ 0 : Xt ∈ B},
with the convention that inf φ = ∞ and we further let

pB(x) = Ex
(
e−σB

)
ṗB(x) = Ex

(
e−σ̇B

)
.

When B is open, pB = ṗB and it is a 1-excessive Borel measurable function.

The facts stated in the next lemma are taken from [F 71b] but we shall present alternative
elementary proof of them.

Lemma 3.1 (i) Cap(Xb) = 0.

(ii) Let A be an open set with Cap(A) < ∞ and eA ∈ F be its (1-)equilibrium potential. Then
pA(x) is a Borel 1-excessive version of eA.

Proof. (i) Take any g ∈ C ′
1. Since αRα+1g is E1-convergent to g ∈ F , ĝ is an E-quasicontinuous

version of g. But g is continuous and hence g = ĝ E-q.e., namely, Cap(g > ĝ) = 0. By (13) and
the countable subadditivity of the capacity, we arrive at (i).

(ii) Since pA(x) = 1 for all x ∈ A − Xb and consequently m-a.e. on A by (M.6), the proof of
[FOT 94, Lemma 4.2.1] (where pA(x) = 1 ∀x ∈ A) works without any change in proving that
pA is a version of eA.

2

We now proceed to the proof of a proposition which is an intermidiate but crucial step in
establishing the equivalence of the inequality (2) and the exisitence of a smooth signed measure
satisfying (4).

Proposition 3.1 Let u ∈ F and w ∈ Fb. Suppose there exists a finite signed measure ν = νu,w
on X such that

E(u, vw) = −
∫
X
vdν ∀v ∈ F ∩ C∞(X). (14)

Then ν is smooth, namely, ν charges no set of zero capacity. Moreover it holds that

E(u, vw) = −
∫
X
v∗dν ∀v ∈ Fb, (15)

where v∗ is any E-quasicontinuous version of v.
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Lemma 3.2 Assume the condition of Proposition 3.1.

(i) Suppose vn satisfies the equation (14), E(vn, vn) is bounded, vn(x) is uniformly bounded and
vn converges to a function v ∈ F pointwise and in L2(X;m). Then v satisfies (14).

(ii) The equation (14) holds for the product v = v1 · v2 for any v1 ∈ F ∩ C∞(X) and for any
bounded Borel 1-excessive function v2 ∈ F .

Proof. (i) w · vn then E-weakly convergent to w · v(cf.[FOT 94, Th.1.4.2]).

(ii) Fix an arbitrary non-negative v1 ∈ F ∩C∞(X) and α > 0 and let

H = {f ∈ L2
+(X;m) : bounded Borel, (14) holds for v = v1 ·Rαf}.

Since Rα(C0(X)) ⊂ F ∩ C∞(X), C0(X) ⊂ H. If f1, f2 ∈ H, c1f1 + c2f2 ≥ 0 for some constants
c1, c2, then clearly C1f1 + c2f2 ∈ H. If fn ∈ H increases to a bounded function f ∈ L2(X;m),
then v1 · Rαfn is E-bounded, uniformly bounded, and convergent to v1 · Rαf pointwise and in
L2. Hence f ∈ H by virtue of (i). By the monotone lemma, we see that equation (14) holds for
v = v1 · Rαf for any nonnegative bounded Borel f ∈ L2.

Next take any bounded Borel 1-excessive function v2 ∈ F . Since αRα+1v2 is E1-convergent to
v2 as α→ ∞, v1 ·αRα+1v2 is E-bounded, uniformly bounded and convergent to v1 · v2 pointwise
and in L2. Hence (14) holds for v = v1 · v2 by (i) again. 2

Lemma 3.3 Assume the condition of Proposition 3.1 and denote by ν̄ the total variation of
the finite signed measure ν.

(i) ν̄(Xb) = 0.

(ii)

Pν̄(Xt− ∈ Xb ∃t ∈ (0,∞)) = 0. (16)

Proof. (i) We use the description (13) of the branch set. Take g ∈ C ′
1. For any h ∈ F ∩C∞(X),

hg ∈ F ∩ C∞(X) and

E(u,whg) = −
∫
X
hgdν.

On the other hand, ĝ is a bounded Borel 1-excessive function and defines the same element of
F as g because αRα+1g is E1-convergent to g ∈ F . Therefore, by Lemma 3.2 (i),

E(u,whg) = −
∫
X
hĝdν,

and consequently
∫
X
h(g − ĝ)dν = 0 ∀h ∈ F ∩ C∞(X),

which implies that ν̄({x ∈ X : g(x) > ĝ(x)}) = 0.
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(ii) Because of lemma 3.1 (i), there exists an decresing open sets An including Xb such that
limn→∞Cap(An) = 0. Due to Lemma 3.1 (ii) and Lemma 3.2 (ii), we then have

E(u,whpAn) = −
∫
X
hpAndν ∀h ∈ F ∩ C∞(X). (17)

In view of

Cap(An) = E1(pAn , pAn) ≥ (pAn , pAn)L2 ,

pAn is E-bounded, uniformly bounded and L2-convergent to zero. Therefore, from (17) and
Lemma 3.2 (i), we have for

p(x) = lim
n→∞ pAn(x)

the identity ∫
X
h(x)p(x)dν(x) = 0 ∀h ∈ F ∩ C∞(X),

which implies that

0 = ν̄({x ∈ X : p(x) > 0}) = Pν̄(Λ),

where

Λ = {ω : lim
n→∞σAn(ω) <∞}.

Since the ω-set in the braces of the left hand side of (16) is contained in the measurable ω-set
Λ, we get to (16).

2

Proof of Porposition 3.1 Take any compact set K with Cap(K) = 0. For the first assertion
of the proposition, it suffices to show that

ν̄(K) = 0. (18)

Choose a sequence {An} of relatively compact open sets such that

An+1 ⊃ Ān ⊃ K

∞⋂
n=1

An = K.

Since Cap is a Choquet capacity,

lim
n→∞Cap(An) = lim

n→∞Cap(Ān) = Cap(K) = 0.

On the other hand, M is quasi-left continuous under Pν̄ by virtue of (M.5) and Lemma 3.3 (ii):
for any stopping times σn increasing to σ,

Pν̄

(
lim
n→∞Xσn = Xσ , σ <∞

)
= Pν̄(σ <∞).
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Hence

Pν̄

(
lim
n→∞σAn 6= σ̇K

)
= 0,

and accordingly

lim
n→∞ pAn(x) = ṗK(x) for ν̄ − a.e. x ∈ X.

We now have the equation (17) for pAn by Lemma 3.1 (i) and Lemma 3.2 (ii). In the same way
as in the proof of the preceding lemma, we see that the left hand side of this equation tends to
zero and consequently

∫
X
h(x)ṗK(x)dν(x) = 0 ∀h ∈ F ∩ C∞(X),

which means that

ν̄(ṗK > 0) = 0.

