
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 12 (2007), Paper no. 36, pages 1036–1047.

Journal URL
http://www.math.washington.edu/~ejpecp/

Continuity of the percolation threshold in randomly

grown graphs∗

Tatyana S. Turova

Mathematical Center

University of Lund

Box 118, Lund S-221 00, Sweden

E-mail: tatyana@maths.lth.se

Abstract

We consider various models of randomly grown graphs. In these models the vertices and the
edges accumulate within time according to certain rules. We study a phase transition in these
models along a parameter which refers to the mean life-time of an edge. Although deleting
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results yield a lower bound for the size of the largest connected component of the uniformly
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1 Introduction.

We begin with the definition of a uniformly grown graph given in (4). There is one single vertex
at time n = 1. Then at each time step n ≥ 2 a new vertex is added, and with probability
δ a new edge is added between two vertices chosen uniformly at random out of the existing
vertices. Let us denote the resulting graph at time n ≥ 1 by Fn(δ). The remarkable feature
of this model is that the corresponding bond percolation has an infinite order phase transition.
(Recall that in the classical random graph model the phase transition is of second order.) For
the proof of this fact and a detailed analysis of this model we refer to (2). The authors of (2)
(see also (5)) showed that as far as the limiting structure of Fn(δ), n → ∞, is concerned, this
model is equivalent to the random graph Gn(2δ) on {1, . . . , n} where any possible edge (i, j) is
present with probability 2δ/max{i, j} independently of the others. The percolation threshold
of these models is at δ = 1/8. In particular, this implies that the critical ratio of the mean
value of the number of edges to the number of vertices, in the regime when the graph Fn(δ)
has a giant component, is 1/8, which is 4 times less than for the classical random graph with
the corresponding ratio 1/2. This gave a reason for the authors of (4) to argue in favor of the
uniformly grown graph for applications.

Taking into consideration other important features of realistic networks, here we shall study
the effect of deleting old edges in uniformly grown graphs. For this matter we consider another
model of a randomly grown graph, which has an additional parameter of deletion of edges. This
is the so-called dynamical random graph with memory, whose definition we recall from (11).
Assume, at time t = 0 there is a single vertex with no edges. The number of vertices at t > 0
is described by the Yule process (see, e.g., (1)) defined as follows. With every vertex in the
graph we associate a Poisson process with intensity γ, every occurrence of which corresponds
to the appearance of a new vertex. As soon as there are at least two vertices in the graph,
from each vertex we draw with intensity λ a new edge to a vertex which we choose with equal
probabilities among the rest of the existing vertices. Every edge of the graph is deleted with
rate µ. This means that the life time of any edge is exponentially distributed with mean value
1/µ. We assume that all the processes of appending and deleting are independent. The resulting
graph may have multiple edges, but we shall consider the corresponding simple (i.e., no multiple
edges) graph, where an edge between two vertices is present if there is at least one edge between
these vertices in the original multi-graph. We shall denote this non-directed simple graph by
Gt(γ, µ, λ), t ≥ 0.

This model has been studied in (11), (12), (13), and it is a subgraph of a more general structure
introduced already in (? ). Other related models were introduced and analyzed in (8), (9), (10).

Calling our model a graph with memory we refer to the parameter µ which shows how long the
graph keeps or “remembers” an old connection, i.e., edge. Setting µ = 0 one gets a graph model,
call it Gt(γ, 0, λ), closely related to Gn(c) or Fn(δ). In particular, it was already shown in (12)
that as time (parameters t and n) goes to infinity the limiting degree distribution in Gt(γ, 0, λ)
is equivalent to the one in Fn(δ), if δ = λ/γ. This allows us to say that the graph Gt(γ, 0, λ)
is also uniformly grown. Moreover, all values λ/γ > 0 make sense here, contrary to the case
0 < δ ≤ 1 for Fn(δ).

