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Abstract

In a complete bipartite graph with vertex sets of cardinalities n and n′, assign random
weights from exponential distribution with mean 1, independently to each edge. We
show that, as n → ∞, with n′ = dn/αe for any fixed α > 1, the minimum weight
of many-to-one matchings converges to a constant (depending on α). Many-to-one
matching arises as an optimization step in an algorithm for genome sequencing and
as a measure of distance between finite sets. We prove that a belief propagation
(BP) algorithm converges asymptotically to the optimal solution. We use the objective
method of Aldous to prove our results. We build on previous works on minimum
weight matching and minimum weight edge cover problems to extend the objective
method and to further the applicability of belief propagation to random combinatorial
optimization problems.
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1 Introduction

We address here an optimization problem over bipartite graphs related to the match-
ing problem – called the many-to-one matching problem, which has applications in an
algorithm for genome sequencing and as a measure of distance between finite sets.
Given two sets A and B, with |A| ≥ |B|, consider a bipartite graph G with vertex set
V = A ∪ B, and edge set E ⊂ A × B. A many-to-one matching in G is a subgraph M
such that each vertex in A – called the one side – has degree 1 inM, and each vertex in
B – called the many side – has degree 1 or more inM. A many-to-one matching can be
viewed as an onto function from A to B. Each edge e ∈ E has a weight ξe ∈ R+ = [0,∞).
The cost of the matchingM is the sum of the weights of the edges inM. We focus here
on the minimum cost many-to-one matchings on complete bipartite graphs where the
edge-weights are independent and identically distributed (i.i.d.) random variables.
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Belief propagation for many-to-one matchings

For several optimization problems over graphs with random edge-weights, where the
objective is to minimize the sum weight of a subset of edges under some constraints,
the expected optimal cost converges to a constant as n→∞. Such results are known
for the minimum spanning tree [12], matching [1, 4], edge cover [15, 16], and traveling
salesman problem (TSP) [24] over complete graphs or complete bipartite graphs with
i.i.d. edge-weights. Furthermore, simple, iterative belief propagation algorithms can be
used to find asymptotically optimal solutions for matching [22] and edge cover [16].

We prove a similar result for many-to-one matching. Let us be a little more specific.
Fix a real number α > 1. In the complete bipartite graph Kn,n′ with vertex sets A and
B of cardinality n and n′ = dn/αe respectively, we take the edge-weights to be i.i.d.
random variables having the exponential distribution with mean 1. Denote by Mα

n the
minimum cost of many-to-one matching on Kn,n′ . We show that the expected value of
Mα
n converges to a constant (which depends on α and can be computed) as n → ∞.

Further, we show that a belief propagation (BP) algorithm finds the asymptotically
optimal many-to-one matching in O(n2) steps.

We proceed to show these results via the objective method following [4] for matching
and [16] for edge cover. Before we give the background and overview of the methods,
we describe two practical applications of the many-to-one matching problem.

1.1 Applications of many-to-one matching

1.1.1 Restriction scaffold problem

Ben-Dor et al. [8] introduced the restriction scaffold problem for assisting the finishing
step in a shotgun genome sequencing project. Shotgun sequencing refers to the process
of generating several short clones of a large target genome and then sequencing these
individual clones. Sequencing a short genome is much easier than sequencing the entire
genome, and the cloning process is automated and fast, but the locations of clones are
random. This process, which is like a random sampling, leaves us with several sequenced
segments of the target. It is possible to construct the target sequence by assembling
these short sequences by matching their overlaps, provided that we have sufficient
redundancy in the samples to cover the entire sequence with enough overlap.

Usually, asking for enough redundancy – that this assembly based on overlaps re-
constructs the whole sequence – will result in excessive cloning and sequencing tasks.
As a tradeoff, we can give up on this high redundancy, and accept as the output of this
assembly task large contiguous sequences (Ben-Dor et al. call these contigs), which
together cover a large part of the target sequence. If the gaps – the positions in the
target sequence that are not covered by these contigs – are small, those areas of the
genome can be targeted manually to finish the sequencing project. However, the relative
position and orientation of the contigs, and the sizes of gaps between successive contigs
are unknown. We need some information to figure out how these contigs align along the
target genome. See the top part of Figure 1.

Ben-Dor et al. propose the use of restriction enzymes to generate this information.
Restriction enzymes cut the DNA at specific recognition sequences (differing according
to the enzyme) called the restriction site of the enzyme. These restriction sites form a
scaffold over which the contigs can be assembled. Again, see Figure 1. They measure
the approximate sizes of the fragments obtained by digesting the target DNA with a
restriction enzyme. On the other hand, by assuming a particular ordering and orientation
of the contigs and the gaps between successive contigs the sizes of the fragments can be
computed by reading out the recognition sequence of the enzyme along the contigs (their
sequences are known). Comparing these computed fragment sizes with the measured
fragment sizes for several different restriction enzymes, gives them a way to obtain a
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Figure 1: “Fraction of a contiguration and one enzyme data. Top: the contigs; bold
arrow denote the orientation of each contig. Vertical lines: restrictions sites. Bottom:
restriction fragments between neighboring sites.”
Image and the quoted caption from [8].

new estimate of the ordering, orientation and gaps. This is the basis of their iterative
algorithm for solving the restriction scaffold problem.

The step of the iterative algorithm involving the comparison of the computed fragment
sizes with the measured fragment sizes is formulated as a many-to-one matching problem
– the computed fragment sizes on the “one” side, and the measured fragment sizes on
the “many” side. The measurement step process does not indicate the number of
fragments corresponding to a particular measurement. The many-to-one nature of the
association captures the notion that a measurement may correspond to one or more
physical fragments, and each physical fragment must correspond to one measurement.
The weight of an edge captures how much the two sizes differ. Specifically, the weight
of an edge joining a computed fragment size s(c) to a measured fragment size s(m) is
|log(s(c))− log(s(m))|. They solve the many-to-one matching problem using this linear
property: the vertices are represented as points on a line, a vertex corresponding to a
size s is at position log(s) on the line, and the cost of matching two points is the distance
between the points.

We do not assume this linear structure in our formulation of the many-to-one problem
on the complete bipartite graph. However the i.i.d. weight assumption is the mean-
field approximation of a geometric structure in the following sense. Take a set A of
n points and a set B of n′ = dn/αe points independently and uniformly at random
in the unit sphere in Rd. When n and n′ are large, the probability that the distance
between a typical point of A and a typical point of B is less than r is approximately rd

for small r. We can represent the distances between points of the two sets by forming
a complete bipartite graph and taking the weight of an edge as the distance between
the corresponding points. For a mean-field model we ignore the geometric structure of
Rd (and triangular inequality) and only take into account the interpoint distances, by
taking the edge-weights to be i.i.d. copies of a nonnegative random variable ξ satisfying
Pr(ξ < r) ≈ rd as r → 0.

1.1.2 A measure of distance between sets of points

A concept of distance between finite sets of points is useful in many areas like machine
learning, computational geometry, and comparison of theories. Such a distance is
derived from a given distance function (or a metric) between the points. For example,
in a clustering process over a set of examples, suppose we are given a function d such
that d(e1, e2) corresponds to the distance between two examples e1 and e2. Clustering
methods such as TIC [10] rely on a function d1 that specifies the distance d1(C1, C2) for
two clusters (which are sets of examples) C1 and C2.

Eiter and Mannila [11] use the term surjection distance for a measure of similarity,
based on optimal many-to-one matching, between two finite sets of points in a metric
space. The surjection distance is the minimum cost of a many-to-one matching, with the

EJP 19 (2014), paper 112.
Page 3/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3491
http://ejp.ejpecp.org/


Belief propagation for many-to-one matchings

points of the larger set forming the vertices of the one side, the points of the smaller
set forming the vertices of the many side of a bipartite graph, and the edge-weights
taken as the distance between the corresponding points. By reduction to the minimum
weight matching problem they find an O(n3) algorithm for many-to-one matching. Belief
propagation (in the random setting we consider here) yields an asymptotically optimal
solution in O(n2) steps.

1.2 Background and overview of the methods

Several of the results for random combinatorial optimization problems have originated
as conjectures supported by heuristic statistical mechanical methods such as the replica
method and the cavity method [17, 18, 19, 20, 21]. Establishing the validity of these
methods is a challenge even for mathematically simple models.

Aldous [1, 4] provided a rigorous proof of the ζ(2) limit conjecture for the random
matching (or assignment) problem. The method he used is called the objective method.
A survey of this method and its application to a few other problems was given in [3].
The objective method provides a rigorous counterpart to the cavity method, but has had
success only in a few settings.

The crux of the objective method is to obtain a suitable distributional limit for a
sequence of finite random weighted graphs of growing vertex set size. The space of
weighted graphs is endowed with a metric that captures the proximity based on the local
neighborhood around a vertex. The weak convergence of probability measures on this
space is called local weak convergence to emphasize that the convergence applies to
events that are essentially characterized by the local structure around a typical vertex,
and not to events that crucially depend on the global structure of the graph. This form of
convergence has appeared in varying forms in [14, 9, 3]. Once we have this convergence,
we can relate the optimization problem on finite graphs to an optimization problem on
the limit object. For example, Aldous [4] showed that the limit object for the sequence
of random weighted complete bipartite graphs Kn,n is the Poisson weighted infinite
tree (PWIT). Aldous then writes the optimization problem in terms of local conditions
at the vertices of the tree, and using the symmetry in the structure of the PWIT, these
relations result in a distributional identity called the recursive distributional equation
[5]. A solution to this equation is then used to describe asymptotically optimal matchings
on Kn,n.

One can exploit the recursive distributional equation to construct an iterative de-
centralized message passing algorithm, a versions of which is called belief propagation
(BP) in the computer science literature. BP algorithms are known to converge to the
correct solution on graphs without cycles. For graphs with cycles, provable guarantees
are known for BP only for certain problems. For example, Bayati, Shah and Sharma
[7] proved that the BP algorithm for maximum weight matching on bipartite graphs
converges to the correct value as long as the maximum weight matching is unique, and
Sanghavi, Malioutov and Willsky [23] proved that BP for matching is as powerful as LP
relaxation. Salez and Shah [22] studied belief propagation for the random assignment
problem, and showed that a BP algorithm on Kn,n converges to an update rule on the
limit object PWIT. The iterates on the PWIT converge in distribution to the minimum cost
assignment. The iterates are near the optimal solution in O(n2) steps whereas the worst
case optimal algorithm on bipartite graphs is O(n3) (expected time O(n2 log n) for i.i.d.
edge capacities); see Salez and Shah [22] and references therein.

In message passing algorithms like belief propagation, the calculations are performed
at each vertex of a graph from the messages received from its neighbors. This local
nature makes feasible its analysis via the objective method. The author and Sundaresan,
in [16], extended the objective method by combining local weak convergence and belief
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propagation to prove and characterize the limiting expected minimum cost for the edge
cover problem. In this paper, we implement this general program for the many-to-one
matching problem. The proof relies on two properties: (1) the neighborhoods around
most vertices are tree-like, and (2) the effect of the boundary on the belief propagation
messages at the root of the tree vanishes as the boundary is taken to infinity. The second
property is formalized as “endogeny" (see [5]) and is handled in Section 7.

1.3 Contributions of this paper

This paper extends the line of work on combinatorial optimization problems over
graphs with i.i.d. edge-weights. Although the methods are similar to those in [4, 22, 16],
there are key differences from earlier work in addressing the many-to-one matching
problem. We now highlight them. For example, we must deal with two types of vertices
corresponding to two different constraints on the degrees. The different viewpoints from
a vertex in A and a vertex in B makes the limit object for the sequence of graphs Kn,n′

different from the Poisson weighted infinite tree (PWIT) obtained as the limit of bipartite
graphs Kn,n with vertex sets of the same cardinality. The difference is in the distribution
of the weights of the edges at odd and even levels from the root. As a consequence,
the recursive distributional equation (RDE) – guiding the construction of an optimal
many-to-one matching on the limit object – is expressed in terms of a two-step recursion.