But ṗK(x) = 1 for x ∈ K −Xb and hence ν̄(K −Xb) = 0, which combined with Lemma 3.1 (i)
proves the desired (18).

For the second assertion, take any v ∈ Fb and let ‖v‖∞ = M. We can then find a sequence of
functions vn ∈ F ∩ C∞(X) E1-convergent to v such that supx∈X |vn(x)| ≤ M and further vn
converges E-q.e. to an E-quasicontinuous version v∗ of v. As lemma 3.2 (i), the desired identity
(15) now follows from (14) for vn. 2

We are now in a position to prove the main theorem of this section.

Theorem 3.1 For u ∈ F , the next two conditions are equaivalent:

(i) There exists an E-nest {Fn} for which the inequality (2) is valid for some positive constants
Cn.

(ii) There exists a signed smooth measure ν with some attached E-nest {Fn} for which the
equation (4) is valid.

Proof of the implication (ii) ⇒ (i). Suppose (ii) is fulfilled. Take any v ∈ Fb,Fn and let
M = ‖v‖∞. Then v∗ ≤M E − q.e. and further v∗ = 0 E − q.e. on X \Fn. Therefore the absolute
value of the right hand side of (4) is domonated by Cn ·M with Cn being the total variation of
ν on the set Fn.

2

The converse implication (i) ⇒ (ii) will be proved in the following more specific form.

Proposition 3.2 Suppose, for u ∈ F , the inequality (1) is valid for some E-nest {Fn}. Then
there exists a smooth signed measure ν with an attached E-nest {F ′

n} with F ′
n ⊂ Fn, n = 1, 2, · · · ,

for which the equation (4) is valid.

13



In the rest of this section, we assume that u ∈ F satisfies (1) for an E-nest {Fn}. We shall
construct ν and {F ′

n} of Proposition 3.2 by a series of lemmas.

First fix an arbitrary w belonging to the space FFn,b for some n. Then v · w ∈ FFn,b for any
v ∈ Fb,

|E(u, v · w)| ≤ Cn‖v · w‖∞ ≤ Cn‖w‖∞ · ‖v‖∞, v ∈ Fb.
Since this inequality holds for any v in the space F∩C∞(X) which is uniformly dense in C∞(X),
there exists a unique finite signed measure ν = νw for which the equation (14) is valid. In virtue
of Proposition 3.1, νw charges no set of zero capacity and

E(u, v · w) = −
∫
X
v∗(x)dνw(x) ∀v ∈ Fb. (19)

Lemma 3.4

w∗
1dνw2 = w∗

2dνw1 w1, w2 ∈ ∪∞
n=1FFn,b.

Proof. For any v ∈ Fb,

E(u, vw1w2) = −
∫
X
v∗w∗

1dνw2 = −
∫
X
v∗w∗

2dνw1 .

2

This lemma says that, roughly speaking, (w∗)−1dνw is independent of w and a candidate of the
measure ν we want to construct. To make a rigorous construction, we need to consider a Hunt
process associated with the given strongly regular Dirichlet space in order to use a general theory
in [FOT 94]. Such a process can be immediately constructed from the Ray process M = (Xt, Px)
already being considered . In fact, Lemma 3.1 (ii) readily implies the following ([F 71b, Th.3.9]):
for any set B ⊂ X with Cap(B) = 0, there exists a Borel set N ⊃ B with Cap(N) = 0 such
that X −N is M-invariant in the sense that

Px(Xt ∈ X∆ −N, X−t ∈ X∆ −N ∀t ≥ 0) = 1. ∀x ∈ X −N.

Since Cap(Xb) = 0 by Lemma 3.1 (i), the branch set is included in a set N of the above type. On
account of the properties (M.1) ∼ (M.5) of the Ray process M, we can get a Hunt process on
X still associated with the form E first by restricting the state space of M to X∆ −N and then
by making each point of N to be a trap( see [FOT 94, Th.A.2.8,A.2.9] for those procedures).
We may call the resulting Hunt process a Hunt modification of the Ray process M.

In what follows in this section, M = (Xt, Px) denotes a Hunt process on X associated with the
form E . For a strictly positive bounded Borel function ϕ on X with ϕ ∈ L2(X;m), we put

ρn(x) = R
(n)
1 ϕ(x), x ∈ X,

where the right hand side is defined by (10). Here, we set ϕ(∆) = 0. By [FOT 94, Th.4.4.1], we
know that ρn is an E-quasicontinuous Borel function in FFn,b. We then introduce the sets

En = {x ∈ X : ρn(x) ≥ 1
n
}, n = 1, 2, · · · , N0 = X − (∪∞

n=1En) . (20)
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En is a quasi-closed Borel set, increasing in n and En ⊂ Fn, n = 1, 2, · · · . Since N0 = {x ∈ X :
limn→∞ ρn(x) = 0}, we see that

Cap(N0) = 0 (21)

owing to the stochastic charcterization (9) of the E-nest {Fn}.
We define ν by

ν(dx) =
1

ρn(x)
νρn(dx) on En, n = 1, 2, · · · , ν(N0) = 0. (22)

For m > n, we have from Lemma 3.4

1
ρm(x)

νρm(dx) =
1

ρn(x)
νρn(dx) on En

which means that the above definition makes sense. ν|En is then a finite signed measure for each
n and ν charges no set of zero capacity. Moreover

E(u, v · w) = −
∫
X
v∗w∗ν(dx) v ∈ Fb, w ∈ ∪∞

n=1FFn,b. (23)

In fact, the above definition of ν and Lemma 3.4 imply that

νw(dx) = w∗ν(dx) w ∈ ∪∞
n=1FFn,b,

and we are led to (23) from (19).

In order to construct an appropriate E-nest from {En}, we prepare a lemma.

Lemma 3.5 Suppose Γn, n = 1, 2, · · · , are quasi-closed, decreasing in n and

Cap (∩∞
n=1Γn) = 0.

Then

lim
n→∞Cap(Γn ∩K) = 0 for any compact set K.

Proof. In view of the definition of the quasi-closed set ([FOT 94, pp68]), we can find, for any
ε > 0, an open set ω with Cap(ω) < ε such that Γn − ω are closed for all n. For any compact
K, (Γn − ω) ∩K are decreasing compact sets. Since Cap is a Choquet capacity,

lim
n→∞Cap((Γn − ω) ∩K) = Cap(∩∞

n=1(Γn − ω) ∩K) ≤ Cap(∩∞
n=1Γn) = 0.

We then get limn→∞Cap(Γn ∩K) ≤ ε from

Cap(Γn ∩K) ≤ Cap((Γn − ω) ∩K) + Cap(ω).