1037



2 Results.

It was already mentioned by the authors of (2) that the analysis they had provided for the
model Gn(c) should be also valid for Gt(γ, 0, λ). We shall not go into the detailed proof of this
conjecture, for it appears convincing enough in view of the following observation. Let us compare
the probabilities of edges in these models. First we introduce some notations. Let Vt denote the
set of vertices at time t in a grown graph Gt(γ, µ, λ), µ ≥ 0, or in Gt(c). (Which model we talk
about will be clear from the context.) Further let s1 < s2 < . . . be the consecutive moments
when the first, the second, and so on, vertices are added to the graph. In the case of Gn(c)
we have si = i, i ≥ 1. In the case of Gt(γ, µ, λ) we set s1 = 0, while the moments si, i ≥ 2,
are random: here |Vt| is a Yule process. Then we can enumerate the vertices of a graph by the
moments when they were added to the graph, and write for t ≥ 0

Vt = {s1, . . . , s|Vt|}.

For Gn(c) one has si = i, 1 ≤ i ≤ n, |Vn| = n, and the probability of an edge between any two
vertices s and τ with max{s, τ} ≤ n is

P{s ∼ τ in Gn(c)} =
c

|Vmax{s,τ}|
. (1)

Here we write u ∼ v if there is an edge between the vertices u and v.

Consider now the probabilities of edges in Gt(γ, 0, λ). According to (11) there are subsets A(t),
t ≥ 0, of the trajectories {Vs, 0 ≤ s ≤ t} such that

P{A(t)} = 1 − o(1), t→ ∞, (2)

and conditional on
{Vs, 0 ≤ s ≤ t} = V̄ := {V̄s, 0 ≤ s ≤ t} ∈ A(t) (3)

the probability of an edge between two vertices s and τ in Gt(γ, 0, λ) is

pt(s, τ | V̄ ) =
2λ

γ

1

|V̄max{s,τ}|
(
1 − e−γ(t−max{s,τ})

)
(1 + o(1)), (4)

as max{s, τ} ≥
√
t and t → ∞ (see (11) for the proof of this formula). Comparing (4) with (1)

one observes that the probabilities of edges in Gt(γ, 0, λ) are asymptotically equivalent to the
ones in Gn(2λ/γ). Thus, Gt(γ, 0, λ) is equivalent in some sense to Gn(2λ/γ). In particular, here
we shall prove that also in Gt(γ, 0, λ) the phase transition happens at 2λ/γ = 1/4, just as in
Gn(c) where the corresponding critical value is c = 1/4.

We say that a time-dependent event happens with high probability (whp) if the probability of
this event is tending to one as t→ ∞. If a connected component of a graph has size proportional
to the size of the entire graph, we call it a giant component. Let λcr(0, γ) be the smallest value
such that for all λ > λcr(0, γ) whp there is a giant component in the graph Gt(γ, 0, λ) as t→ ∞.
First we get a lower bound for λcr(0, γ).

Proposition 2.1. For any γ > 0 if
λ < γ/8 (5)

whp the size of the largest component in Gt(γ, 0, λ) is o(|Vt|) as t→ ∞.
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Proof. Assume that λ < γ/8. Then (4) implies that there is a constant c < 1/4 such that
conditional on (3) the probability of an edge between two vertices s and τ in Gt(γ, 0, λ) is

pt(s, τ | V̄ ) =
2λ

γ

1

|V̄max{s,τ}|
(
1 − e−γ(t−max{s,τ})

)
(1 + o(1)) <

c

|V̄max{s,τ}|
(6)

for all sufficiently large t and max{s, τ} >
√
t. Then according to (1) the probability of the

existence of a giant component in Gt(γ, 0, λ) is bounded by the probability of a giant component
in G[t](c

′) for some c′ < 1/4, which is known (see (2)) to be o(1) as [t] → ∞. Therefore
Proposition 2.1 follows. 2

Proposition 2.1 immediately implies

λcr(0, γ) ≥ γ/8. (7)

Consider now Gt(γ, µ, λ) with µ > 0. We know from (13) that a phase transition in this model
is similar to the one in the classical random graph model Gn,p. If for Gn,p with p = c/n the
corresponding critical value is c = ccr = 1, its counterpart for our model is a certain function
λcr(µ, γ). To formulate this result precisely let us define for any γ > 0 and µ ≥ 0 the following
functions

g(t, γ, µ) =





e(1−
µ
γ )t

−1
γ−µ , if µ 6= γ,

t/γ, if µ = γ,

and set for all µ > 0

λcr(γ, µ) =
1

2
sup{x > 0 :

