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Abstract

Petrov constructed a diffusion process in the compact Kingman simplex whose unique
stationary distribution is the two-parameter Poisson–Dirichlet distribution of Pitman
and Yor. We show that the subset of the simplex comprising vectors whose coordi-
nates sum to 1 is the natural state space for the process. In fact, the complementary
set acts like an entrance boundary.
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1 Introduction

Petrov (2009) constructed an infinite-dimensional diffusion process in the compact
Kingman simplex

∇∞ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi ≤ 1

}
depending on two parameters, α and θ with 0 ≤ α < 1 and θ > −α. Its generator is1

A :=
1

2

∞∑
i,j=1

xi(δij − xj)
∂2

∂xi ∂xj
− 1

2

∞∑
i=1

(θxi + α)
∂

∂xi

acting on the subalgebra of C(∇∞) generated by the sequence of functions ϕ1, ϕ2, ϕ3, . . .

defined by

ϕm(x) :=

∞∑
i=1

xmi , m = 2, 3, . . . , ϕ1(x) := 1.

More precisely, for ϕ ∈ D(A), Aϕ is evaluated on the dense subset

∇∞ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}
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1Petrov omitted the common factor of 1

2
for simplicity but we include it so that formulas are consistent

with those in the literature.
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and extended to ∇∞ by continuity. For example, Aϕ2 = 1 − α − (1 + θ)ϕ2. The unique
stationary distribution of Petrov’s diffusion is Pitman and Yor’s (1997) two-parameter
generalization of the Poisson–Dirichlet distribution, which we denote by PDα,θ and re-
gard as a Borel probability measure on ∇∞ that is concentrated on ∇∞.

The special case α = 0 (and hence θ > 0) is the unlabeled infinitely-many-neutral-
alleles diffusion model of population genetics; see Ethier and Kurtz (1981). Its unique
stationary distribution is of course the (one-parameter) Poisson–Dirichlet distribution,
PD0,θ, of Kingman (1975).

Feng, Sun, Wang, and Xu (2011) derived an explicit formula for the transition den-
sity p(t, x, y) of Petrov’s diffusion with respect to PDα,θ, which had earlier been done in
the special case α = 0 by Ethier (1992). Recently, Zhou (2013) found an elegant sim-
plification of this formula. However, all we will need here is the fact that the transition
function P (t, x, dy) is, for each x ∈ ∇∞ and t > 0, absolutely continuous with respect to
PDα,θ:

P (t, x, ·)� PDα,θ, x ∈ ∇∞, t > 0. (1.1)

In particular, letting {Xt, t ≥ 0} denote Petrov’s diffusion, it follows that Px(Xt ∈
∇∞) = 1 for every x ∈ ∇∞ and t > 0, where the subscript x denotes the initial state. A
question left open by Petrov (2009) is whether the stronger statement,

Px(Xt ∈ ∇∞ for all t > 0) = 1, x ∈ ∇∞, (1.2)

holds. This would tell us, in particular, that ∇∞ is the natural state space for the
process.

In the special case α = 0, (1.2) was proved by Ethier and Kurtz (1981). It was
later realized that this result has a simple interpretation. The unlabeled infinitely-
many-neutral-alleles diffusion model has a more informative labeled version, namely
the Fleming–Viot process in P(S) (the set of Borel probability measures on the com-
pact metric space S with the topology of weak convergence) with mutation operator

Bg(z) :=
1

2
θ

∫
S

(g(ζ)− g(z)) ν0(dζ),

where ν0 ∈P(S) is nonatomic. The unlabeled model is a transformation of the labeled
one. The transformation takes µ ∈P(S) to x ∈ ∇∞, where x is the vector of descending
order statistics of the sizes of the atoms of µ. Then (1.2) is equivalent to the assertion
that the Fleming–Viot process, regardless of its initial state, instantly becomes purely
atomic and remains so forever.

If α > 0, there is no such interpretation of (1.2) because whether there is a Fleming–
Viot process corresponding to Petrov’s diffusion is unknown. In fact, this is an open
problem that was posed by Feng (2010, p. 112) (see also Feng and Sun 2010).

Notice that another way to express (1.2) is to say that∇∞−∇∞ acts like an entrance
boundary for the diffusion. Technically, this is not quite accurate because ∇∞ has no
interior, so its boundary is all of ∇∞. But what we mean is simply that, starting at a
state x ∈ ∇∞ −∇∞, the process instantly enters ∇∞ and never exits.