We prove that this recursive distributional equation has a unique solution, and that
the many-to-one matching on the limit object generated by the solution of this equation is
optimal among all involution invariant many-to-one matchings. To establish correctness
of BP, we establish that the fixed-point solution of the RDE has a full domain of attraction,
and that the stationary process with the fixed-point marginal distribution on the limit
object satisfies endogeny.

2 Main results

From now on we will write Kn,n/α to mean Kn,n′ , where n′ = dn/αe. Recall that
A and B denote the one side and the many side in the bipartite graph Kn,n/α. The
weights of the edges are i.i.d. random variables with the exponential distribution, and
for simplicity in the subsequent analysis, we take the mean of the edge-weights to be
n. This only changes the cost of the optimal solution by a factor of n, and so we have a
rescaling in the left hand side of (2.1). Also note that though we deal here explicitly with
the exponential distribution, the results go through unchanged – as is standard in the
mean-field optimization literature – for any distribution that has a distribution function
F satisfying F (0) = 0 and F ′(0) = 1 (only the right-derivative).

Our first result establishes the limit of the scaled expected minimum cost of the
random many-to-one matching problem.

Theorem 2.1. For α > 1, the minimum cost Mα
n of many-to-one matching on Kn,n/α,

satisfies

lim
n→∞

n−1 EMα
n = −Li2(−γ−1)− 1

2
log2(1 + γ−1) + wo log(1 + γ−1) + wo

=: cα∗ , (2.1)

where Li2 is the dilogarithm: Li2(z) = −
∫ z
0

log(1−t)
t dt =

∑∞
k=1

zk

k2 ; wo is the positive
solution to α = wo + e−wo ; γ equals woewo .

Our second result shows that a belief propagation algorithm gives a many-to-one
matching that is asymptotically optimal as n → ∞. The BP algorithm is based on the
corresponding BP algorithms developed in [22, 7] for matching and in [16] for edge
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cover. The proof uses the technique of showing that the update rule of BP converges to
an update rule on a limit infinite tree.

We now define a BP algorithm on an arbitrary bipartite graph G = (A ∪ B,E) with
edge-costs. First, some notation. We write w ∼ v to mean w is a neighbor of v, i.e.,
{v, w} ∈ E. For an edge e = {v, w} ∈ E, we write its cost as ξG (e) or ξG (v, w) (with
the ordering irrelevant). For each vertex v ∈ V, we associate a nonempty subset
πG(v) of its neighbors such that πG(v) has cardinality 1 if v ∈ A. Write M(πG) =

{{v, w} | v ∈ A ∪B,w ∈ πG(v)}.
The BP algorithm is an iterative message passing algorithm. In each iteration k ≥ 0,

every vertex v ∈ V sends a message Xk
G (w, v) to each neighbor w ∼ v according to the

following rules:

Initialization:
X0
G (w, v) = 0. (2.2)

Update rule:

Xk+1
G (w, v) =

{
minu∼v,u6=w

{
ξG (v, u)−Xk

G (v, u)
}

if v ∈ A,
minu∼v,u6=w

{(
ξG (v, u)−Xk

G (v, u)
)+}

if v ∈ B.
(2.3)

Decision rule:

πkG(v) =

{
arg minu∼v

{
ξG (v, u)−Xk

G (v, u)
}

if v ∈ A,
arg minu∼v

{(
ξG (v, u)−Xk

G (v, u)
)+}

if v ∈ B.
(2.4)

Note that the subsetM(πkG(v)) is not necessarily a many-to-one matching, but it can
be modified to be a many-to-one matchingMk

n by some patching. We also remark that
while ξG (v, u) = ξG (u, v) , the messages Xk

G (w, v) and Xk
G (v, w) can differ.

We analyze the belief propagation algorithm for G = Kn,n/α and i.i.d. exponential
random edge-costs, and prove that after sufficiently large number of iterates, the
expected cost of the many-to-one matching given by the BP algorithm is close to the limit
value in Theorem 2.1.

Theorem 2.2. On Kn,n/α, the outputM
(
πkKn,n/α

)
of the BP algorithm can be patched to

get a many-to-one matchingMk
n that satisfies

lim
k→∞

lim
n→∞

n−1 E

 ∑
e∈Mk

n

ξKn,n/α (e)

 = cα∗ . (2.5)

3 Local weak convergence

First we recollect the terminology for defining convergence of graphs, borrowed from
[3].

3.1 Rooted geometric networks

A graph G = (V,E) along with a length function l : E → (0,∞] and label : V → L is
called a network. L is a finite set of labels. The distance between two vertices in the
network is the infimum of the sum of lengths of the edges of a path connecting the two
vertices, the infimum being taken over all such paths. We call the network a geometric
network if for each vertex v ∈ V and positive real ρ, the number of vertices within a
distance ρ of v is finite. We denote the space of geometric networks by G.
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v

Figure 2: Neighborhood Nρ(G) of graph G. The solid edges form the neighborhood, and
form paths of length at most ρ from the root v. Dashed edges are the other edges of G.

A geometric network with a distinguished vertex v is called a rooted geometric
network with root v. We denote the space of all connected rooted geometric networks by
G∗. It is important to note that in G∗ we do not distinguish between rooted isomorphisms
of the same network – isomorphisms that preserve the graph structure along with the
root, vertex labels, and edge-lengths. We will use the notation (G,φ) to denote an element
of G∗ which is the isomorphism class of rooted networks with underlying network G and
root φ.

3.2 Local weak convergence

We call a positive real number ρ a continuity point of G if no vertex of G is exactly at
a distance ρ from the root of G. Let Nρ(G) denote the neighborhood of the root of G up
to distance ρ. Nρ(G) contains all vertices of G which are within a distance ρ from the
root of G (Figure 2). We take Nρ(G) to be an element of G∗ by inheriting the same length
function l as G, same label function as G, and the same root as that of G.

We say that a sequence of rooted geometric networks Gn, n ≥ 1 converges locally to
an element G∞ in G∗ if for each continuity point ρ of G∞, there is an nρ such that for all
n ≥ nρ, there exists a graph isomorphism γn,ρ from Nρ(G∞) to Nρ(Gn) that maps the
root of the former to the root of the latter, preserves the labels of the vertices, and for
each edge e of Nρ(G∞), the length of γn,ρ(e) converges to the length of e as n→∞.

The space G∗ can be suitably metrized to make it a separable and complete metric
space. See [2] for details on the metric. One can then consider probability measures on
this space and endow that space with the topology of weak convergence of measures.
This notion of convergence is called local weak convergence.

In our setting of complete graphs Kn,n/α = (A ∪B,E) with random i.i.d. edge-costs
{ξe, e ∈ E} , we regard the edge-costs to be the lengths of the edges, and declare a vertex
ϕ of Kn,n/α chosen uniformly at random as the root of Kn,n/α. Assign the label o to the
vertices in A, and the label m to the vertices in B; the label of a vertex will indicate its
permitted degrees in a many-to-one matching: o for one and m for many. This makes
(Kn,n/α, ϕ), the isomorphism class of Kn,n/α and the root ϕ, a random element of G∗. We
will show (Theorem 3.1 below) that the sequence of random rooted geometric networks
Kn,n/α converges in the local weak sense to an element of G∗, which we define below.

3.3 A mixture of two inhomogeneous Poisson weighted infinite trees

The graph that we define here is a variant of the Poisson weighted infinite tree
that appears in [3]. We use the notation from [22] to define the variant. This object
is a random element of G∗ whose distribution is a mixture of the distributions of two
random trees: T oα and T mα . Let V denote the set of all finite strings over the alphabet
N = {1, 2, 3, . . .}. Let φ denote the empty string. Let |v| denote the length of the string
v. For a string v with |v| ≥ 1, let v̇ denote the parent of v, i.e., the string with the last
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letter deleted. Let E = {{v, vi} , v ∈ V, i ∈ N}. Both T oα and T mα have the same underlying
graph (V, E) with root φ. Each vertex v in V has a label from the set L = {o,m}: v
has label o in T oα (respectively T mα ) if |v| is even (respectively odd), and label m if |v| is
odd (respectively even). In particular, the root φ has label o in T oα , and label m in T mα .
Construct a family of independent Poisson processes, with intensity 1, on R+:

{ξv = (ξv1 , ξ
v
2 , . . .), v ∈ V} .

Take the length of an edge {v, vi} in E to be ξvi if v has label m, and αξvi if v has label o.
If we denote the probability measure of T oα and T mα by νo and νm respectively, then the
probability measure of Tα is the mixture

ν =
α

1 + α
νo +

1

1 + α
νm. (3.1)

We now prove that this distribution is the local weak limit of the sequence of distributions
of (Kn,n/α, ϕ), where ϕ is chosen uniformly at random from the vertices of Kn,n/α.

Theorem 3.1. The sequence (Kn,n/α, ϕ) having edge-weights that are independent
random variables with exponential mean n distribution converges to Tα (with root φ) as
n→∞ in the local weak sense.

Proof. In Kn,n/α, let A denote the larger set with cardinality n and let B denote the set
with smaller cardinality n′ = dn/αe. Assign the label o to vertices in A (the one side),
and label m to the vertices in B (the many side). Condition the root ϕ to have label
o: this occurs with probability n/(n + dn/αe). Fix a positive integer N, and for n > N

identify vertices of Kn,n/α with strings in V restricted to the alphabet {1, 2, . . . , N}. The
empty string φ identifies the root ϕ. The strings 1, 2, . . . , N denote the first N neighbors
of the root ϕ arranged in increasing order of the weights of edges incident on the root. If
v ∈ V \ φ denotes some vertex in Kn,n/α then v1, v2, . . . , vN denote the first N neighbors
of v excluding v̇ arranged in increasing order of the weights of edges incident on v. This
generates a subtree of width N of (V, E). Assign weights and vertex labels to the edges
and vertices of the subtree according to those in Kn,n/α. Call this weighted tree TN,n.
Note that several strings in V may correspond to a single vertex of Kn,n/α. Fix another
positive integer H. Call the restriction of TN,n to vertices v with |v| ≤ H the weighted
tree TN,H,n.

Let (the scripted) TN and TN,H denote the corresponding restrictions of T oα . Clearly,
TN,H,n and TN,H are isomorphic finite graphs with the same vertex labels (the roots
of both are labeled o). We can view the edge-weights as elements of RE(TN,H), where
E(TN,H) denotes the edges in TN,H . Write νN,H,n and νN,H for the measure of TN,H,n and
TN,H respectively.

We bound the likelihood ratio dνN,H,n
dνN,H

for the restriction that each vertex of TN,H,n
corresponds to a unique vertex in Kn,n/α. For any vertex v, the vertex v1 is taken to
be the w that minimizes ξ(v, w) among all w 6= v̇, and w ∼ v. Suppose that we have
associated vertices upto vi for some 1 ≤ i < N to vertices of Kn,n/α. If v has label
o the next vertex v(i + 1) is the vertex w for which the difference ξ(v, w) − ξ(v, vi),

w /∈ {v̇, v1, . . . , vi} , is the minimum. The density of the difference ξ(v, v(i+ 1))− ξ(v, vi)
for i ≥ 1 (respectively, ξ(v, v1) for i = 0) at x > 0 is at least(

1− |TN,H |
dn/αe −N

)[
dn/αe − 1− i

n
exp

(
−dn/αe − 1− i

n
x

)]
, (3.2)

where |TN,H | is the number of vertices in TN,H . To see this, observe that the term
with square brackets is, using the memoryless property of the exponential distribution,
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the density of the minimum among the dn/αe − (i + 1) exponential random variables
corresponding to nodes on the many side (excluding {v̇, v1, . . . , vi}). The term outside
the square brackets is a lower bound on the probability that the minimum is not at
one of the vertices of Kn,n/α already picked. This establishes (3.2). The density of the
corresponding difference in TN,H is

1

α
exp

(
−x
α

)
.

The ratio of the conditional densities is at least(
1− |TN,H |

n/α−N

)(
1− N

n/α

)
.

Doing this for all vertices of TN,H , and using the fact that under the restriction all edges
are distinct, we get

dνN,H,n
dνN,H

≥
((

1− |TN,H |
n/α−N

)(
1− N

n/α

))|TN,H |
.