∞∑

k=2

xk E

k−1∏

i=1

g(ηi ∧ ηi+1, γ, µ) <∞} , (8)

where η1, . . . , ηk are independent random variables with a common Exp (1)-distribution. Let
us also recall (see (11)) that conditional on (3) the probability of an edge between two vertices
s and τ in Gt(γ, µ, λ) is

2λ
g(γ(t− s ∨ τ), γ, µ)

|V̄max{s,τ}|
(1 + o(1)), (9)

when s ∨ τ ≥ t1/2 and t→ ∞.

Let further X(G) denote for a graph G the size of its largest connected component.

Theorem ((13)) For any γ > 0 and µ > 0

I) if λ < λcr(γ, µ) then there exists a constant c = c(λ, γ, µ) such that

P
{
X
(
Gt(γ, µ, λ)

)
> c log |V (t)|

}
→ 0 as t→ ∞;

II) if λ > λcr(γ, µ) then for any ε > 0

P




∣∣∣
X
(
Gt(γ, µ, λ)

)

|V (t)| − β
∣∣∣ < ε



→ 1 as t→ ∞, (10)

1039



where

β =

∫ ∞

0
β̃(s)e−sds (11)

and the function β̃(s), s > 0, is defined as the largest nonnegative solution of the following
equation

1 = β̃(s) + exp

{
−2λ

∫ ∞

0
g(s ∧ τ, γ, µ)β̃(τ)e−τdτ

}
. (12)

Clearly, the variation of the parameter µ from zero to any positive value changes essentially the
properties of the model. For example, the limiting degree distribution is geometric in Gt(γ, 0, λ),
and it is generalized Poisson in Gt(γ, µ, λ) when µ > 0 (see (12) for the details). The phase
transition in Gt(γ, 0, λ) must be of the infinite order as in (2), while it is of the second order in
Gt(γ, µ, λ) for any µ > 0. Now we shall consider λcr(µ, γ) as µ→ 0. Write for all µ ≥ 0

Fk(µ) = E

k−1∏

i=1

g(ηi ∧ ηi+1, γ, µ). (13)

Theorem 2.1. For any γ > 0 and µ > 0

λcr(µ, γ) =
1

2
lim

k→∞
Fk(µ)−1/k (14)

and
1

2
lim

k→∞
Fk(0)−1/k = γ/8. (15)

Observe that for any µ > 0 the value (2λ)kFk(µ)/k is equal to the expected number of k-cycles
in Gt(γ, µ, λ) as t → ∞ (see (11)). However, this interpretation fails when µ = 0 (see Chapter
17 in (3)).

One could derive the continuity of the function limk→∞ Fk(µ)−1/k at µ = 0 directly from its
definition (13). Then Theorem 2.1 would imply

lim
µ→0

λcr(µ, γ) = γ/8. (16)

Clearly, λcr(0, γ) ≤ λcr(µ, γ) for any µ > 0, which together with (16) yields

λcr(0, γ) ≤ γ/8. (17)

Then combining the last inequality with (7) we would get the following continuity result (see
also (3)).

Theorem 2.2. For all γ > 0

lim
µ→0

λcr(µ, γ) = γ/8 = λcr(0, γ). (18)
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On the other hand, equality
lim
µ→0

λcr(µ, γ) = λcr(0, γ) (19)

follows by the general Theorem 6.4 from (3), conditions of which are satisfied here (note however,
that the actual value of λcr(0, γ) is not given explicitly by the cited result). Then (19) and
Theorem 2.1 prove in turn continuity of limk→∞ Fk(µ)−1/k at µ = 0, which immediately yields
the first equality in (18).

Notice that our computation of the critical constant γ/8 is different from the one in (3), in
particular we shall disclose below a curious relation between Fk(0) and the Catalan numbers.