A weaker version of (1.2) was obtained by Feng and Sun (2010) using the theory of
Dirichlet forms. They showed that∫

∇∞

Py(Xt ∈ ∇∞ for all t ≥ 0)PDα,θ(dy) = 1, (1.3)

which is to say that the stationary version of Petrov’s diffusion has ∇∞ as its natural
state space. Their argument is similar to that of Schmuland (1991), who treated the
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special case α = 0 and gave a more detailed proof. Of course an equivalent way to state
(1.3) is

Py(Xt ∈ ∇∞ for all t ≥ 0) = 1 a.e.-PDα,θ(dy). (1.4)

In the next section we will see that (1.2) follows easily from (1.1), (1.4), and the
(time-homogeneous) Markov property.

2 Entrance boundary property

We are now ready for the proof of (1.2).

Theorem 2.1. Eq. (1.2) holds for Petrov’s diffusion.

Proof. Fix x ∈ ∇∞. It is enough to show that

Px(Xt ∈ ∇∞ for all t ≥ s) = 1

for every s > 0. Let s > 0 be arbitrary. By (1.1) and (1.4), we have

Py(Xt ∈ ∇∞ for all t ≥ 0) = 1 a.e.-P (s, x, dy).

Therefore,

Px(Xt ∈ ∇∞ for all t ≥ s) = Ex[Px(Xt ∈ ∇∞ for all t ≥ s | Xr, 0 ≤ r ≤ s)]
= Ex[PXs

(Xt ∈ ∇∞ for all t ≥ 0)]

=

∫
∇∞

Py(Xt ∈ ∇∞ for all t ≥ 0)P (s, x, dy)

=

∫
∇∞

P (s, x, dy)

= 1,

as required.

Thus, (1.2) is a very simple consequence of two nontrivial results, namely (1.1),
which relies on an eigenfunction expansion of the transition density with respect to
PDα,θ, and (1.4), which relies on properties of a Dirichlet form defined in terms of
PDα,θ.

We emphasize that the theorem assumes only 0 ≤ α < 1 (and θ > −α) and therefore
includes the special case α = 0. The proof of (1.2) by Ethier and Kurtz (1981) in that
case may appear more complicated than the proof just given but that is because it is
largely self-contained. It does not rely on subtle properties of the diffusion such as (1.1)
and (1.4).

Let us conclude by showing why the proof of Ethier and Kurtz fails when α > 0.
First, we extend the domain of A. Let H := {h ∈ C2[0, 1] : h(0) = h′(0) = 0}, and for
h ∈H define ψh ∈ C(∇∞) by

ψh(x) :=

∞∑
i=1

h(xi).

Let A+ be A acting on the subalgebra of C(∇∞) generated by {1} ∪ {ψh : h ∈ H }.
Again, for ϕ ∈ D(A+), A+ϕ is evaluated on ∇∞ and extended to ∇∞ by continuity. It is
easy to see that A+ ⊂ A. We also notice that ϕm ∈ D(A+) for all real m ≥ 2 (not just
integers), where

ϕm(x) :=

∞∑
i=1

xmi , m ∈ (0, 1) ∪ (1,∞), ϕ1(x) := 1.
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This leads to the conclusion that, for every real m ≥ 2,

Zm(t) := ϕm(Xt)− ϕm(X0)−
1

2
m

∫ t

0

[(m− 1− α)ϕm−1(Xs)− (m− 1 + θ)ϕm(Xs)] ds

is a continuous square-integrable martingale with increasing process

Im(t) = m2

∫ t

0

(ϕ2m−1 − ϕ2
m)(Xs) ds.

In particular, taking expectations and comparing results for m = 2 and m→ 2+, we find
that

Px(Xt ∈ ∇∞ for almost all t > 0) = 1, x ∈ ∇∞.

The next step is to extend the conclusion about Zm(·) to 1 < m < 2, and this is
where the difficulty occurs. Fix such an m and define hε ∈ H for ε > 0 by hε(u) :=

(u+ ε)m− εm−mεm−1u. Then A+ψhε converges pointwise as ε→ 0+ but not boundedly
because of the two terms

1

2

∞∑
i=1

xih
′′
ε (xi) and − 1

2
α

∞∑
i=1

h′ε(xi).

Both sums are monotonically increasing as ε decreases to 0, but their coefficients have
opposite signs, so the monotone convergence theorem does not apply if α > 0, and we
cannot show that

∫ t
0
ϕm−1(Xs) ds ∈ L2 for all t > 0.
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