The lower bound converges to 1 as n→∞. This implies that

νN,H,n
W−→ νN,H , (3.3)

as n→∞.
Now to get the local weak convergence result, fix a ρ > 0 and ε > 0, and take N

and H large enough such that uniformly for all n > |TN,H | the probability that the
ρ-neighborhood of the root of Kn,n/α is a subset of TN,H,n is greater than 1− ε; under this
event the ρ-neighborhood of the root of Kn,n/α converges weakly to the ρ-neighborhood
of the root of T oα by (3.3). This shows that conditional on the root having label o, T oα is
the local weak limit of Kn,n/α. Similarly we can show that conditional on the root having
label m, the local weak limit is T mα . The probability of the label of the root to be o and m
converges respectively to α/(1 + α) and 1/(1 + α). This completes the proof.

The above theorem is a generalization of Aldous’s result [1, Lemma 10] for the local
weak limit of complete bipartite graphs in which both the vertex subsets have the same
cardinality. A similar result was earlier established by Hajek [14, Sec. IV] for a class of
sparse Erdős-Rényi random graphs.

The above theorem says that if we look at an arbitrary large but fixed neighborhood
of the root of Kn,n/α, then for large n, it looks like the corresponding neighborhood of
the root of Tα. This suggests that if boundary conditions can be ignored we may be able
to relate optimal many-to-one matchings on Kn,n/α with an appropriate many-to-one
matching on Tα (to be precise, an optimal involution invariant many-to-one matching on
Tα). Furthermore, the local neighborhood of the root of Kn,n/α is a tree for large enough
n (with high probability). So we may expect belief propagation on Kn,n/α to converge.
Both these observations form the basis of the proof technique here, just like in the case
of edge cover in [16]. In the matching case these ideas were developed by Aldous in
[1, 4] to obtain the limit, and later by Salez and Shah [22] to show the applicability of
belief propagation.

First, let us see that the expected cost of an optimal many-to-one matching on Kn,n/α

can be written in terms of the weights of the edges from the root:

E

 ∑
e∈M∗n

ξKn,n/α (e)

 = nE

 ∑
{ϕ,v}∈M∗n

ξ (ϕ, v) | label(ϕ) = o

.
This is because the root, conditioned to have label o, is uniform among the n vertices
of the subset A. We seek to relate the expectation on the right with the expectation
corresponding to optimal many-to-one matchings on Tα.
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4 Recursive distributional equation

For a labeled tree T with root φ, a many-to-one matching is a collection of edges such
that vertices with label o have degree 1 and the vertices with label m have degree at
least 1. The cost is the sum of the weights of the edges in the collection. This is well
defined for a finite T . Write C(T ) for the minimum cost of many-to-one matching on T ,
and write C(T \ φ) for the minimum cost of many-to-one matching on T \ φ, which is the
forest obtained after removing the root φ from T . Assume that the size of the tree is
such that such many-to-one matchings exist. We derive a recursive relation involving
these quantities.

If v is a child of the root φ of T let Tv denote the subtree containing v and all its
descendants, with v as the root. Irrespective of the label of φ, we have

C(T \ φ) =
∑
v∼φ

C(Tv). (4.1)

If φ has label o then among all matchings which match φ to a vertex u the minimum cost
is

ξ (φ, u) + min {C(Tu), C(Tu \ u)}+
∑

v∼φ,v 6=u

C(Tv).

C(T ) is the minimum of the above over all children of the root:

C(T ) = min
u∼φ

ξ (φ, u) + min {C(Tu), C(Tu \ u)}+
∑

v∼φ,v 6=u

C(Tv)

 . (4.2)

Subtracting (4.1) from (4.2), we get

C(T )− C(T \ φ) = min
u∼φ

{
ξ (φ, u)− (C(Tu)− C(Tu \ u))

+
}
. (4.3)

If φ has label m then among all matchings which match φ to vertices in a nonempty set I
the minimum cost is ∑

u∈I
(ξ (φ, u) + C(Tu \ u)) +

∑
v∼φ,v/∈I

C(Tv).

C(T ) is the minimum of the above over all nonempty I:

C(T ) = min
I nonempty

∑
u∈I

(ξ (φ, u) + C(Tu \ u)) +
∑

v∼φ,v/∈I

C(Tv)

 . (4.4)

Subtracting (4.1) from (4.4), we get

C(T )− C(T \ φ) = min
I nonempty

{∑
u∈I

[
ξ (φ, u)− (C(Tu)− C(Tu \ u))

]}
,

the positive part of which is

(C(T )− C(T \ φ))
+

= min
u∼φ

{[
ξ (φ, u)− (C(Tu)− C(Tu \ u))

]+}
. (4.5)

Now consider what happens when we take T to be the infinite tree Tα. The quantities
C(Tα) and C(Tα \ φ) become infinite, and the relations (4.3) and (4.5) are meaningless.
Observe that conditional on the label of the root φ the subtrees Tα,i, i ∼ φ are i.i.d., and
the conditional distribution is same as the distribution of T mα (T oα ) given that φ has label
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o (m). With this distribution structure of the subtrees, (4.3) and (4.5) motivate us to
write a two-step recursive distributional equation (RDE): an equation in two distributions
µo on R and µm on R+ that satisfy

Xo D
= min

i
{αξi −Xm

i } ,

Xm D
= min

i

{
(ξi −Xo

i )
+
}
,

(4.6)

such that

(a) {ξi, i ≥ 1} is a Poisson process of rate 1 on [0,∞),
(b) Xo has distribution µo,
(c) Xm

i , i ≥ 1 are i.i.d. random variables with distribution µm, independent of the
Poisson process {ξi}

(d) Xm has distribution µm,
(e) Xo

i , i ≥ 1 are i.i.d. random variables with distribution µo, independent of the Poisson
process {ξi}.

We will call (µo, µm) the solution to the RDE (4.6).
A recursive distributional equation is the primary tool that leads to the optimal

solution on the infinite tree Tα. The limit value of the expected optimal cost is obtained by
calculations from the solution of the RDE. Recursive distributional equations come up in
the related problems of random matching [4] and edge cover. Aldous and Bandyopadhyay
[5] present a survey of this type of RDEs and introduce several RDE concepts that we
will use later.

If P(S) denotes the space of probability measures on a space S, a recursive dis-
tributional equation (RDE) is defined in [5] as a fixed-point equation on P(S) of the
form

X
D
= g(ξ; (Xj , 1 ≤ j < N)), (4.7)

where Xj , j ≥ 1, are i.i.d. S-valued random variables having the same distribution as X,
and are independent of the pair (ξ,N), ξ is a random variable on some space, and N is a
random variable on N ∪ {+∞}. g is a given S-valued function. A solution to the RDE is a
common distribution of X,Xj , j ≥ 1 satisfying (4.7).

The two-step equation (4.6) can easily be expressed in the form (4.7) by composing
the two steps of (4.6) into a single step. One can then solve for a fixed point distribution,
say µo, which then automatically yields µm via one of the steps of (4.6).

We can use the relation (4.7) to construct a tree indexed stochastic process, say
Xi, i ∈ V, which is called a recursive tree process (RTP) [5]. Associate to each vertex
i ∈ V, an independent copy (ξi, Ni) of the pair (ξ,N), and require Xi to satisfy

Xi
D
= g(ξi; (Xi.j , 1 ≤ j < Ni)),

with Xi independent of
{

(ξi′ , Ni′)
∣∣ |i′| < |i|}. If µ ∈ P(S) is a solution to the RDE (4.7),

there exists a stationary RTP, i.e., each Xi is distributed as µ. Such a process is called an
invariant RTP with marginal distribution µ.

4.1 Solution to the RDE

Write F and G for the survival functions of the distributions µo and µm respectively,
i.e., F (t) = P {Xo > t} and G(t) = P {Xm > t}. F and G satisfy the following:

F (t) = exp

(
−
∫ ∞
−t

G(z)

α
dz

)
, t ∈ R; (4.8)

G(t) =

{
exp

(
−
∫∞
−t F (z) dz

)
if t ≥ 0,

1 if t < 0.
(4.9)
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For t ≥ 0, we can write

F (t) = exp

(
− 1

α

(∫ 0

−t
dz −

∫ ∞
0

G(z) dz

))
= e−wm/αe−t/α, (4.10)

where wm = EXm. Let wo = E (Xo)
+. By (4.10), we have wo = αe−wm/α. We can now

rewrite (4.10) using wo as

F (t) =
wo
α
e−t/α, t ≥ 0. (4.11)

From (4.8) and (4.9), F and G are differentiable for all t ∈ R \ {0}. Differentiating
(4.8) and (4.9), we get

F ′(−t) = − 1

α
F (−t)G(t), t 6= 0, (4.12)

G′(t) = −G(t)F (−t), t > 0. (4.13)

These two equations imply that

αF (−t) +G(t) = constant, t > 0.

The validity of this equation can be extended to t = 0 because F is continuous for all t
and G is right-continuous with left limits at t = 0. Taking t → ∞ in the above relation
shows that the constant is equal to α, and so

F (−t) = 1− G(t)

α
, t ≥ 0. (4.14)

Substituting this in (4.13) results in the differential equation

G′(t) = −G(t)

(
1− G(t)

α

)
, t > 0. (4.15)

To get the boundary conditions take t = 0 in (4.9),(4.11), and (4.14) to get

G(0) = e−wo ,

F (0) = wo/α,

F (0) = 1−G(0)/α.

These imply G(0) = α−wo and α = wo+e−wo . Since α > 1, the latter equation determines
a unique wo > 0.

Integration of the differential equation (4.15) gives

G(t) = α
G(0)e−t

α−G(0) +G(0)e−t

=
α

1 + woewoet

for t ≥ 0. Using (4.14), we get F for (−∞, 0] as well. We thus obtain the following
expressions for the distributions F and G:

F (t) =

{
wo
α e
−t/α if t ≥ 0,

1− 1
1+γe−t if t < 0;

(4.16)

G(t) =


α

1 + γet
if t ≥ 0,

1 if t < 0,
(4.17)
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where γ = woe
wo .

For future use, we note that the density of µo is:

f(t) =

{
wo
α2 e
−t/α if t > 0,

γe−t

(1+γe−t)2 if t ≤ 0.
(4.18)

5 Optimal involution invariant many-to-one matching on the infi-
nite tree

The RDE (4.6) guides us in the construction of a many-to-one matching on Tα; the
following Lemma forms the first step.

Lemma 5.1. There exists a process(
Tα, (ξe, e ∈ E(Tα)), (X(−→e ) ,−→e ∈

−→
E (Tα))

)
where Tα is an infinite tree with edge-lengths {ξe, e ∈ E(Tα)}, generated from the distri-

bution (3.1), and
{
X(−→e ) ,−→e ∈

−→
E (Tα)

}
is a stochastic process satisfying the following

properties.

(a) For each directed edge (u, v) ∈
−→
E (Tα),

X(u, v) =


min

{
ξ (v, w)−X(v, w) : (v, w) ∈

−→
E (Tα), w 6= u

}
if label(v) = o,

min
{

(ξ (v, w)−X(v, w))
+

: (v, w) ∈
−→
E (Tα), w 6= u

}
if label(v) = m.

(5.1)

(b) If (u, v) ∈
−→
E (Tα) is directed away from the root of Tα, then X(u, v) has distribution

F conditioned on v having label o, and distribution G conditioned on v having label
m; F and G are as in (4.16) and (4.17).

(c) If (u, v) ∈
−→
E (Tα) the random variables X(u, v) and X(v, u) are independent.

(d) For a fixed z > 0, conditional on the event that there exists an edge of length z at the
root, say {φ, vz} , and conditional on the root having label m, the random variables
X(φ, vz) and X(vz, φ) are independent random variables having distributions F
and G respectively; if the root is conditioned to have label o, the distributions are
reversed.

Proof. This Lemma is the analogue of Lemma 5.8 of [3] and Lemma 1 of [16]. It has
essentially the same proof, with appropriate changes to handle vertex labels. We omit
the details.