Theorem 2.2 shows that the transition from the model Gt(γ, µ, λ), µ > 0, where all the old edges
are being deleted, to the uniformly grown graph Gt(γ, 0, λ) along the parameter µ is not as
drastic as it could be expected. On the contrary: one can approach arbitrarily close the critical
value 1/8 for the ratio of edges and vertices even abandoning the old edges. Indeed, it is easy
to compute (see also (12)) that for any positive γ and µ one has

R(µ, γ) := lim
t→∞

E{number of edges in Gt(γ, µ, λcr(µ, γ))}
E{number of vertices in Gt(γ, µ, λcr(µ, γ))}

=
λcr(µ, γ)

µ+ γ
.

Then it follows by (18) that R(µ, γ) is also continuous at µ = 0, and R(0, γ) = 1/8 for all γ > 0.

An open question remains about the continuity at µ = 0 of the size of the giant component in
the supercritical area. Recall that due to (2) there is a function φ(c), equal to zero when c ≤ 1/4
and positive otherwise, such that whp

X(Gn(c)) = (φ(c) + o(1))n. (20)

Correspondingly, according to (18) there is a function β(γ, 0, λ) which is zero when λ/γ ≤ 1/8
and is positive otherwise, such that the largest connected component of Gt(γ, 0, λ) whp is

X(Gt(γ, 0, λ)) = (β(γ, 0, λ) + o(1))|Vt|.

Now consider the function β(γ, µ, λ) defined in the second part of Theorem (13) cited above.
Obviously, for any fixed γ > 0 this function is monotone in both arguments µ and λ, so that

β(γ, µ, λ) ≤ β(γ, µ′, λ′), if µ′ ≤ µ, λ′ ≥ λ > λcr(µ, γ).

This gives us immediately a lower bound for β(γ, 0, λ) when λ > λcr(0, γ) = γ/8:

β(γ, 0, λ) ≥ lim
µ→0

β(γ, µ, λ). (21)

It follows from the definition (11) that whenever 2λ/γ ≥ 1/4

lim
µ→0

β(γ, µ, λ) = b

(
2λ

γ

)
, (22)

where

b(c) =

∫ ∞

0
bs(c)e

−sds,
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and the function bs(c), s ≥ 0, is the largest nonnegative solution to

1 = bs(c) + exp

{
−c
∫ ∞

0

(
es∧τ − 1

)
bτ (c)e

−τdτ

}
. (23)

This together with (21)-(22) and (18) gives a lower bound for the function φ(c) in (20):

φ(c) ≥ b(c), c > 1/4. (24)

Notice, that equation (23) has at c = 1/4 only the zero solution, i.e., bs(1/4) ≡ 0. This yields
equality in (24) at least in one point, namely φ(1/4) = b(1/4). It remains a challenge to find
out whether strict inequality ever holds in (24).

Remark. While completing this work the author became aware of (3) (which was a manuscript
in that time). The results in (3) concern a more general model, and as a particular case also
yield (18). However, Theorem 2.1 and relation (24) did not seem to appear explicitly elsewhere.

3 Proof of Theorem 2.1.

First we shall prove (14). By the definitions (8) and (13) we have

λcr(γ, µ) =
1

2
sup{x > 0 :

∞∑

k=3

xk Fk(µ) <∞} =
1

2
lim inf
k→∞

Fk(µ)−1/k. (25)

We shall prove that for any µ > 0 there exists

lim
k→∞

Fk(µ)−1/k. (26)

This together with (25) gives us statement (14).

We will show that there exists a constant C = C(µ, γ) such that for all k, n ≥ 3

Fk+n(µ) ≤ CFk(µ)Fn(µ). (27)

Then statement (26) will follow from (27) by the standard use of the sub-additivity property.
More exactly, (27) implies

logFk+n(µ) ≤ logFk(µ) + logFn(µ) + logC.

Then by the results (6) the limit

L(µ) = lim
k→∞

logFk(µ)

k

exists and satisfies −∞ ≤ L(µ) <∞. This clearly implies the existence of the limit in (26).