2
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Proof of Proposition 3.2 Take a sequence ε` ↓ 0. Since the sets En defined by (20) are quasi-
closed, we can find decresing open sets ω` with Cap(ω`) < ε` and En − ω` are closed for all n
and `.

Let us define increasing closed sets F ′
n by

F ′
n = En − ωn n = 1, 2, · · · (24)

and prove that

lim
n→∞Cap(K − F ′

n) = 0 for any compact K. (25)

Since

K − F ′
n = (K ∩Ecn) ∪ (K ∩ ωn),

we have

Cap(K − F ′
n) ≤ Cap(K ∩ Ecn) +

1
n
.

We let

Γn = {ρn ≤ 1
n
}.

Γn are then quasi-closed and

Ecn ⊂ Γn ∩∞
n=1 E

c
n = ∩∞

n=1Γn = N0

because Ecn = {ρn < 1
n}. On account of the preceding Lemma and (21), we conclude that

Cap(K ∩ Ecn) ≤ Cap(K ∩ Γn) → 0 n→ ∞.

(25) is proven and {F ′
n} is an E-nest by Lemma 2.1. Moreover

F ′
n ⊂ En ⊂ Fn, n = 1, 2 · · · .

For the measure ν defined by (22), ν|F ′
n

is therefore a finite signed measure for each n. Since ν
charges no set of zero capacity, it becomes a smooth measure for which the present E-nest {F ′

n}
is attached.

Finally take any w belonging to the space FF ′
n,b for some n. Let v = (nρn) ∧ 1. Then v = 1 on

En(⊃ F ′
n) and v · w = w. Thus the equation (23) leads us to

E(u,w) =
∫
X
w∗(x)ν(dx) ∀w ∈ ∪∞

n=1FF ′
n,b, (26)

completing the proof of Proposition 3.2. 2

Theorem 3.1 is proved. Here we add a theorem corresponding to a special case of Theorem 3.1
where the E-nests are trivial.
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Theorem 3.2 For u ∈ F , the next two conditions are equivalent:

(i) The inequality (6) holds for some constant C > 0.

(ii) There exists a finite signed measure ν charging no E-exceptional set such that the equation
(4) holds for any v ∈ Fb.

Proof. The proof of the implication (i) ⇒ (ii) is the same as the corresponding proof of Theorem
3.1. The converse can be viewed as a special case of Proposition 3.1 (the case where w = 1). 2

4 Transfers of analytic theorems to a quasi-regular Dirichlet
space

First, we transfer Theorem 3.1 from a strongly regular Dirichlet space to a quasi-regular Dirichlet
space.

Theorem 4.1 Let (X,m, E ,F) be a quasi-regular Dirichlet space. For u ∈ F , the next two
conditions are equivalent:

(i) There exists an E-nest {En} for which the inequality (2) is valid for some positive constants
Cn.

(ii) There exists a signed smooth measure ν with some attached E-nest {En} for which the
equation (4) is valid.

Proof. By Corollary 2.2, the quasi-regular Dirichlet space (X,m, E ,F) is equaivalent to a
certain strongly regular Dirichlet space (X̃, m̃, Ẽ , F̃) by a quasi-homeomprphism q; there exist
E-nest {Fn}, Ẽ-nest ˜{Fn}, q is a one to one mapping from X0 = ∪∞

n=1Fn onto X̃0 = ∪∞
n=1F̃n, its

restriction to each Fn is homeomprphic to F̃n, and the map from Fb to F̃b defined by

(Φu)(x̃) = u(q−1(x̃)) x̃ ∈ X̃0

satisfies

‖u‖∞ = ‖Φu‖∞, (u, u)X = (Φu,Φu)Ẋ , E(u, u) = Ẽ(Φu,Φu).

q is E-quasi notions preserving as is explained in §2.
Suppose that the condition (i) is fulfilled. Let

ũ = Φ(u)(∈ F̃), Ẽn = q(En ∩ Fn) n = 1, 2, · · ·

Then, {Ẽn} is an Ẽ-nest and

|Ẽ(ũ, ṽ)| ≤ Cn‖ṽ‖∞, ∀ṽ ∈ F̃b,Ẽn
, n = 1, 2, · · ·

for the same constant Cn as in (i).
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By virtue of Theorem 3.1, there exists a smooth signed measure ν̃ on X̃ with an attached Ẽ-nest
{Ẽ′

n} for which the equation

Ẽ(ũ, ṽ) = −
∫
X̃
ṽ∗(x̃)dν̃(x̃), ∀ṽ ∈ ∪∞

n=1F̃b,Ẽn

holds. Let

ν(B) = ν̃(q(B ∩X0)), E′
n = q−1(Ẽ′

n ∩ F̃n) n = 1, 2, · · ·
Then we can easily see that {E′

n} is an E-nest, ν is a smooth signed measure on X with the
attached E-nest {E′

n}. By rewiting the above equation and noting that v∗(x) = ṽ∗(qx) gives an
E-quasicontinuous version of v = Φ−1(ṽ), we arrive at the equation (4) holding for u, ν, {Ẽ′

n},
getting the conclusion (ii).

The converse implication (ii) ⇒ (i) can be directly shown as the corresponding proof of Theorem
3.1. 2

In exactly the same way, Theorem 3.2 can be transfered from a strongly regular Dirichlet space
to a quasi-regular Dirichlet space.

Theorem 4.2 Let (X,m, E ,F) be a quasi-regular Dirichlet space. For u ∈ F , the next two
conditions are equivalent:

(i) The inequality (6) holds for some constant C > 0.

(ii) There exists a finite signed measure ν charging no E-exceptional set such that the equation
(4) holds for any v ∈ Fb.

For later convenience, we also transfer Proposition 3.1 in the following manner:

Proposition 4.1 Let (X,m, E ,F) be a quasi-regular Dirichlet space. Let u ∈ F and w ∈ Fb.
Suppose there exists a positive constant C = Cu,w such that

|E(u, vw)| ≤ C‖v‖∞ ∀v ∈ Fb.
Then there exists uniquely a finite signed smooth measure ν for which the equation (15) is valid.

Proof. In the same way as in the proof of Theorem 4.1, the above inequality is honestly inherited
to a strongly regular representation, where we can use Proposition 3.1 to obtain the conclusion
as above which can be transfer back to the quasi-regular Dirichlet space also in the same way
as in the proof of Theorem 4.1. 2

5 Transfers of stochastic contents to a quasi-regular Dirichlet

space

This section is devoted to transfers of probabilistic notions and theorems from a regular Dirichlet
space to a quasi-regular Dirichlet space. In particular, we formulate the stochastic significance
of the condition (ii) in Theorem 4.1 more precisely than what was mentioned in §1.
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To this end, let us first consider a regular Dirichlet space (X,m, E ,F) and an associated Hunt
process M = (Xt, Px) on X. In this context, we start with mentioning some probabilistic
characterizations of E-exceptional sets in a convenient way for later use.