We use the process {X(−→e )} to construct a many-to-one matchingMopt on Tα. For
each vertex v of Tα, define a set

Mopt(v) =

{
arg miny∼v {ξ (v, y)−X(v, y)} if label(v) = o,

arg miny∼v

{
(ξ (v, y)−X(v, y))

+
}

if label(v) = m.
(5.2)

By continuity of the edge-weight distribution, when v has label o, almost surelyMopt(v)

will be a singleton, whereas when v has label m, Mopt(v) may have more than one
element – e.g., all vertices y for which the difference ξ (v, y)−X(v, y) is negative.

Define
Mopt =

⋃
v

{{v, w} : w ∈Mopt(v)} .
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The following lemma proves that the collectionMopt yields a consistent many-to-one
matching – if v with label o picks w with label m, then w is the only m-labeled vertex that
picks v.

Lemma 5.2. For any two vertices v, w of Tα, we have

w ∈Mopt(v) ⇐⇒ ξ (v, w) < X(v, w) +X(w, v) .

As a consequence,
w ∈Mopt(v) ⇐⇒ v ∈Mopt(w).

Proof. Let w ∈Mopt(v). Suppose v has label o. Then

w = arg min {ξ (v, y)−X(v, y) , y ∼ v}.

This implies

ξ (v, w)−X(v, w) = min {ξ (v, y)−X(v, y) , y ∼ v}
< min {ξ (v, y)−X(v, y) , y ∼ v, y 6= w} = X(w, v) .

Conversely, if ξ (v, w) < X(v, w) +X(w, v) then using the definition of X(w, v) , it follows
that w = arg min {ξ (v, y)−X(v, y) , y ∼ v}, and so w ∈Mopt(v).

Now suppose v has labelm. Then there are two cases. (1) ξ (v, w)−X(v, w) < 0. In this
case ξ (v, w) < X(v, w)+X(w, v) sinceX(w, v) ≥ 0. Alternatively, (2) ξ (v, w)−X(v, w) > 0,
in which case, by (5.2), w is the unique vertex where the minimum is attained. Hence

0 < ξ (v, w)−X(v, w) < ξ (v, y)−X(v, y) for all y ∼ v, y 6= w,

and so

ξ (v, w)−X(v, w) < min {ξ (v, y)−X(v, y) , y ∼ v, y 6= w} = X(w, v) ,

which then yields ξ (v, w) < X(v, w) + X(w, v). Again, it is easy to see that if ξ (v, w) <

X(v, w) + X(w, v) then w ∈ arg min
{

(ξ (v, y)−X(v, y))
+
, y ∼ v

}
, which implies w ∈

Mopt(v).
Thus, we have established the first statement of the lemma, which is

w ∈Mopt(v) ⇐⇒ ξ (v, w) < X(v, w) +X(w, v) .

The condition on the right-hand side above is symmetric in v, w, and hence the second
statement of the lemma is proved.

5.1 Evaluating the cost

The next result is merely to demonstrate that the limiting expected minimum cost
can be computed using numerical methods.

Define

cα∗ = −Li2
(
−γ−1

)
− 1

2
log2

(
1 + γ−1

)
+ wo log

(
1 + γ−1

)
+ wo,

where Li2 is the dilogarithm: Li2(z) = −
∫ z
0

log(1−t)
t dt =

∑∞
k=1

zk

k2 = z
∫∞
0
t/(et − z)dt,

γ = woe
wo , and wo is the positive solution to wo + e−wo = α.

Theorem 5.3.

E

 ∑
v∈Mopt(φ)

ξ (φ, v) | label(φ) = o

 = cα∗ .
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Proof. Condition on the event that the root φ has label o. Now fix a z > 0, and condition
on the event that there is a neighbor vz of φ with ξ (φ, vz) = z. Call this event Ez. If
we condition a Poisson process to have a point at some location, then the conditional
process on removing this point is again a Poisson process with the same intensity. This
shows that under Ez, X(φ, vz) and X(vz, φ) have the distributions G and F respectively.
They are also independent. Using these observations, the conditional expected cost can
be written as

E

 ∑
v∈Mopt(φ)

ξ (φ, v) | label(φ) = o


=

∫ ∞
z=0

z P {z < X(φ, vz) +X(vz, φ)} 1

α
dz

=

∫ ∞
z=0

∫ ∞
x=−∞

zG(z − x)f(x)
1

α
dxdz

=

∫ ∞
z=0

∫ 0

x=−∞
z

1

1 + γez−x
γe−x

(1 + γe−x)2
dx dz

+

∫ ∞
z=0

∫ z

x=0

z
1

1 + γez−x
wo
α2
e−x/α dxdz +

∫ ∞
z=0

∫ ∞
x=z

zf(x)
1

α
dx dz

(using the expression for the density of µo (4.18))

=

∫ 0

x=−∞
− γe−x

(1 + γe−x)2
Li2(−γ−1ex) dx+

1

α2

∫ ∞
x=0

∫ ∞
t=0

t+ x

1 + γet
woe

−x/α dtdx

+
1

α

∫ ∞
z=0

zF (z) dz (taking t = z − x)

=

∫ ∞
s=γ

− 1

(1 + s)2
Li2(−s−1) ds

+
1

α2

∫ ∞
x=0

woe
−x/α (−Li2(−γ−1) + x log(1 + γ−1)

)
dx

+

∫ ∞
z=0

z
wo
α2
e−z/α dz

(
taking s = γe−x

)
=

Li2(−γ−1)

1 + γ
+

1

2
log2(1 + γ−1)− wo

α
Li2(−γ−1)

+ wo log(1 + γ−1) + wo

= −Li2(−γ−1)− 1

2
log2(1 + γ−1) + wo log(1 + γ−1) + wo(

using
α

1 + γ
= α− wo

)
.

Note that as α → 1, the expected cost converges to π2/6, which is the limiting
expected minimum cost of a standard matching on Kn,n.

5.2 Optimality in the class of involution invariant many-to-one matchings

The local weak limit of a sequence of uniformly rooted random network satisfies a
property called involution invariance [3, 2]. Informally, involution invariance and its
equivalent property called unimodularity specify that a distribution on the space of
rooted networks G∗ does not depend on the choice of the root.

Refer to Section 5 of [16] for a discussion on involution invariance as it relates to our
setting; a very general study of involution invariance is central to [2].

EJP 19 (2014), paper 112.
Page 15/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3491
http://ejp.ejpecp.org/


Belief propagation for many-to-one matchings

Let G∗∗ be the space of isomorphism classes of connected geometric networks with
a distinguished directed edge. An element of G∗∗ (G, o, x) will denote the isomorphism
class corresponding to a network G and distinguished vertex pair (o, x), where {o, x} is
an edge in G. A probability measure µ on G∗ is called involution invariant if it satisfies
the following for all Borel f : G∗∗ → [0,∞]∫ ∑

x∈V (G)

f(G, o, x) dµ(G, o) =

∫ ∑
x∈V (G)

f(G, x, o) dµ(G, o).

We can represent a many-to-one matchingM on a graph G by a membership map on
the edge-set of G: e 7→ 1{e∈M}. We call a random many-to-one matching on a random
graph G involution invariant if the distribution of G with the above map on its edges is
involution invariant. Following the argument in the last paragraph of Section 5 of [16]
we can restrict our attention to involution invariant many-to-one matchings on Tα. We
now show that our candidate many-to-one matchingMopt has the minimum expected
cost among such many-to-one matchings.

Theorem 5.4. Let M be an involution invariant many-to-one matching on Tα. Write
M(φ) for the set of vertices of Tα adjacent to the root φ inM (This set will be a singleton
if label of φ is o). Then

E

 ∑
v∈M(φ)

ξ (φ, v)

 ≥ E

 ∑
v∈Mopt(φ)

ξ (φ, v)

.
Before we start to prove Theorem 5.4, we examine a consequence of Theorem 5.4.

Corollary 5.5.

E

 ∑
v∈M(φ)

ξ (φ, v) | label(φ) = o

 ≥ E

 ∑
v∈Mopt(φ)

ξ (φ, v) | label(φ) = o

.
Proof. Involution invariance ofM implies that

E

 ∑
v∈M(φ)

ξ (φ, v)1{label(φ)=o}

 = E

 ∑
v∈M(φ)

ξ (φ, v)1{label(φ)=m}

.
Using that P {label(φ) = o} = α

1+α and P {label(φ) = m} = 1
1+α , we get

E

 ∑
v∈M(φ)

ξ (φ, v)

 =
2α

1 + α
E

 ∑
v∈M(φ)

ξ (φ, v) | label(φ) = o

.
The same holds forMopt too, and so the corollary follows from Theorem 5.4.

We will need some definitions for the proof of Theorem 5.4. For each directed edge
(v, w) of Tα, if v has label o and w has label m, define a random variable

Y (v, w) = min

∑
y∈A

(ξ (w, y)−X(w, y))
∣∣∣A ⊂ Nw \ {v} ,
A nonempty

 , (5.3)

where Nw is the set of neighbors of w. It is easy to see that this random variable can be
written as

Y (v, w) =


miny∼w,y 6=v {ξ (w, y)−X(w, y)}

if ξ (w, y)−X(w, y) ≥ 0 for all y ∼ w, y 6= v,∑
y∼w,y 6=v(ξ (w, y)−X(w, y))1{ξ(w,y)−X(w,y)<0}

otherwise.
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Note that (Y (v, w))
+

= X(v, w). If v has label o and w has label m, define

Y (w, v) = X(w, v) .

Suppose that E
[∑

v∈M(φ) ξ (φ, v)
]
< ∞. Then M(φ) is a finite set with probability

1 because {ξ (φ, v) , v ∼ φ} are points of a Poisson process of rate 1 or 1/α. For such a
many-to-one matchingM, define

A(M) =
∑

v∈M(φ)

X(φ, v) + max
v/∈M(φ),v∼φ

Y (v, φ). (5.4)

The following two lemmas will be used to prove Theorem 5.4.

Lemma 5.6. LetM be a many-to-one matching on Tα such that

E

 ∑
v∈M(φ)

ξ (φ, v)

 <∞.
Then almost surely, ∑

v∈M(φ)

ξ (φ, v) ≥ A(M).

Furthermore, ∑
v∈Mopt(φ)

ξ (φ, v) = A(Mopt).

Lemma 5.7. LetM be a many-to-one matching on Tα such that

E

 ∑
v∈M(φ)

ξ (φ, v)

 <∞.
IfM is involution invariant, we have E [A(M)] ≥ E [A(Mopt)].

Proof of Theorem 5.4. If E
[∑

v∈M(φ) ξ (φ, v)
]

=∞ the statement of the theorem is triv-
ially true. Assume that it is finite. We are now in a position to apply Lemmas 5.6 and 5.7
as follows to get the result:

E

 ∑
v∈M(φ)

ξ (φ, v)

 ≥ E [A(M)] (Lemma 5.6)

≥ E [A(Mopt)] (Lemma 5.7)

= E

 ∑
v∈Mopt(φ)

ξ (φ, v)

. (Lemma 5.6)

Let us now complete the proofs of Lemmas 5.6 and 5.7.

Proof of Lemma 5.6. Suppose φ has label o. Then M(φ) is a singleton, say {u}. For
v ∼ φ, we have by (5.2) and (5.1),

Y (v, φ) = X(v, φ) ≤ ξ (φ, y)−X(φ, y) , y ∼ φ, y 6= v.

If v 6= u, replacing y with u on the right-hand side, we get

Y (v, φ) ≤ ξ (φ, u)−X(φ, u) .
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Belief propagation for many-to-one matchings

Therefore,
max

v/∈M(φ),v∼φ
Y (v, φ) ≤ ξ (φ, u)−X(φ, u) .

This gives ∑
v∈M(φ)

ξ (φ, v) ≥ A(M).

IfMopt(φ) = {u∗} then

u∗ = arg min
y∼φ

{ξ (φ, y)−X(φ, y)}

implies that, for any v 6= u∗, v ∼ φ,

Y (v, φ) = X(v, φ) = ξ (φ, u∗)−X(φ, u∗) .