To prove (27) fix µ > 0 arbitrarily and write shortly Fk = Fk(µ). Define also for all s ≥ 0

fk(s) = E g(s ∧ η2, γ, µ)
k−1∏

i=2

g(ηi ∧ ηi+1, γ, µ). (28)

Then

Fk+n =

∫ ∞

0
fk+n(s) e−s ds =

∫ ∞

0
fk(s)fn(s) e−s ds. (29)

Now we need the following result.
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Proposition 3.1. There exists some C = C(µ, γ) such that for all k ≥ 2

fk(s) ≤ C

∫ ∞

0
fk(s) e

−s ds = CFk (30)

uniformly in s ≥ 0.

Proof. First we compute for all µ ≥ 0 and γ > 0

F2 =
1

γ + µ
. (31)

Next we notice that

g(t, γ, µ) ≤





e
(1−

µ
γ )t

γ−µ , if 0 < µ < γ,

t/γ, if µ = γ,

1
µ−γ , if µ > γ.

We may assume without loss of generality that 0 < µ < γ; the two other cases are even simpler
and can be treated in a similar way. It is easy to show that for any m ≥ 2 there is some constant
A(m) = A(m,µ, γ) such that

E g(s ∧ η2, γ, µ)

(
m−1∏

i=2

g(ηi ∧ ηi+1, γ, µ)

)
g(ηm ∧ t, γ, µ) ≤ A(m)

(
e
(1−m µ

γ
)t

+ 1
)

(32)

for all s, t ≥ 0. Now let us fix a constant

m0 =

[
γ

µ

]
+ 1,

so that the expectation in (32) with m = m0 is uniformly bounded in t ≥ 0. Then (32) implies
the following bounds

fk(s) ≤
{
B, if 2 ≤ k < m0 + 2,
BFk−m0 , if k ≥ m0 + 2,

(33)

for some constant B = B(m0, µ, γ). Straightforward computations yield for all k ≥ 3

Fk =

∫ ∞

0

(∫ ∞

0
g(s′ ∧ s, γ, µ)e−s′ ds′

)
fk−1(s) e

−s ds (34)

=
1

µ

∫ ∞

0

(
1 − e

−µ

γ
s
)
fk−1(s) e

−s ds =
1

µ

(
Fk−1 −

∫ ∞

0
e
−(1+ µ

γ
)s
fk−1(s) ds

)
.

Making a change of variables in the last integral and using the fact that for any k ≥ 3 the
function fk(s) is monotone increasing in s ≥ 0, we derive from (34)

Fk =
1

µ

(
Fk−1 −

γ

γ + µ

∫ ∞

0
e−yfk−1(

γ

γ + µ
y) dy

)
(35)

≥ 1

µ

(
Fk−1 −

γ

γ + µ

∫ ∞

0
e−yfk−1(y) dy

)
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=
1

µ

(
Fk−1 −

γ

γ + µ
Fk−1

)
=

1

γ + µ
Fk−1.

This together with (31) give us the lower bound

Fk ≥
(

1

γ + µ

)k

(36)

for all k ≥ 2. The bounds (36) and (35) allow us to derive from (33)

fk(s) ≤ B (1 + γ + µ)m0+1 Fk (37)

for all k ≥ 2 and s ≥ 0, and (30) follows. 2

Inserting now (30) into (29) we readily get

Fk+n ≤
∫ ∞

0
CFkfn(s) e−s ds = CFkFn, (38)

which proves property (27), and therefore statement (14) follows.

Next we prove (15). Consider

Fk(0) = E

k−1∏

i=1

g(ηi ∧ ηi+1, γ, 0) =

(
1

γ

)k

E

k−1∏

i=1

(
eηi∧ηi+1 − 1

)
. (39)

We shall find a useful representation for the last expectation. Let Tn, n ≥ 1, denote the
subset of vertices in Z2 within a triangle (including the vertices on its sides) with corners at
(0, 0), (n, 0), (n, n), i.e.,

Tn = {z = (x, y) ∈ Z2 : 0 ≤ y ≤ x ≤ n}.
Let us call a path z0z1 . . . zN with zi = (z1

i , z
2
i ) ∈ Z2 monotone increasing, if at each step it goes

”right” or ”up”, i.e., for all 1 ≤ i ≤ N

zj
i − zj

i−1 ≥ 0, j = 1, 2,

and (
z1
i − z1

i−1

)
+
(
z2
i − z2

i−1

)
= 1.