A set N ⊂ X is called M-exceptional if N is contained in a nearly Borel set N̂ such that
Pm(σN̂ < ∞) = 0. A set N is said to be (M-)properly exceptional if it is a nearly Borel
measurable m-negligible set and its complement X−N is M-invariant. We call N (M-)properly
exceptional in the standard sense if, in the above definition of the proper exceptionality, the
M-invarance of X − N is weakened to the M-invariance up to the life time in the following
sense:

Px(Xt, Xt− ∈ X −N ∀t ∈ [0, ζ)) = 1, ∀x ∈ X −N.

Remark 5.1 The last notion of the exceptionality makes sense not only for the present Hunt
process but also for a standard process, and we shall later utilize it for a standard process
associated with a quasi-regular Dirichlet space.

Lemma 5.1 The following conditions for a set N ⊂ X are equivalent each other:

(i) N is E-exceptional.

(ii) N is M-exceptional.

(iii) N is contained in a properly exceptional set.

(iv) N is contained in a properly exceptional set in the standard sense.

Proof. The equivalence of the first three conditions are proven in [FOT 94]. The implication
(iii)⇒(iv)⇒(ii) is also obvious. 2

Remark 5.2 (i) In studying a Hunt process M associated with a regular Dirichlet space
(X,m, E ,F), the state space of M needs not to be the entire space X. Indeed, we may well
consider a Borel subset N0 of X with m(N0) = 0 and a Hunt process M with state space
X − N0 such that it is associated with a Dirichlet form E on L2(X;m) in the sense that its
transition function on X − N0 generates the L2-semigroup corresponding to E . Then the set
N0 becomes automatically E-exceptional, because it is properly exceptional with respect to the
trivial extension M′ of M to X (M′ is obtained from M by joining every point of N0 as a trap,
see [FOT 94, Th.A.2.9]). M′ is still associated with E and hence Lemma 5.1 applies.

(ii) Given a Hunt process M on X−N0 as above, we call a set N M-properly exceptional (resp.
M-properly exceptional in the standard sense) if N ⊃ N0, N is nearly Borel, m(N) = 0 and
X − N(⊂ X − N0) is M-invariant (resp. M-invariant up to the life time). With this slight
modification of the notion of proper exceptionality, not only Lemma 5.1 but also what will be
stated below about additive functionals remain valid for a Hunt process M on X−N0 as above.

(iii) We can and we shall allow an analogous freedom of choice of the state space about a
standard process associated with a quasi-regular Dirichlet space, accompanyed by an analogous
modification of the proper exceptionality in the standard sense.

We quote from [FOT 94] those basic notions and theorems concerning additive functionals of
the Hunt process M on X. By convention, any numerical function f on X is extended to the
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one-point compactification X∆ by setting f(∆) = 0. Let Ω, {Ft}t∈[0,∞], ζ, θt be the sample space,
the minimum completed admissible filtration, the life time and the shift operator respectively
attached to the Hunt process M. An extended real valued function At(ω) of t ≥ 0 and ω ∈ Ω is
called an additive functional (AF in abbreviation) if it is {Ft}-adapted and there exist Λ ∈ F∞
with θtΛ ⊂ Λ, ∀t > 0 and a properly exceptional set N ⊂ X with Px(Λ) = 1, ∀x ∈ X−N, such
that, for each ω ∈ Ω, A0(ω) = 0, At(ω) is cadlag and finite on [0, ζ(ω)), At(ω) = Aζ(ω)(ω), t ≥
ζ(ω), and

At+s(ω) = As(ω) +At(θsω), s, t ≥ 0.

Λ (resp. N) in the above definition is called a defining (resp. exceptional) set for the AF A. We
regard two AF’s to be equivalent if

Px

(
A

(1)
t = A

(2)
t

)
= 1, t ≥ 0, E − q.e. x ∈ X.

Then we can find a common defining set Λ and a common properly exceptional set N of A(1)

and A(2) such that A(1)
t (ω) = A

(2)
t (ω), ∀t ≥ 0, ∀ω ∈ Λ. Here we have to use Lemma 4.1 together

with the fact that the ω-set

Γ = {ω ∈ Ω : Xt(ω), Xt−(ω) ∈ X∆ −N ∀t ≥ 0}

is F∞-measurable.

An AF At(ω) is said to be finite, cadlag and continuous respectively if it satisfies the respective
property at every t ∈ [0,∞) for each ω in its defining set. A [0,∞]-valued continuous AF is called
a posiitve continuous AF (PCAF in abbreviation). We denote by A+

c the set of all PCAF’s. We
shall call an AF At(ω) of bounded variation if it is of bounded variation in t on each compact
subinterval of [0, ζ(ω)) for every fixed ω in a defining set of A.

A positive Borel measure µ is called a smooth measure if µ charges no E-exceptional set and
there is an E-nest {Fn} such that µ(Fn) is finite for each n. The totality of smooth measures
is denoted by S. There is a one to one correspondence between (the equivalence classes of) A+

c

and S by the Revuz correspondence:

lim
t↓0

1
t
Eh·m

(∫ t

0
f(Xt)dAt

)
=

∫
X
h · fdµ, A ∈ A+

c , µ ∈ S, (27)

holding for any non-negative Borel function f and γ-excessive function h, γ ≥ 0. The smooth
measure corresponding to a PCAF A in the above way is said to be the Revuz measure of A.

For any u ∈ F , there exists a unique finite smooth measure µ〈u〉 on X, which satisfies the
following equation in the case that u ∈ Fb:∫

X
f∗(x)µ〈u〉(dx) = 2E(u · f, u) − E(u2.f) ∀f ∈ Fb. (28)

µ〈u〉 is called the energy measure of u ∈ F .
The energy e(A) of an AF A is defined by

e(A) = lim
t↓0

1
2t
Em(A2

t ).
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For u ∈ F , A[u]
t defined by (1) is (up to the equivalence specified above) a finite cadlag AF of

finite energy. The families of martingale AF’s of finite energy and CAF’s of zero energy are
defined respectively by

◦
M= {M : finite cadlag AF Ex(M2

t ) <∞, Ex(Mt) = 0 q.e. and e(M) <∞},

Nc = {N : CAF Ex(|Nt|) <∞ q.e. and e(N) = 0}.