Therefore,
max

v/∈Mopt(φ),v∼φ
Y (v, φ) = ξ (φ, u∗)−X(φ, u∗) ,

and so ∑
v∈Mopt(φ)

ξ (φ, v) = A(Mopt).

Now suppose φ has label m. Then by (5.3),

Y (v, φ) ≤
∑
y∈A

(ξ (φ, y)−X(φ, y))

for all A ⊂ Nφ \ {v} , A nonempty. In particular, for any v /∈ M(φ), we can choose
A =M(φ) to obtain

Y (v, φ) ≤
∑

y∈M(φ)

(ξ (φ, y)−X(φ, y)).

This implies
max

v/∈M(φ),v∼φ
Y (v, φ) ≤

∑
y∈M(φ)

(ξ (φ, y)−X(φ, y)). (5.5)

Thanks to the finite expectation assumption in the lemma,M(φ) is a finite set almost
surely, and so

∑
y∈M(φ)X(φ, y) is finite almost surely. Rearrangement of (5.5) then yields∑

v∈M(φ)

ξ (φ, v) ≥ A(M).

We can writeMopt(φ) as

Mopt(φ) = arg min
A

∑
y∈A

(ξ (φ, y)−X(φ, y)) : A ⊂ Nφ, A nonempty

 . (5.6)

From (5.3) and (5.6), for any v /∈Mopt(φ), we have

Y (v, φ) =
∑

y∈Mopt(φ)

(ξ (φ, y)−X(φ, y)),

and hence
max

v/∈Mopt(φ),v∼φ
Y (v, φ) =

∑
y∈Mopt(φ)

(ξ (φ, y)−X(φ, y)).

It follows by rearrangement that∑
v∈Mopt(φ)

ξ (φ, v) = A(Mopt).
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Proof of Lemma 5.7. Define

Ã(M) =
∑

v∈M(φ)

X(v, φ) + max
v/∈M(φ),v∼φ

Y (v, φ). (5.7)

Ã(M) is similar to A(M), but with the arguments of X alone reversed. We will prove
Lemma 5.7 by showing the following two results:

(a) For an involution invariant many-to-one matchingM

E
[
Ã(M)

]
= E [A(M)]. (5.8)

(b) Almost surely,

Ã(M) ≥ Ã(Mopt). (5.9)

We first prove (5.8). First, by involution invariance ofM, we have

E

 ∑
v∈M(φ)

X(φ, v)

 = E

 ∑
v∈M(φ)

X(v, φ)

. (5.10)

Indeed, the left-hand side equals∫
G∗

∑
v∼φ

X(φ, v) dµM([G,φ]),

where µM is the probability measure on G∗ corresponding toM. By involution invariance,
this equals ∫

G∗

∑
v∼φ

X(v, φ) dµM([G,φ]),

which is equal to the right-hand side of (5.10). Thanks to the finite expectation assump-
tion of the lemma, we saw in the proof of Lemma 5.6 that the term maxv/∈M(φ),v∼φ Y (v, φ)

is finite almost surely. Now observe that A(M) (respectively Ã(M)) is obtained by adding
the almost surely finite random variable maxv/∈M(φ),v∼φ Y (v, φ) to the random variable
which is the argument of the expectation in the left-hand side of (5.10) (respectively the
right-hand side of (5.10)). Taking expectation and using the equality in (5.10), we get
(5.8).

Now we will prove (5.9). Suppose that φ has label o. Both M(φ) and Mopt(φ) are
singleton sets: suppose M(φ) = {u} and Mopt(φ) = {u∗}. If u = u∗ then Ã(M) =

Ã(Mopt). Now suppose u 6= u∗. Then

Y (v, φ) = X(v, φ) = ξ (φ, u∗)−X(φ, u∗)

for all v 6= u∗, v ∼ φ. For all such v,

Y (v, φ) = X(u, φ) ≤ X(u∗, φ) = Y (u∗, φ).

Consequently,

max
v 6=u∗,v∼φ

Y (v, φ) = X(u, φ) ,

max
v 6=u,v∼φ

Y (v, φ) = X(u∗, φ) .
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This implies that

Ã(Mopt) = X(u∗, φ) +X(u, φ) ,

Ã(M) = X(u, φ) +X(u∗, φ) .

Thus Ã(M) = Ã(Mopt).
Now suppose that φ has label m. First condition on the event

L1 = {|Mopt(φ)| > 1} .

Observe that, under L1, ξ (φ, y)−X(φ, y) < 0, y ∼ φ if and only if y ∈Mopt(φ), and there
are at least two such y. Then, by (5.1),

X(v, φ) = 0 for all v ∼ φ. (5.11)

Also from (5.3) and (5.6), for any v ∼ φ, we have

Y (v, φ) ≥
∑

y∈Mopt(φ)

(ξ (φ, y)−X(φ, y)) = Y (w, φ)

if w /∈Mopt(φ). This implies

Y (v, φ) ≥ max
w/∈Mopt(φ),w∼φ

Y (w, φ) for all v ∼ φ.

In particular,
max

v/∈M(φ),v∼φ
Y (v, φ) ≥ max

w/∈Mopt(φ),w∼φ
Y (w, φ). (5.12)

Combining (5.11) and (5.12) gives∑
v∈M(φ)

X(v, φ) + max
v/∈M(φ),v∼φ

Y (v, φ) ≥
∑

v∈Mopt(φ)

X(v, φ) + max
v/∈Mopt(φ),v∼φ

Y (v, φ).

Thus Ã(M) ≥ Ã(Mopt) under L1.
Now consider the event L2 = {|Mopt(φ)| = 1}. Let

X
(1)
φ = min

v∼φ
(ξ (φ, v)−X(φ, v)) ,

X
(2)
φ = min

v∼φ
(2) (ξ (φ, v)−X(φ, v)) ,

where min(2) stands for the second minimum.
LetMopt(φ) = {u∗}. Then X(u∗, φ) = X

(2)
φ (the second minimum is nonnegative), and

for v ∈M(φ) \Mopt(φ), X(v, φ) =
(
X

(1)
φ

)+
. So we get

∑
v∈M(φ)

X(v, φ)−
∑

v∈Mopt(φ)

X(v, φ) =
∑

v∈M(φ)\Mopt(φ)

(
X

(1)
φ

)+
−X(2)

φ 1{u∗ /∈M(φ)}. (5.13)

From (5.3), if v 6= u∗, then Y (v, φ) = X
(1)
φ . Also Y (u∗, φ) = X

(2)
φ . Since X(2)

φ ≥ X
(1)
φ , we

get
max

v/∈M(φ),v∼φ
Y (v, φ) = X

(2)
φ 1{u∗ /∈M(φ)} +X

(1)
φ 1{u∗∈M(φ)},

and
max

v/∈Mopt(φ),v∼φ
Y (v, φ) = X

(1)
φ .
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Therefore,

max
v/∈M(φ),v∼φ

Y (v, φ)− max
v/∈Mopt(φ),v∼φ

Y (v, φ) =
(
X

(2)
φ −X

(1)
φ

)
1{u∗ /∈M(φ)}. (5.14)

Adding (5.13) and (5.14), and canceling X(2)
φ 1{u∗ /∈M(φ)}, we get∑

v∈M(φ)

X(v, φ) + max
v/∈M(φ),v∼φ

Y (v, φ)

−
∑

v∈Mopt(φ)

X(v, φ)− max
v/∈Mopt(φ),v∼φ

Y (v, φ)

=
∑

v∈M(φ)\Mopt(φ)

(
X

(1)
φ

)+
−X(1)

φ 1{u∗ /∈M(φ)}

≥ 0,

where the last inequality follows because there exists a v ∈M(φ) \Mopt(φ) by virtue of
our assumption thatM(φ) 6=Mopt(φ). Thus Ã(M) ≥ Ã(Mopt) under L2 as well.

6 Completing the lower bound

Theorem 6.1. Let M∗n be the optimal many-to-one matching on Kn,n/α. Then

lim inf
n→∞

1

n
E

 ∑
e∈M∗n

ξKn,n/α (e)

 ≥ c∗α.
Proof. First observe that

E

 ∑
e∈M∗n

ξKn,n/α (e)

 = nE

 ∑
{ϕ,v}∈M∗n

ξ (ϕ, v) | label(ϕ) = o

,
because the root, conditioned to have label o, is uniform among the n vertices of the
subset A.

The theorem can now be proved from Corollary 5.5 by following the exact steps of
the proof of Theorem 9 in [16].

7 Endogeny

As we now move to establish the upper bound, our aim will be to show that BP run for
large enough iterations on Kn,n/α gives us a many-to-one matching that has cost close to
the optimal for large n. We will show this by relating BP on Kn,n/α with BP on Tα through
local weak convergence. It turns out that the X process of Lemma 5.1 generated from
the RDE (4.6) arises as the limit of the message process on Tα (Theorem 9.3). This result
depends on an important property of the X process called endogeny, which was defined
in [5].

Definition 7.1. An invariant RTP with marginal distribution µ is said to be endoge-
nous if the root variable Xφ is almost surely measurable with respect to the σ-algebra
σ ({(ξi, Ni) | i ∈ V}).

Conceptually this means that the random variable at the root Xφ is a function of the
“data” {(ξi, Ni) | i ∈ V}, and there is no external randomness. This measurability also
implies that if we restrict attention to a large neighborhood of the root, the root variable
Xφ is almost deterministic given this neighborhood: the effect of the boundary vanishes.
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This sort of long range independence allows the use of belief propagation in conjunc-
tion with local weak convergence. When we run BP updates on a graph the number of
iterations correspond to the size of the neighborhood around a vertex involved in the
computation of the messages at that vertex. Endogeny gives us a way to say that this
information is sufficient to make decisions at each vertex and jointly yield an almost
optimal solution.

For a general RDE (4.7), write T : P(S)→ P(S) for the map induced by the function
g on the space of probability measures on S. We now define a bivariate map T (2) :

P(S × S)→ P(S × S), which maps a distribution µ(2) ∈ P(S × S) to the joint distribution
of g (ξ;(X(1)

j , 1 ≤ j < N
))

g
(
ξ;
(
X

(2)
j , 1 ≤ j < N

)) ,

where
(
X

(1)
j , X

(2)
j

)
j≥1 are independent with joint distribution µ(2) on S×S, and the family

of random variables
(
X

(1)
j , X

(2)
j

)
j≥1 are independent of the pair (ξ,N).

It is easy to see that if µ is a fixed point of the RDE then the associated diagonal
measure µ↗ := Law(X,X) where X ∼ µ is a fixed point of the operator T (2).

Theorem 11c of [5], reproduced below, provides a way of proving endogeny.

Theorem 7.2 (Theorem 11c of [5]). For a Polish space S, an invariant recursive tree
process with marginal distribution µ is endogenous if and only if

T (2)n(µ⊗ µ)
D−→ µ↗,

where µ⊗ µ is the product measure.

We will use the above theorem to prove the endogeny of the RTP for our problem.
The proof of Theorem 7.3 follows closely the method of [6], where the author proves
the endogeny of the logistic RDE (which corresponds to the minimum weight matching
problem). Similar to [6], we will use a transformation to get a fixed point equation for
decreasing functions on R. In our case the operator is a composition of two similar
operators, in contrast with a single operator in [6].

Theorem 7.3. The invariant recursive tree process of Lemma 5.1 arising from the
solution to the RDE (4.6) is endogenous.

Proof. We first write an RDE for Xo. Let g1
(

(ξi)i≥1 ; (xoi )i≥1

)
= mini (ξi − xoi )

+. Also

define g2
(

(ξi)i≥1 ; (xmi )i≥1

)
= mini (ξi − xmi ). Then define the map

go

((
(ξi)i≥1 , (ξij)i,j≥1

)
;
(
xoij
)
i,j≥1

)
= g2

(
(ξi)i≥1 ;

(
g1

(
(ξij)j≥1 ;

(
xoij
)
j≥1

))
i≥1

)
.