Lemma 3.1. For all n ≥ 3

E

n−1∏

i=1

(
eηi∧ηi+1 − 1

)
=

2∑

in−2=1

in−2+1∑

in−3=1

. . .

i2+1∑

i1=1

1 , (40)

which equals the number of monotone increasing paths within Tn−1 from (0, 0) to (n− 1, n− 1).

Proof. Consider

Ik := E

k−1∏

i=1

(
eηi∧ηi+1 − 1

)
. (41)
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Let us define a linear operator φ on the space of polynomials f(x), x ∈ R+ as follows

φ(f(x)) = [φ(f)](x) = E
(
ex∧η − 1

)
f(η).

It is straightforward to check that

φ(1) = E
(
ex∧η − 1

)
= x, φ(x) = E

(
ex∧η − 1

)
η =

x2

2
+ x, (42)

and for any n ≥ 2

φ(xn) = E
(
ex∧η − 1

)
ηn =

xn+1

n+ 1
+ nφ(xn−1). (43)

Also we shall write φ1(x) = φ(x) and define recursively

φk(x) = E
(
ex∧η − 1

)
φk−1(η) = φ

(
φk−1(x)

)
, k ≥ 2.

Now we have the following representation

I2 =

∫ ∞

0
e−x xdx,

and for any k ≥ 1

Ik+2 =

∫ ∞

0
e−x φk(x)dx. (44)

It follows from (42) and (43) that

φ(xn) = n!
n+1∑

l=1

xl

l!
, n ≥ 1. (45)

Having (43) and (45) we can write for all k ≥ 1

φk(x) =
k+1∑

i=1

akix
i,

where the coefficients satisfy the following recursive relations:

a11 = 1, a12 = 1/2,

and

a(k+1)l =
1

l!

k+1∑

i=l−1

i!aki, 1 ≤ l ≤ k + 2,

with
ak0 ≡ 0, k ≥ 1.

Now we have by (44)

Ik+2 = Eφk(η1) =
k+1∑

i=1

i!aki =
k∑

i=1

(
i+1∑

l=1

1

)
i!a(k−1)i. (46)
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For all i ≥ 0 set ψ0(i) = 1, and then

ψk(i) =
i+1∑

l=1

ψk−1(l), k ≥ 1.

Notice that for any finite function ψ

k∑

l=1

ψ(l)l!a(k−1)l =
k∑

l=1

ψ(l)
k−1∑

i=l−1

i!a(k−2)i =
k−1∑

i=1

(
i+1∑

l=1

ψ(l)

)
i!a(k−2)i

holds. This helps us to compute the expression in (46) for all k ≥ 2

Ik+2 =
k∑

i=1

ψ1(i)i!a(k−1)i =
k−1∑

i=1

ψ2(i)i!a(k−2)i = . . . =
2∑

i=1

ψk−1(i)i!a1i =
2∑

i=1

ψk−1(i)

= ψk(1) =
2∑

ik=1

ik+1∑

ik−1=1

. . .

i2+1∑

i1=1

1 . (47)

The statement of Lemma 3.1 follows. 2

Corollary 3.1.

E

n−1∏

i=1

(
eηi∧ηi+1 − 1

)
=

1

n

(
2(n− 1)
n− 1

)
, (48)

i.e., the Catalan number Cn−1.

Proof. The number of the lattice paths described in Lemma 3.1 is exactly one of the represen-
tations of the Catalan numbers in (7), p. 221. Hence formula (48) follows. 2

Making use of Stirling’s formula we derive from (48)

lim
n→∞

(
E

n−1∏

i=1

(
eηi∧ηi+1 − 1

)
)1/n

= 4. (49)

Combining this with formula (39) we get the statement (15). This completes the proof of
Theorem 2.1. 2
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