For any u ∈ F , the AF A[u] admits a decomposition (3) uniquely up to the equivalence specified

above, where M [u] ∈ ◦
M and N [u] ∈ Nc ([FOT 94, Th.5.2.2]). The energy measure µ〈u〉 of u

coincides with the Revuz measure of the quadratic variation 〈M [u]〉 ∈ A+
c of the AF M [u]

([FOT 94, Th. 5.2]). Furthermore [FOT 94, Th.5.4.2] asserts the following: the CAF N [u] is
of bounded variation if and only if the condition (ii) of Theorem 4.1 is valid for some signed
smooth measure ν. In this case moreover, N [u] admits an expression (5) for some PCAF’s Ak

corresponding to smooth measures νk, k = 1, 2, by the Revuz correspondence and it holds that
ν = ν1 − ν2.

Now we turn to a general quasi-regular Dirichlet space (X,m, E ,F). Let (X̃, m̃, Ẽ , F̃) be its
regular representation and

M̃ = (Ω̃, {F̃t}t∈[0,∞], X̃t, ζ̃ , P̃x̃)

be a Hunt process on X̃ associated with the latter (one may take for instance a strongly regular
representation and a Hunt modification of the associated Ray process). By Theorem 2.2, the
two Dirichlet spaces are related each other just as in the first paragraph of the proof of Theorem
4.1. We shall use the notations {Fn},X0, {F̃n}, X̃0, q,Φ, appearing in that paragraph without
repeating the explanation. We are ready to construct a standard process on X associated with
E as an image of M̃ by q−1 in a similar way to [F 71b].

Applying the stochastic characterization (9) to the Ẽ-nest {F̃n}, we can find an M̃-properly
exceptional Borel set Ñ1 including X̃ − X̃0 such that

P̃x( lim
n→∞σX̃−F̃n

< ζ̃) = 0 ∀x̃ ∈ X̃ − Ñ1. (29)

In other words, we have

P̃x(Λ̃1) = 1 ∀x̃ ∈ X̃ − Ñ1

for the set Λ̃1 = Λ̃11 ∩ Λ̃12 where

Λ̃11 = {ω̃ ∈ Ω̃ : X̃t, X̃t− ∈ X̃∆̃ − Ñ1 ∀t ≥ 0}

Λ̃12 = {ω̃ ∈ Ω̃ : lim
t→∞σX̃−F̃n

≥ ζ̃(ω̃)}.

Adjoin a point ∆ to X as an extra point (as a point at infinity if X is locally compact) and
extend q to a one to one mapping from X0 ∪∆ onto X̃0 ∪ ∆̃ by setting q(∆) = ∆̃. We define an
E-exceptional Borel set N1 ⊂ X by

X −N1 = q−1(X̃ − Ñ1). (30)
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We let

Ω = Λ̃1 Ft = F̃t ∩ Λ̃1 t ∈ [0,∞]. (31)

The element of Ω (resp. {Ft}) is denoted by ω (resp. Λ) instead of ω̃ (resp. Λ̃). Finally let us
define Xt, ζ, Px by

Xt(ω) = q−1(X̃t(ω)) ω ∈ Ω, t ≥ 0, ζ(ω) = ζ̃(ω), ω ∈ Ω, (32)

Px(Λ) = P̃qx(Λ) x ∈ X ∪ ∆ −N1, Λ ∈ F∞. (33)

With these definitions of elements, we put

M̃1 = (Ω, {Ft}t∈[0,∞], X̃t, ζ̃ , P̃x̃),

M1 = (Ω, {Ft}t∈[0,∞],Xt, ζ, Px).

M̃1 is a Hunt process on X̃− Ñ1 which is associated with the regular Dirichlet form Ẽ . We shall
call M1 the image of the Hunt process M̃1 by the quasi-homeomorphism q−1.

Theorem 5.1 M1 defined by (30)∼(33) is a standard process on X − N1 associated with the
quasi-regular Dirichlet form E . Further M1 is special and tight.

Proof. The first assertion can be proved in the same way as in [F 71b, §4] where
(X,m, E ,F), (X̃, m̃, Ẽ , F̃) and M̃ were a regular Dirichlet space, its strongly regular repre-
sentation, and a Hunt modification of the Ray process associated with the latter respectively,
and the process M1 defined by (30)∼(33) was shown to be a Hunt process on X − N1. The
only defference from the present situation was in that {Fn}, {F̃n} were nests in the sense of
[FOT 94] rather than E-nest and Ẽ-nest, and accordingly we had the following stronger property
than (29):

P̃x( lim
n→∞σX̃−F̃n

<∞) = 0 ∀x̃ ∈ X̃ − Ñ1. (34)

In the present case, we can also see as in [F 71b] that {Ft}t∈[0,∞] defined by (31) is the minimum
completed admissible filtration for Xt defined by (32). Thus M1 is special, namely, {Ft} is quasi-
left continuous because so is {F̃t}. Let K̃n be compact sets increasing to X̃ such that K̃n is
included in the interior of K̃n+1 and put Kn = q−1(K̃n∩ F̃n). Then {Kn} are increasing compact
subsets of X −N1 and we get obviously the tightness of M1:

Px( lim
n→∞σX−Kn < ζ) = 0 ∀x ∈ X −N1.

2

The state space of M1 can be enlarged to X if necessary by an trivial extension (namely, by
making each point of N1 to be a trap.) [MR 92, Th. 3.5] has given another construction of an
m-tight special standard process associated with a quasi-regular Dirichlet space.
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Remark 5.3 According to [MR 92, Th. 5.1, Th.6.4] however, two standard processes associ-
ated with the same quasi-regular Dirichlet space admit a common properly exceptional set in the
standard sense such that their restrictions to the complement of this set share a common tran-
sition function. Therefore, in dealing with a standard process associated with a quasi-regular
Dirichlet space, we may assume without loss of generality that it is an image of a Hunt process
by a quasi-homeomorphism. This viewpoint is very convenient in utilizing the transfer method.

Thus, in the rest of this section, we continue to work with a quasi-regular Dirichlet space
(X,m, E ,F) and an associated standard process M1 = (Ω, {Ft},Xt, ζ, Px) on X − N1 defined
by (30)∼(33). We can transfer Lemma 5.1 as follows:

Lemma 5.2 The following conditions for a set N ⊂ X are equivalent each other:

(i) N is E1-exceptional.

(ii) N is M1-exceptional.

(iii) N is contained in a properly exceptional set in the standard sense.

Remark 5.4 Since the state space of M1 is X −N1, any M1-properly exceptional set in the
standard sense is required to contain the set N1 (see Remark 5.2).