We now have the RDE

Xo D
= go

((
(ξi)i≥1 , (ξij)i,j≥1

)
;
(
Xo
ij

)
i,j≥1

)
,

where

(a) (ξi)i≥1 is a Poisson process of rate 1/α on R+,

(b) for each i ≥ 1, (ξij)j≥1 is Poisson process of rate 1 on R+,

(c) Xo
ij , i, j ≥ 1 are independent random variables having the same distribution as Xo,

and

(d) the Poisson processes in (a) and (b) and the random variables Xi,j in (c) are
independent of each other.
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Call the induced mapping from P(R+) to P(R+) as T . The fixed point of this map is the
distribution µ, with survival function F as in (4.16). We shall argue that

T (2)n(µ⊗ µ)
D−→ µ↗. (7.1)

Thus the invariant RTP associated with go is endogenous. A similar argument shows that
one can define an RDE gm and show that the corresponding invariant RTP associated
with gm is endogenous. Recognizing that the layers of the two RTPs interlace, we easily
see that the invariant RTP of Lemma 1 is endogenous. Let us now show (7.1).

Consider the bivariate distributional equations

(
Xm

(1)

Xm
(2)

)
D
=

mini

(
ξi −Xo

i(1)

)+
mini

(
ξi −Xo

i(2)

)+
 ,

(
Xo

(1)

Xo
(2)

)
D
=

mini

(
αξi −Xm

i(1)

)
mini

(
αξi −Xm

i(2)

) ,

where {ξi, i ≥ 1} is a Poisson process of rate 1 on R+,
{(
Xo
i(1), X

o
i(2)

)
, i ≥ 1

}
are i.i.d.

random variables with joint survival function F (2)
0 (that is, for every x, y ∈ R, F (2)

0 (x, y) =

P
{
Xo
i(1) > x,Xo

i(2) > y
}
) independent of the Poisson process,

{(
Xm
i(1), X

m
i(2)

)
, i ≥ 1

}
are i.i.d. random variables with joint survival function G(2)

0 independent of the Poisson
process. Let P(2) denote the space of joint survival functions of R×R valued random
variables. Write Γ(2) : P(2) → P(2) and ϕ(2) : P(2) → P(2) for the maps defined by

Γ(2)
(
F

(2)
0

)
(x, y) = P

{
Xm

(1) > x,Xm
(2) > y

}
,

ϕ(2)
(
G

(2)
0

)
(x, y) = P

{
Xo

(1) > x,Xo
(2) > y

}
.

Let F (2)
0 (x, y) = F (x)F (y) for all x, y ∈ R, and define two sequences of joint distribu-

tions
{
G

(2)
k , k ≥ 0

}
and

{
F

(2)
k , k ≥ 0

}
:

G
(2)
k = Γ(2)(F

(2)
k ),

F
(2)
k+1 = ϕ(2)(G

(2)
k ).

It is clear that the marginal distributions corresponding to F
(2)
k and G

(2)
k are F and

G respectively for each k. By Theorem 7.2, the invariant RTP associated with go is
endogenous if

{
F

(2)
k , k ≥ 1

}
converges to the joint distribution of the degenerate random

variable that has both components equal. This is equivalent to the condition F (2)
k (x, x)→

F (x) as k →∞ for all x ∈ R.

From the bivariate RDE, if the joint distribution of
(
Xo
i(1), X

o
i(2)

)
is F

(2)
k then for
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x, y ≥ 0,

G
(2)
k (x, y) = P

{
Xm

(1) > x,Xm
(2) > y

}
= P

{
No point of

(
ξi;X

o
i(1), X

o
i(2)

)
in {(z;u, v) : z − u ≤ x or z − v ≤ y}

}
= exp

(
−
∫ ∞
z=0

P {z −X ≤ x or z − Y ≤ y}dz

)
(
(X,Y ) has distribution F (2)

k

)
= exp

(
−
∫ ∞
z=0

(F (z − x) + F (z − y)− F (2)
k (z − x, z − y)) dz

)
= G(x) exp

(
−
∫ ∞
z=0

(F (z − y)− F (2)
k (z − x, z − y)) dz

)
.

Write gk(x) = G
(2)
k (x, x) and fk(x) = F

(2)
k (x, x), x ∈ R. Then

gk(x) =

{
G(x) exp(−

∫∞
−x(F (z)− fk(z)) dz), x ≥ 0,

1, x < 0.

Similar analysis with the equation for
(
Xo

(1), X
o
(2)

)
gives

fk+1(x) = F (x) exp

(
−
∫ ∞
−x

1

α
(G(z)− gk(z)) dz

)
, x ∈ R. (7.2)

Define for k ≥ 0,

βk(x) =

∫ ∞
−x

(F (z)− fk(z)) dz, (7.3)

γk(x) =

∫ ∞
−x

1

α
(G(z)− gk(z)). (7.4)

Then

gk(x) =

{
G(x) exp(−βk(x)), x ≥ 0

1, x < 0,
(7.5)

fk+1(x) = F (x) exp(−γk(x)), k ≥ 0. (7.6)

We now prove certain relations for the functions βk and γk.

Lemma 7.4. For all k ≥ 0:

βk(x) ≥ 0,

γk(x) ≥ 0,

βk+1(x) ≤ βk(x), and

γk+1(x) ≤ γk(x) for all x.

(7.7)

Proof. We will prove the Lemma by induction.
f0(z) = F 2(z) ≤ F (z) for all z implies that β0(x) ≥ 0 for all x. This implies g0(z) ≤ G(z)

for all z, and hence γ0(x) ≥ 0 for all x. By (7.2), we have

f1(x) ≥ F (x) exp(−
∫ ∞
−x

1

α
G(z) dz) = f0(x) for all x,

β1(x) ≤ β0(x) for all x by (7.3),

g1(x) ≥ g0(x) for all x by (7.5),

γ1(x) ≤ γ0(x) for all x by (7.4).
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We have showed that the equations (7.7) hold for k = 0, now assume that they hold
for some k ≥ 0.

γk(x) ≥ 0⇒ fk+1(x) ≤ F (x) for all x by (7.6)

⇒ βk+1(x) ≥ 0 for all x by (7.3)

⇒ gk+1(x) ≤ G(x) for all x by (7.5)

⇒ γk+1(x) ≥ 0 for all x by (7.4).

γk+1(x) ≤ γk(x)⇒ fk+2(x) ≥ fk+1(x) for all x by (7.6)

⇒ βk+2(x) ≤ βk+1(x) for all x by (7.3)

⇒ gk+2(x) ≥ gk+1(x) for all x by (7.5)

⇒ γk+2(x) ≤ γk+1(x) for all x by (7.4).

By induction, the properties (7.7) hold for all k ≥ 0.

Because for each x, the sequences {βk(x), k ≥ 0} and {γk(x), k ≥ 0} are decreasing,
the sequences of functions {βk, k ≥ 0} and {γk, k ≥ 0} converge pointwise to functions,
say β and γ, respectively, as k →∞. The requirement for endogeny that fk(x)→ F (x)

for all x as k →∞ reduces to showing that γ(x) = 0 for all x. We will show that both β
and γ are identically 0.

Using (7.3) and (7.6), we have

βk+1(x) =

∫ ∞
−x

F (z)
(

1− e−γk(z)
)

dz.

Since the term inside the integrand is bounded above by F (z), and
∫∞
−x F (z) dz exists for

all x, by the dominated convergence theorem, we conclude that

β(x) =

∫ ∞
−x

F (z)
(

1− e−γ(z)
)

dz. (7.8)

Similarly from (7.4) and (7.5), we have

γ(x) =

{∫∞
−x

G(z)
α

(
1− e−β(z)

)
dz, x < 0,∫∞

0
G(z)
α

(
1− e−β(z)

)
dz, x ≥ 0.

(7.9)

Differentiating (7.8) and (7.9), we get

β′(x) = F (−x)
(

1− e−γ(−x)
)
, x ∈ R,

γ′(x) =
G(−x)

α

(
1− e−β(−x)

)
, x < 0.

Recall that for x ≥ 0 (see (4.12), (4.13))

F ′(−x) = − 1

α
F (−x)G(x),

G′(x) = −G(x)F (−x).

Define a function η : R+ → R+ as

η(x) = αF (−x)eγ(−x) +G(x)e−β(x), x ≥ 0. (7.10)
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This function is continuous and differentiable on (0,∞). Differentiating, we get (for
x > 0)

η′(x) = −αF (−x)γ′(−x)eγ(−x) − αF ′(−x)eγ(−x)

−G(x)β′(x)e−β(x) +G′(x)e−β(x)

= −F (−x)G(x)
(

1− e−β(x)
)
eγ(−x) + F (−x)G(x)eγ(−x)

−G(x)F (−x)
(

1− e−γ(−x)
)
e−β(x) −G(x)F (−x)e−β(x)

= F (−x)G(x)e−β(x)
(

(eγ(−x) + e−γ(−x) − 2
)
.

For any y ∈ R, ey + e−y ≥ 2, hence
η′(x) ≥ 0

for all x > 0.
Now observe that limx→∞ η(x) = α. By (7.9), γ(x) = γ(0) for x ≥ 0. Using this in (7.8)

gives

β(0) =

∫ ∞
0

F (z)
(

1− e−γ(0)
)

dz =
(

1− e−γ(0)
)
wo.

Substituting values of F (0) and G(0) in (7.10), and using the above relation between β(0)

and γ(0), we get

η(0) = woe
γ(0) + e−woe−β(0)

= woe
γ(0) + e−woe−(1−e−γ(0))wo

= woe
γ(0) + e−2woewoe

−γ(0)
.

Using γ(0) ≥ 0, it can be seen that η(0) ≥ wo + e−wo = α, with equality if and only if
γ(0) = 0. We see that η is a continuous increasing function on [0,∞) with η(0) ≥ α and
limx→∞ η(x) = α. η must then be a constant function with η(0) = α, and so γ(0) = 0. For
any x ∈ R, 0 ≤ γ(x) ≤ γ(0) implies that γ must be identically 0. This proves that fk(x)

converges to F (x) for all x ∈ R, and so the invariant RTP is endogenous.

8 Domain of attraction of the RDE map

Consider the maps

ϕG0(t) = exp

(
−
∫ ∞
−t

G0(z)

α
dz

)
, t ∈ R, (8.1)

ΓF0(t) =

{
exp

(
−
∫∞
−t F0(z) dz

)
, t ≥ 0,

1, t < 0.
(8.2)

Write T = Γϕ. We have F = ϕG, G = ΓF, and G = TG is the unique fixed point of T .
We are interested in the domain of attraction of G. Specifically, we investigate the

convergence of T kG0 for an arbitrary survival function G0. We will see that the domain
of attraction is all those G0 satisfying

∫∞
0
G0(z) dz <∞. We proceed via a sequence of

Lemmas.

Lemma 8.1. Suppose G0 is such that
∫∞
0
G0(t) dt <∞. Then,

(a) TG0(t) = 1 for t < 0,

(b) TG0(0) < 1,

(c) TG0(t) is strictly decreasing for t ≥ 0,
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(d) TG0(·) is continuous on (0,∞) (right-continuous at 0), and

(e)
∫∞
0
TG0(t) dt <∞.

Proof. (a), (b), (c), and (d) follow directly from the definitions (8.1) and (8.2).
To get (e), observe that F0 = ϕG0 satisfies, for z ≤ 0, F0(z) ≥ F0(0) > 0 by the

assumption that
∫∞
0
G0(t) dt <∞. Thus for t ≥ 0,∫ ∞

−t
F0(z) dz ≥ tF0(0).

This implies, for t ≥ 0,

TG0(t) = exp

(
−
∫ ∞
−t

F0(z) dz

)
≤ e−tF0(0),

which is integrable.

Since, after one step of the iteration, TG0 has properties (a), (b), (c), (d), and (e), we
might assume, without loss of generality, that G0 itself has these properties.

Define the transformation

Ĝ0(x) = x−
[
log

(
α−G0(x)

γG0(x)

)]+
, x ≥ 0. (8.3)

Ĝ0(x) is the largest shift at x such that G(x − shift) ≤ G0(x). It has the following
properties.

Lemma 8.2.

(a) Ĝ0(x) ≤ x with equality if and only if G0(x) ≥ G(0).

(b) G0(x) ≥ G(x− Ĝ0(x)) with equality if and only if G0(x) ≤ G(0).