Proof. For simplicity, let N be a Borel subset of X − N1 and put Ñ = q(N)(⊂ X̃ − Ñ1). Of
course, N is E-exceptional iff Ñ is Ẽ-exceptional. By our construction of M1, we see that the
M1-exceptionality of N (resp. M1-proper exceptionality in the standard sense of N ∪ N1) is
equivalent to the M̃1-exceptionality of Ñ (resp.M̃1-proper exceptionality of Ñ ∪ Ñ1). But, in
view of Lemma 5.1 and Remark 5.1, three conditions of the present lemma are equivalent for
Ñ , the regular Dirichlet form Ẽ and the Hunt process M̃1. 2

Remark 5.5 In relation to the ω-set involved in a properly exceptional set in the standard
sense, we make the following remark : for a Borel set A ⊂ X, the ω-set

Γ = {ω ∈ Ω : Xt(ω), Xt−(ω) ∈ A ∀t ∈ [0, ζ(ω))}

is F∞-measurable, because, for B = X −A, and each T > 0, the ω-set

{ω : Xt− ∈ B ∪ {∆} ∃t ∈ [0, T ∧ ζ(ω))}

is contained in

{ω : Xt− exists and is in B ∪ {∆} ∃t ∈ [0, T ]},

and by [BG 68, Prop.10.20] we can see that Ω \ Γ ∈ F∞.

The notion of the additive functional At(ω) of the present standard process M1 on X − N1 is
defined exactly in the same way as for an Hunt process except that we now adopt a properly
exceptional set in the standard sense (instead of a properly exceptional set) as an exceptional
set N (N1 ⊂ N ⊂ X) of the additive functional A. The equivalence of two AF’s A(1), A(2) of
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M1 is defined in the same way as for an Hunt process. On account of Lemma 5.2 and Remark
5.4, we can then find a common defining set Λ ∈ F∞ and a common exceptional set N(⊃ N1)
such that

A
(1)
t (ω) = A

(2)
t (ω), ∀t ≥ 0, ∀ω ∈ Λ.

We can easily observe that, if At(ω) is an AF of M1 with a defining set Λ and an exceptional
set N(⊃ N1), then At(ω) is an AF of M̃1 with some defining set contained in Λ and some
exceptional set containing q(N)(⊃ Ñ1). Conversely any AF of M̃1 with a defining set Λ and
an exceptional set Ñ(⊃ Ñ1) can be viewed as an AF of M1 with the same defining set and
the exceptional set q−1(̃(N)). Two AF’s are equivalent with respect to M1 iff so they are with
respect to M̃1.

Various classes of AF’s of M1 are defined in the same way as for an Hunt process. In particlur,
we have the classes A+

c of PCAF’s,
◦
M of margingale AF’s of finite energy and Nc of continuous

AF’s of zero energy for the process M1. For u ∈ F and its E-quasicontinuous version u∗, we put

ũ∗(x̃) = u∗(q−1(x̃)) x̃ ∈ X̃ − Ñ1.

Then ũ∗ is an Ẽ-quasicontinuous version of ũ = Φu and

u∗(Xt(ω)) − u∗(X0(ω)) = ũ∗(X̃t(ω)) − ũ∗(X̃0(ω)) ω ∈ Ω.

Hence A[u] (the left hand side) is (up to the equivalence) a finite cadlag AF and uniquely
expressible as (3) for M1 because so is A[ũ] (the right hand side) for M̃1.

For the present quasi-regular Dirichlet form E , the class S of smooth measures and the notion
of the energy measure µ[u] of u ∈ Fb are defined also in the same way as for a regular Dirichlet
form. q preserves the notion of the smoothness of positive measures. µ is the Revuz measure of
a PCAF A of M1 if qµ is the Revuz measure of A as a PCAF of M̃1. The energy measure of
u ∈ Fb characterized by the equation (28) can be constructed as the image by q−1 of the energy
measure of Φu ∈ F̃b with respect to the regular Dirichlet form Ẽ .
Summing up what has been mentioned, we get

Theorem 5.2 (i) The equivalence classes of PCAF’s A+
c of M1 and the smooth measures S

of E are in one to one (Revuz) correspondence by (27).

(ii) Any u ∈ F admits a unique finite smooth measure µ〈u〉 satisfying the equation (28) in the
case that u ∈ Fb.
(iii) For any u ∈ F , the AF (1) admits the decomposition (3) uniquely up to the equivalence

where M [u] ∈ ◦
M, N [u] ∈ N . M [u] admits its quadratic variation in A+

c whose Revuz measure is
the energy measure of u.

Finally we transfer Theorem 5.4.2 of [FOT 94]. Recall that an AF At(ω) is said to be of bounded
variation if it is of bounded variation in t on each compact interval of [0, ζ(ω)) for every fixed ω
in its defining set.
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Theorem 5.3 The following conditions are equivalent for u ∈ F :

(i) The AF A[u] defined by (1) is a semimartingale in the sense that the CAF N [u] in its decom-
position (3) is of bounded variation.

(ii) There exists a signed smooth measure ν with some attached E-nest {En} for which the
equation (4) holds.

If condition (ii) holds, then N [u] admits an expression (5) for Ak ∈ A+
c with Revuz measure

νk, k = 1, 2, where

ν = ν1 − ν2 (35)

is the Jordan decomposition of the smooth signed measure ν ( hence νk, k = 1, 2, are au-
tomatically smooth). If condition (i) holds, then N [u] admits an expression (5) by some
Ak ∈ A+

c , k = 1, 2, and condition (ii) is fulfilled for the signed smooth measure ν of (35) defined
by the Revuz measure νk of Ak, k = 1, 2.

6 Semimartigale characterizations of AF’s

Let (X,m, E ,F) be a quasi-regular Dirichlet space and M1 = (Xt, Px) be an associated standard
process specified in Theorem 5.1 as an image of a Hunt process by a quasi-homeomorphism. By
Theorem 4.1 and Theorem 5.3, we have

Theorem 6.1 The following two conditions are equivalent for u ∈ F :

(i) There exists an E-nest {En} for which the inequality (2) is valid for some positive constant
Cn.

(ii) The AF A[u] defined by (1) is a semimartingale in the sense that the CAF N [u] in its
decomposition (3) is of bounded variation.

When one of these conditions is satisfied, there exists a signed smooth measure ν with some
attached E-nest {En} for which the equation (4) holds. Further N [u] admits an expression (5)
for Ak ∈ A+

c with Revuz measure νk, k = 1, 2, which are related to ν by (35).

We now study a simple case that the E-nest appearing in the inequality (2) is trivial. Then (2)
is simplified to the condition that, for u ∈ F , there exists a positive constant C for which the
inequality (6) holds for any v in the space Fb. Let L be a subspace of Fb satisfying condition
(L) described in §1.

Lemma 6.1 If, for u ∈ F , the inequality (6) holds for any v in the space L, then (6) holds for
any v in Fb.

Proof. Take any v ∈ Fb and set M = ‖v‖∞. For any ε > 0, we can find a real function ψ(t)
such that

|ψ(t)| ≤M + ε; ψ(t) = t, −M ≤ t ≤M ; 0 ≤ ψ(t) − ψ(s) ≤ t− s,
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and ψ(L) ⊂ L. Choose vn ∈ L which are E-convergent to v. Then ψ(vn) ∈ L, ψ(vn) is E-
convergent to ψ(v) = v. From the validity of (6) for functions in L, we get

E(u, ψ(vn)) ≤ ‖ψ(vn)‖∞ ≤M + ε.

It suffices to let n→ ∞ and then ε ↓ 0. 2

Theorem 6.2 For u ∈ F , the following conditions are equivalent:

(i) The inequality (6) holds for any v in the space L satisfying condition (L).

(ii) There exists a unique finite signed smooth measure ν for which the equation (4) is valid for
any v ∈ Fb.
(iii) The continuous AF N

[u]
t in the decomposition (3) of the AF (1) is of bounded variation and

satisfies the property (7).

In this case, N [u] admits an expression (5) by PCAF’s Ak, k = 1, 2, whose Revuz measures
νk, k = 1, 2, are finite smooth measures related to the signed measure ν of (ii) by (35).

Proof. The first two conditions are equivalent by virtue of Theorem 4.2 and Lemma 6.1.
Assume (ii) and let (35) be the Jordan decomposition of ν. Then νk, k = 1, 2, are finite smooth
measures and, on account of Thorem 5.3, N [u] is expressible by the PCAF’s Ak with Revuz
measure νk, k = 1, 2. Denote by {N [u]}t the total variation of N [u] on [0, t]. It is known to be an
element of A+

c . Since it is dominated by A1
t +A2

t , we get from the Revuz correspondence (27)

lim
t↓0

1
t
Em({N [u]}t) ≤ lim

t↓0
1
t
Em(A1

t +A2
t ) = ν1(X) + ν2(X) <∞,

arriving at (iii).

Conversely, assume (iii) and let

A1
t =

1
2
({N [u]}t +N

[u]
t ), A2

t =
1
2
({N [u]}t −N

[u]
t ).

On account of Theorem 5.3, condition (ii) holds for the signed smooth measure (35) where νk

is defined to be the Revuz measure of Ak, k = 1, 2. Then ν is finite, because by condition (7)

ν1(X) + ν2(X) = lim
t↓0

1
t
Em(A1

t +A2
t ) = lim

t↓0
1
t
Em({N [u]}t) <∞.

2

Remark 6.1 Property (7) says that the Revuz measure of the PCAF {N [u]}t has a finite total
mass. By [FOT 94, Th.5.3.1], any PCAF A and its Revuz measure µ are related by

Em

(∫ t

0
f(Xs)dAs

)
=

∫ t

o
〈f · ps1, µ〉ds, f ∈ B.

Hence, property (7) implies the Pm-integrability

Em({N [u]}t) <∞, t > 0. (36)

If the process is conservative in the sense that ps1 = 1, s > 0, then the integrability (36) implies
property (7).
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In the rest of this section, we assume that (X,m, E ,F) is a regular Dirichlet space and M =
(Xt, Px) is any associated Hunt process. Of course, the preceding two theorems remain valid
under the present assumption. Let us further assume that E is strongly local: if u, v ∈ F are of
compact support and v is constant on a neighbourhood of the support of u, then E(u, v) = 0.

Then the associated Hunt process M can be taken to be a diffusion (namely, of continuous
sample paths on [0, ζ)) with no killing inside. A function u is said to be locally in F (u ∈ Floc
in notation) if for any relatively compact open set G there is a function w ∈ F such that
u = w m − a.e. on G. Let u ∈ Floc. u admits an E-quasicontinuous version u∗. The energy
measure µ〈u〉 of u is still well defined. The AF A[u] defined by (1) admits a decomposition (3)

where M [u] ∈ ◦
Mloc and N [u] ∈ Nc,loc. The decomposition is unique up to the equivalence of

local AF’s. The quadratic variation 〈M [u]〉 ∈ A+
c of M [u] has as its Revuz measure the energy

measure µ〈u〉 of u. See [FOT 94, §5.5] for details of the above notions, notations and statements.

As for the semimartingale characterization of N [u] ∈ Nc,loc for u ∈ Floc, all statements in
Theorem 5.3 remain true except that the E-nest {En} appearing in the condition (ii) there is
now required to consist of compact subsets of X ([FOT 94, th.5.5.4]).

The next condition for a subset C of C0(X) is taken from [FOT 94] (condition (C.2) of [FOT 94]).

(C) C is a dense subalgebra of C0(X). For any compact set K and relatively compact open set
G with K ⊂ G, C admits an element u such that u ≥ 0, u = 1 on K and u = 0 on X −G.

Let C be a subset of F ∩ C0(X) satisfying both conditions L and C. Such a subset is similar to
a special standard core in the sense of [FOT 94], and the only difference lies in the definition of
a real function φε(t) appearing in condition L. For any open set G ⊂ X, we put

FG = {u ∈ F : u∗ = 0 E − q.e. on X −G},

CG = {u ∈ C : Supp[u] ⊂ G}.

CG is uniformly dense in C0(G) and E1-dense in FG ([FOT 94, Lem.2.3.4]).

Theorem 6.3 The next conditions are equivalent for u ∈ Floc:
(i) For any relatively compact open set G ⊂ X, there is a positive constant CG such that

|E(u, v)| ≤ CG‖v‖∞ ∀v ∈ CG. (37)

(ii) There exists a signed Radon measure ν on X charging no set of zero capacity such that

E(u, v) = −
∫
X
v(x)ν(dx) ∀v ∈ C. (38)

(iii) N [u]
t is of bounded variation and satisfies property (8).

In this case, N [u] admits an expression (5) by PCAF’s Ak, k = 1, 2, whose Revus measures
νk, k = 1, 2, are smooth Radon measures related to the signed measure ν of (ii) by (35).
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Proof. The implication (ii) ⇒ (i) is trivial. Conversely, suppose condition (i) is fulfilled. Then
there exists a unique signed Radon measure on X for which the equation (38) holds. We have
to show that ν charges no set of zero capacity.

To this end, fix w ∈ C and choose a relatively compact open set G containing the support of w.
Take u1 ∈ F satisfying u = u1 on G, then

E(u,wv) = E(u1, wv), v ∈ C

and we have from (i),

|E(u1, w · v)| ≤ C ′‖v‖∞ ∀v ∈ C, (39)

where C ′ = CG · ‖w‖∞. Since C is an algebra satisfying condition (L), we can extend inequality
(39) from C to Fb. In fact, keeping the notations in the proof of Lemma 6.1, we can show that
w · ψ(vn) is E-weakly convergent to w · v.
By virtue of Proposition 4.1, the inequality (39) holding for u1 and for any v ∈ Fb implies
that the equation (15) is valid for u1 and for a finite signed measure νw charging no set of zero
capacity. A comparison with (38) yields

νw = w · ν

and we conclude that ν charges no set of zero capacity because w is an arbitrary element of C.
The proof of the equivalece of (i) and (ii) is complete.