Proof. (a) Clearly Ĝ0(x) ≤ x, because the second term that is subtracted in (8.3) is ≥ 0.
Equality holds if and only if the logarithm in (8.3) is ≤ 0

⇐⇒ γG0(x)

α−G0(x)
≥ 1

⇐⇒ G0(x) ≥ G(0) =
α

1 + γ
.

(b) When G0(x) ≥ G(0), we saw in (a) that Ĝ0(x) = x. Hence in this case G0(x) ≥
G(0) = G(x− Ĝ0(x)). We deal with the other case and the second part of (a) simultane-
ously by showing

G0(x) ≤ G(0) ⇐⇒ G0(x) = G(x− Ĝ0(x)).

This follows from the implications:

G0(x) ≤ G(0) ⇐⇒ Ĝ0(x) = x− log

(
α−G0(x)

γG0(x)

)
⇐⇒ x− Ĝ0(x) = log

(
α−G0(x)

γG0(x)

)
⇐⇒ G(x− Ĝ0(x)) =

α

1 + γ
(
α−G0(x)
γG0(x)

) = G0(x).

Lemma 8.3. Let G0 satisfy the properties in Lemma 8.1. Let x ≥ 0.

(a) For b ≤ 0, Ĝ0(x) ≥ b if and only if G0(x) ≥ G(x− b).
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(b) For B ≥ 0, Ĝ0(x) ≤ B if and only if G0(x) ≤ G(x−B).

The above statements also hold when all the inequalities are replaced by strict inequali-
ties.

Proof. Suppose that Ĝ0(x) ≥ b. Since G is decreasing, we have G(x−b) ≤ G(x−Ĝ0(x)) ≤
G0(x) (the last inequality by Lemma 8.2(b)).

Conversely, when G0(x) ≥ G(x − b), either G0(x) = G(x − Ĝ0(x)), which implies
Ĝ0(x) ≥ b, or by Lemma 8.2(b) G0(x) > G(0), which by Lemma 8.2(a) gives Ĝ0(x) = x ≥ b,
because x ≥ 0 and b ≤ 0.

Now let Ĝ0(x) ≤ B,B ≥ 0. Then for x < B, G0(x) ≤ 1 = G(x−B). For x > B ≥ Ĝ0(x),

by Lemma 8.2(b), G0(x) < G(0), and so by Lemma 8.2(a), G0(x) = G(x − Ĝ0(x)) ≤
G(x − B). The inequality extends to x = B by right-continuity of G0 and G at B and 0

respectively.
Conversely, when G0(x) ≤ G(x − B), Lemma 8.2(b) gives G(x − Ĝ0(x)) ≤ G0(x) ≤

G(x−B), and so Ĝ0(x) ≤ B.
Also by strict monotonicity of G0(x) for x ≥ 0, all the inequalities can be made

strict.

Lemma 8.4. Suppose G0 satisfies the properties in Lemma 8.1, and suppose further
that there exist real numbers b ≤ 0 and B ≥ 0 such that b ≤ Ĝ0(x) ≤ B for all x ≥ 0.

Then b ≤ T̂G0(x) ≤ B for all x ≥ 0.

Proof. By Lemma 8.3, we have G(z − b) ≤ G0(z) ≤ G(z −B) for z ≥ 0. But this implies
G(z−b) ≤ G0(z) ≤ G(z−B) for all z ∈ R as well, because for z < 0, G0(z) = G(z−B) = 1.
Using these in (8.1), for all t ∈ R, we have

ϕG0(t) ≤ exp

(
−
∫ ∞
−t

G(z − b)
α

dz

)
= F (t+ b), (8.4)

ϕG0(t) ≥ exp

(
−
∫ ∞
−t

G(z −B)

α
dz

)
= F (t+B). (8.5)

Then by (8.2), for x ≥ 0, we have

TG0(x) = ΓϕG0(x) ≥ exp

(
−
∫ ∞
−x

F (t+ b) dt

)
= G(x− b),

TG0(x) = ΓϕG0(x) ≤ exp

(
−
∫ ∞
−x

F (t+B) dt

)
≤ G(x−B),

where the last inequality follows from (4.9) to handle the case x < B.
Lemma 8.3 now completes the proof.

The above Lemma shows that if Ĝ0 is bounded then inf T̂ kG0 is increasing in k and(
sup T̂ kG0

)+
is decreasing in k, and so they converge to some b∗ and B∗ respectively

(b∗ ≤ 0 ≤ B∗):
inf T̂ kG0 ↑ b∗ and

(
sup T̂ kG0

)+
↓ B∗ as k →∞. (8.6)

We will show that b∗ = B∗ = 0. (This will prove that both inf T̂ kG0 and sup T̂ kG0 converge
to 0.)

First we show that the terms inf T̂ kG0 and
(
sup T̂ kG0

)+
are strictly monotone in k

unless they are 0.

Lemma 8.5. Suppose G0 satisfies the properties in Lemma 8.1. If −∞ < inf Ĝ0 < 0 then
inf T̂G0 > inf Ĝ0. If 0 < sup Ĝ0 <∞ then sup T̂G0 < sup Ĝ0.
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Proof. Let B = sup Ĝ0 > 0. Fix a ∈ (0, B). By Lemma 8.3, G0(x) ≤ G(x−B). Using this
in (8.1), we have, for x ≥ 0

ϕG0(x) ≥ exp

(
− 1

α

(∫ 0

−x
G(z −B) dz +

∫ a

0

G0(z) dz +

∫ ∞
a

G(z −B) dz

))
= exp

(
−
∫ ∞
−x

G(z −B)

α
dz

)
exp

(∫ a

0

G(z −B)−G0(z)

α
dz

)
= F (x+B) exp

(∫ a

0

1−G0(z)

α
dz

)
= κF (x+B),

(8.7)

where κ > 1 (because G0(z) < 1 for z ≥ 0).
Let x ≥ B. Using (8.5) to bound ϕG0(z) for z ∈ [−x, 0) and (8.7) to bound ϕG0(z) for

z ≥ 0 in (8.2), we get

TG0(x) = ΓϕG0(x)

≤ exp

(
−
∫ 0

−x
F (z +B) dz −

∫ ∞
0

κF (z +B) dz

)
= exp

(
−
∫ ∞
−x

F (z +B) dz

)
exp

(
−(κ− 1)

∫ ∞
0

F (z +B) dz

)
= κ′G(x−B), (8.8)

where κ′ < 1. Thus TG0(x) < G(x−B), and so by Lemma 8.3(b) for strict inequalities,

T̂G0(x) < B.

For x ∈ [0, B), by Lemma 8.2(a), we have T̂G0(x) ≤ x < B. By continuity of T̂G0, the

supremum of T̂G0(x) over any compact subset of [0,∞) is strictly less than B. We now
need to verify the strict inequality as x→∞. To show this, we have the following:

lim
x→∞

T̂G0(x) = lim
x→∞

(
x−

(
log

(
α− TG0(x)

γTG0(x)

))+
)

(by definition (8.3))

= lim
x→∞

(
x− log

(
α− TG0(x)

γTG0(x)

)) (
by lim

x→∞
TG0(x) = 0 < G(0)

)
≤ lim
x→∞

(
x− log

(
α− κ′G(x−B)

γκ′G(x−B)

))
(by (8.8))

= lim
x→∞

(
x− log

(
α− κ′ α

1+γex−B

γκ′ α
1+γex−B

))

= lim
x→∞

(
x− log

(
1 + γex−B

γκ′
− 1

γ

))
= B + log κ′ < B.

We use the same technique for the infimum. Suppose b = inf Ĝ0 < 0. Fix c ∈ (b, 0).
Using G0(x) ≥ G(x− b) for x ≥ 0 (Lemma 8.3(a)) in (8.1), we have for x ≥ 0

ϕG0(x) ≤ exp

(
− 1

α

(∫ c

−x
G(z − b) dz +

∫ 0

c

G0(z) dz +

∫ ∞
0

G(z − b) dz

))
= exp

(
−
∫ ∞
−x

G(z − b)
α

dz

)
exp

(∫ 0

c

G(z − b)−G0(z)

α
dz

)
= F (x+ b) exp

(
−
∫ 0

c

1−G(z − b)
α

dz

)
= δF (x+B),

(8.9)
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where δ < 1. Using (8.4) to bound ϕG0(z) for z < 0 and (8.9) to bound ϕG0(z) for z ≥ 0

in (8.2), we get for x ≥ 0

TG0(x) = ΓϕG0(x) ≥ exp

(
−
∫ 0

−x
F (z + b) dz −

∫ ∞
0

δF (z + b) dz

)
= exp

(
−
∫ ∞
−x

F (z + b) dz

)
exp

(
(1− δ)

∫ ∞
0

F (z + b) dz

)
= δ′G(x− b),

where δ′ > 1. This implies the strict inequality T̂G0(x) > b for all x ≥ 0 (Lemma 8.3(a)).
We now verify the inequality for x→∞; as in the case of supremum,

lim
x→∞

T̂G0(x) = lim
x→∞

x−
(

log

(
α− TG0(x)

γTG0(x)

))+

≥ lim
x→∞

x− log

(
α− δ′G(x− b)
γδ′G(x− b)

)
= b+ log δ′ > b.

Lemma 8.6. Suppose G0 satisfies the properties in Lemma 8.1. Then T̂ 2G0 is bounded.

Proof. Using
∫∞
0
G0(z) dz <∞ and G0(z) = 1 for z < 0 in (8.1), we have

ϕG0(x) = O(e−x/α) as x→ +∞.

Then
∫∞
0
ϕG0(z) dz <∞, and by (8.2)

TG0(x) = Θ
(
e−
∫ 0
−x ϕG0(z) dz

)
as x→ +∞. (8.10)

Since ϕG0(z) is decreasing (and not identically 0), we have

TG0(x) = O(e−ux) as x→ +∞,

u = ϕG0(0) > 0. Using this in (8.1) gives

ϕTG0(x) = 1−O(eux) as x→ −∞.

Now replacing ϕG0 by ϕTG0 in (8.10), we get

T 2G0(x) = O(e−x) as x→ +∞.

Furthermore, using ϕG0(z) ≤ 1 for z < 0 in (8.10), we also get

T 2G0(x) = Ω(e−x) as x→ +∞,

and so
T 2G0(x) = Θ(e−x) as x→ +∞. (8.11)

Let us now choose K sufficiently large such that

G(x+K) =
α

1 + γex+K
≤ T 2G0(x) ≤ α

1 + γex−K
= G(x−K)

for all sufficiently large x. This, by Lemma 8.3, proves that T̂ 2G0(x) is bounded.

For future reference, let us also note that, by (8.1),

ϕT 2G0(x) = 1− Ω(ex) as x→ −∞. (8.12)
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Lemma 8.7. Suppose Ĝ0 is bounded and G0 satisfies the properties in Lemma 8.1. Then

T̂ kG0 is differentiable on (0,∞) except possibly at one point, and the derivatives are
uniformly integrable for k ≥ 3:

sup
k≥3

∫
x>B

|T̂ kG0

′
(x)|dx B→∞−−−−→ 0.

Proof. Let xk0 = inf
{
x ≥ 0 : T kG0(x) ≤ G(0)

}
. Then T̂ kG0(x) = x for x ∈ [0, xk0 ], and

T̂ kG0

′
(x) = 1, x ∈ (0, xk0). The boundedness of Ĝ0(x) by B, say, implies by Lemma 8.4

that T̂ kG0(x) are uniformly upper bounded by B for all x, and by Lemma 8.2(a) xk0 ≤ B.
For x > xk0 , by definition of xk0 , we have T kG0(x) ≤ G(0), in which case

T̂ kG0(x) = x− log

(
α−G0(x)

γG0(x)

)
.

Consequently,

T̂ kG0

′
(x) = 1 +

α
(
T kG0

)′
(x)

T kG0(x) (α− T kG0(x))
.

By (8.2),

T̂ kG0

′
(x) = 1−

α
(
ϕT k−1G0

)
(−x)

α− T kG0(x)
.