Consider relatively compact open sets {Gk} such that

Ḡk ⊂ Gk+1, ∪∞
k=1Gk = X.

Just as in the proof of [FOT 94, Cor.5.4.1], we can see that condition (ii) is equivalent to the
validity of Theorem 5.3 (ii) for u ∈ Floc, a signed Radon measure ν charging no set of zero
capacity and the E-nest {Ḡn}, which in turn can been seen to be equivalent to the probabilistic
condition (iii) in the same way as the corresponding proof of Theorem 6.2, because Theorem 5.3
is applicable to the present situation in view of the remark made in the parpagraph preceding
the introducition of the space C.

2

Remark 6.2 Property (8) says that the Revuz measure of the PCAF {N [u]}t is a Radon
measure. (8) implies the integrability

Em

(∫ t

0
IK(Xs)d{N [u]}s

)
<∞, ∀K compact, ∀t > 0. (40)

Conversely (40) implies (8) if the process is conservative.

28



7 Stochastic characterizations of BV functions and Caccioppoli

sets

Let Rd be the d-dimensional Euclidean space andm0 be the Lebesgue measure on it. We consider
a non-negative locally integrable function ρ on Rd and the associated energy form defined by

Eρ(u, v) =
1
2

∫
Rd

∇u(x) · ∇v(x) ρ(x) m0(dx), u, v ∈ C1
0 (Rd). (41)

Throughout this section, let us assume the Hamza type condition on ρ :

(H) ρ = 0 m−a.e. on S(ρ),
where

S(ρ) = {x ∈ Rd :
∫
U(x)

ρ(y)−1m0(dy) = ∞ ∀U(x)}

the singular set of ρ.

The complement R(ρ) is called the regular set of ρ. Under (H), the support of the measure ρdm0

equals R(ρ). Further the form Eρ is closable on L2(Rd; ρ · m0) and the closure (Eρ,Fρ) is a
strongly local regular Dirichlet form on L2(R(ρ); ρ ·m0) ([RW 85], [F 97b]).

The associated diffusion Mρ = (Xρ
t , P

ρ
x ) on R(ρ) is called a distorted Brownian motion. The

reason of this naming is in that, if we apply the decomposition (3) to coordinate functions

ψi(x) = xi ∈ Fρ
loc, 1 ≤ i ≤ d,

then we get the expression of the sample path

Xρ
t −Xρ

0 = Bt +Nρ
t (42)

where Bt is a d-dimensional Brownian motion and

Nρ
t = (N1

t , · · · , Nd
t ), N i

t = N
[ψi]
t ∈ Nc,loc, 1 ≤ i ≤ d.

Condition (H) is fulfilled in the following two important cases:

(I) ρ is non-negative continuous m0-a.e. on Rd.

(II) ρ(x) = ID(x), x ∈ Rd, for an open set D ⊂ Rd.

In the second case, R(ρ) = D and the distorted Brownian motion MID reduces to the modified
reflecting Brownian motion on D associated with the strongly local regular Dirichlet form

EID(u, v) =
1
2

∫
D
∇u(x) · ∇v(x) m0(dx), FID = Ĥ1(D)

on L2(D; ID ·m0)(= L2(D;m0)) studied in [F 97a]. Here Ĥ1(D) denotes the closure of the space
C1

0 (Rd)|D in the Sobolev space H1(D). The term ‘modified’ is added because Ĥ1(D) could be a
proper subset of H1(D).
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A function ρ ∈ L1
loc(R

d) is called BV (denoted by ρ ∈ BVloc) if for any bounded open set V ⊂ Rd,
there exists a positive constant CV such that

|
∫
V

(div v)ρm0(dx)| ≤ CV ‖v‖∞ ∀v ∈ C1
0 (V ;Rd). (43)

Theorem 7.1 Suppose a non-negative function ρ ∈ L1
loc(R

d) satisfies the condition (H). Then
the following conditions are equivalent:

(i) ρ ∈ BVloc.

(ii) The distorted Brownian path Xρ
t is a semimartingale in the sense that each component

N i
t , (1 ≤ i ≤ d), in the decomposition (42) is of bounded variation and additionally it satisfies

that

lim
t↓0

1
t
Eρρ·m0

(∫ t

0
IK(Xρ

s )|dN i
s|

)
<∞ 1 ≤ i ≤ d, (44)

for every compact set K ⊂ R(ρ).

Proof. We apply Theorem 6.3 to the strongly local, regular Dirichlet form (Eρ,Fρ) on L2(X;m)
and an associated diffusion Mρ = (Xρ

t , P
ρ
x ) on X, where

X = R(ρ) m = ρ ·m0.

We take

C = C1
0 (Rd)|X ,

which obviously has the properties (L) and (C). Taking as u the coodinate function ψi ∈ Floc,
the condition (i) of Theorem 6.3 reads as follows: for any relatively compact open set G ⊂ Rd,
there is a positive constant CG such that

|
∫
R(ρ)

∂iv(x)ρ(x)m0(dx)| ≤ CG sup
x∈R(ρ)

|v(x)|, ∀v ∈ C1
0 (G).

It is easy to see that ρ ∈ BVloc if and only if the above condition is satisfied for each i =
1, 2, · · · , d. Thus, we get Theorem 7.1 from Theorem 6.3. 2

A measurable set E ⊂ Rd is called Caccioppoli if IE ∈ BVloc. We know ([EG 92]) that E is
Caccioppoli if and only if there exists a positive Radon measure σ on ∂E and a σ-measurable
vector

nE : ∂E → Rd

with |nE | = 1 σ-a.e. such that
∫
E
div v m0(dx) = −

∫
∂E
v · nE dσ ∀v ∈ C1

0 (Rd, Rd). (45)

By specifying Theorem 7.1 to ρ = ID, we get
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Theorem 7.2 The following conditions are equivalent for an open set D ⊂ Rd:

(i) D is Caccioppoli.

(ii) The modified reflecting Brownian path (Xt, Px) = (XID
t , P IDx ) on D is a semimartingale in

the sense that each component N i
t of the second term N ID

t in its decomposition (42) is of bounded
variation and satisfies the additional property that

lim
t↓0

1
t
EIDm0

(∫ t

0
IK(Xs)|dN i

s|
)
<∞

In this case, the modified reflecting Brownian motion admits an expession of Skorohod type:

Xt −X0 = Bt +
∫ t

0
n(Xs)dLs (46)

for a PCAF Lt with Revuz measure σ.
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