As (8.11) and (8.12) hold respectively for T kG0 and ϕT kG0 for all k ≥ 2, the above
equation gives

T̂ kG0

′
(x) = O(e−x).

This gives the uniform integrability of the derivatives.

Theorem 8.8. For any survival function G0 satisfying
∫∞
0
G0(z) dz <∞,

T kG0 → G pointwise as k →∞.

The expectations also converge:

lim
k→∞

∫ ∞
0

T kG0(x) dx =

∫ ∞
0

G(x) dx.

Proof. By Lemmas 8.1, 8.4, 8.6, and 8.7, for k ≥ 5, T̂ kG0 are uniformly bounded and
have derivatives that are uniformly integrable.

We prove that the limits in (8.6) satisfy b∗ = B∗ = 0. The functions T kG0, k ≥
1 are bounded and 1-Lipshitz on (0,∞). By Arzela-Ascoli theorem this sequence is
relatively compact with respect to compact convergence. There exists a subsequence
that converges:

TnkG0
k→∞−−−−→ G∞. (8.13)

The uniform continuity of the function y 7→ log(α−yγy ) on every compact subset of (0, 1)

implies that the transforms (which are uniformly bounded) converge (compact conver-
gence):

T̂nkG0
k→∞−−−−→ Ĝ∞.

The uniform integrability of the derivatives in Lemma 8.7 says that for any ε > 0, there
exists B sufficiently large such that T̂nkG0(x) ∈ (T̂nkG0(B) − ε, T̂nkG0(B) + ε) for all
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x > B and for all k ≥ 3. This extends the uniform convergence of T̂nkG0 → Ĝ∞ in the
compact set [0, B] to [0,∞). The uniform convergence implies

inf Ĝ∞ = lim
k→∞

inf T̂nkG0 = b∗,

sup
(
Ĝ∞

)+
= lim
k→∞

(
sup T̂nkG0

)+
= B∗.

We can apply the pointwise convergence (8.13) in the maps (8.1) and (8.2), thanks to the
dominated convergence theorem, to conclude

Tnk+1G0
k→∞−−−−→ TG∞.

The same arguments now conclude that

inf T̂G∞ = b∗,

sup
(
T̂G∞

)+
= B∗.

Lemma 8.5 allows this only if b∗ = B∗ = 0, and so T kG0(x)
k→∞−−−−→ G(x) for all x.

Furthermore, there exists B > 0 such that for all k ≥ 2, sup T̂ kG0 ≤ B. This implies
that T kG0(x) ≤ G(x− B) for all x ≥ 0 (Lemma 8.3), which by dominated convergence
theorem gives convergence of the expectations:

lim
k→∞

∫ ∞
0

T kG0(x) dx =

∫ ∞
0

G(x) dx.

9 Belief propagation

We now show that the belief propagation (BP) algorithm on Kn,n/α converges to a
many-to-one matching solution that is asymptotically optimal as n→∞.

9.1 Convergence of BP on the infinite tree

In this section we will prove that the messages on Tα converge, and relate the
resulting matching with the matchingMopt of Section 5.

The message process can essentially be written as

Xk+1
Tα (v̇, v) =

{
mini≥1

{
ξTα (v, vi)−Xk

Tα (v, vi)
}
, if label(v) = o

mini≥1

{(
ξTα (v, vi)−Xk

Tα (v, vi)
)+}

, if label(v) = m,
(9.1)

where the initial messages X0
Tα (v̇, v) are i.i.d. random variables (zero in the case of our

algorithm; see (2.2)).
By the structure of Tα it is clear that – the initial distribution being fixed – the

distribution of the messages Xk
Tα (v̇, v) , v ∈ V depends only on k and the label of the

corresponding vertex v. Also, it can be seen from the analysis of RDE (4.6) in Section 4
that if we denote the survival function of the distribution of messages at some step k′

by F0 for vertices with label o and G0 for vertices with label m, then after one update
the respective survival functions will be given by the maps (8.1) and (8.2): ϕG0 and
ΓF0. Considering the messages Xk

Tα (v̇, v) only for vertices v having label m, the common
distribution G0 at step k′ evolves to TG0 at step k′ + 2 (T = Γϕ); the distribution ΓF0

at step k′ + 1 changes to TΓF0 at k′ + 3. The distribution sequence generated by the
BP iterations (for k ≥ k′) is obtained by interleaving the two sequences generated by
applying the map T iteratively to F0 and ΓF0. By Section 8, the distributions along both
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the odd and even subsequences converge to G, and consequently from the nature of the
two step RDE, we conclude that the common distribution of Xk

Tα (v̇, v) , v having label m
converges to G, and the common distribution of Xk

Tα (v̇, v) , v having label o converges to
F as k →∞.

By the endogeny (Section 7) of the RDE – considering the evolution of messages at
vertices of the same label – the following result follows in the same way as Lemma 6 in
[16].

Lemma 9.1. If the initial messages X0
Tα (v̇, v) , label(v) = m, are i.i.d. random variables

with survival function G then the message process (9.1) converges in L2 to the process
X as k →∞.

We now prove that if the initial values are i.i.d. random variables with some arbitrary
distribution (not necessarily one with survival function G), then the message process
(9.1) does indeed converge to the unique stationary configuration. Of course, the initial
condition of particular interest to us is the all zero initial condition (2.2), but we will
prove a more general result.

The following lemma will allow us to interchange limit and minimization while working
with the updates on Tα.

Lemma 9.2. Let
{
X0
Tα (v̇, v) : label(v) = o

}
be initialized to i.i.d. random variables with

a distribution on R having survival function F0, and let
{
X0
Tα (v̇, v) : label(v) = m

}
be

initialized to i.i.d. random variables with a distribution on R+ having survival function
G0. Then for v having label o, the map

πkTα(v) = arg min
u∼v

{
ξTα (v, u)−Xk

Tα (v, u)
}

is a.s. well defined and singleton for all k ≥ 1, and

sup
k≥1

P

{
arg min
i≥1

{
ξTα (v, vi)−Xk

Tα (v, vi)
}
≥ i0

}
→ 0 as i0 →∞.

Correspondingly, for v having label m, the map

πkTα(v) = arg min
u∼v

{(
ξTα (v, u)−Xk

Tα (v, u)
)+}

is a.s. well defined and finite for all k ≥ 1, and

sup
k≥1

P

{
max arg min

i≥1

{(
ξTα (v, vi)−Xk

Tα (v, vi)
)+} ≥ i0}→ 0 as i0 →∞.

The proof of this Lemma follows from the proofs of Lemma 7 of [16] and Lemma 5.4
of [22].

We are now in a position to prove the required convergence.

Theorem 9.3. The recursive tree process defined by (9.1) with i.i.d. initial messages
(according to labels) converges to the unique stationary configuration in the following
sense. For every v ∈ V

Xk
Tα (v, vi)

L2

−−→ X(v, vi) as k →∞.

Also, the decisions at the root converge, i.e., P
{
πkTα(φ) 6=Mopt(φ)

}
→ 0 as k →∞.

This can be proved by applying the proof of Theorem 13 of [16] and Theorem 5.2 of
[22] separately to the vertices having label o and m.
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9.2 Convergence of the update rule on Kn,n/α to the update rule on Tα
We use from [22] the modified definition of local convergence applied to geometric

networks with edge labels, i.e., networks in which each directed edge (v, w) has a label
λ(v, w) taking values in some Polish space. For local convergence of a sequence of such
labeled networks G1, G2, . . . to a labeled geometric network G∞, we add the additional
requirement that the rooted graph isomorphisms γn,ρ satisfy

lim
n→∞

λGn(γn,ρ(v, w)) = λG∞(v, w)

for each directed edge (v, w) in Nρ(G∞).
Now we view the configuration of BP on a graph G at the kth iteration as a labeled

geometric network with the label on edge (v, w) given by the pair(
Xk
G (v, w) ,1{v∈πkG(w)}

)
.

With this definition, our convergence result can be written as the following theorem.

Theorem 9.4. For every fixed k ≥ 0, the kth step configuration of BP onKn,n/α converges
in the local weak sense to the kth step configuration of BP on Tα:(

Kn,n/α, X
k
Kn,n/α

(v, w) ,1{
v∈πkKn,n/α (w)

}
)

l.w.−→
(
Tα, Xk

Tα (v, w) ,1{v∈πkTα (w)}
)
. (9.2)

Proof. The proof of this theorem proceeds along the lines of the proof of Theorem 4.1 of
[22].

Consider an almost sure realization of the convergence Kn,n/α → Tα. For such
convergence to hold, the labels of the roots must match eventually, i.e., almost surely
label of the root of Kn,n/α equals the label of the root of Tα for sufficiently large n.

Recall from Section 3 the enumeration of the vertices of Tα from the set V. We now
recursively enumerate the vertices of Kn,n/α with multiple members of V. Denote the
root by φ. If v ∈ V denotes a vertex of Kn,n/α, then (v1, v2, . . . , v(hv − 1)) denote the
neighbors of v in Kn,n/α ordered by increasing lengths of the corresponding edge with
v; hv is the number of neighbors of v (dn/αe if v has label o and n if v has label m) . Then
the convergence in (9.2) is shown if we argue that

∀ {v, w} ∈ E Xk
Kn,n/α

(v, w)
P−→ Xk

Tα (v, w) and ∀v ∈ V πkKn,n/α(v)
P−→ πkTα(v)

as n→∞.

The above is trivially true for k = 0. We write the update and decision rules, when v
has label o, as

Xk+1
Kn,n/α

(w, v) = min
u∈{v1,...,v(dn/αe−1),v̇}\{w}

{
ξKn,n/α (v, u)−Xk

Kn,n/α
(v, u)

}
and

πkKn,n/α(v) = arg min
u∈{v1,...,v(dn/αe−1),v̇}

{
ξKn,n/α (v, u)−Xk

Kn,n/α
(v, u)

}
,

and when v has label m, as

Xk+1
Kn,n/α

(w, v) = min
u∈{v1,...,v(n−1),v̇}\{w}

{(
ξKn,n/α (v, u)−Xk

Kn,n/α
(v, u)

)+}
and

πkKn,n/α(v) = arg min
u∈{v1,...,v(n−1),v̇}

{(
ξKn,n/α (v, u)−Xk

Kn,n/α
(v, u)

)+}
,
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We want to use the convergence of each term on the right-hand side inductively to
conclude the convergence of the term on the left. The minimum taken over an unbounded
number of terms as n→∞ creates a problem. However the following lemma allows us
to restrict attention to a uniformly bounded number of terms for each n with probability
as high as desired, and hence obtain convergence in probability for each k ≥ 0.

Lemma 9.5. For all k ≥ 0, when v ∈ V has label o

lim
i0→∞

lim sup
n→∞

P

{
arg min

1≤i≤dn/αe−1

{
ξKn,n/α (v, vi)−Xk

Kn,n/α
(v, vi)

}
≥ i0

}
= 0,

and when v has label m

lim
i0→∞

lim sup
n→∞

P

{
max arg min

1≤i≤n−1

{(
ξKn,n/α (v, vi)−Xk

Kn,n/α
(v, vi)

)+}
≥ i0

}
= 0.

Proof. The proof is the same as the proof of Lemma 4.1 of [22]. Also see Lemma 8 in
[16].

9.3 Completing the upper bound - Proof of Theorem 2.2

By Theorem 9.3, πkTα(φ)
P−→Mopt(φ) as k →∞. It follows that∑

v∈πkTα (φ)

ξTα (φ, v)
P−→

∑
v∈Mopt(φ)

ξTα (φ, v) as k →∞. (9.3)

We now prove convergence in expectation. Observe that

v ∈ πkTα(φ)⇒ ξTα (φ, v)−Xk
Tα (φ, v) ≤

(
ξTα (φ, 1)−Xk

Tα (φ, 1)
)+ ≤ ξTα (φ, 1) .

By (9.1), Xk
Tα (φ, v) ≤ ξTα (v, v1). Thus,

v ∈ πkTα(φ)⇒ ξTα (φ, v) ≤ ξTα (φ, 1) + ξTα (v, v1) . (9.4)

This implies∑
v∈πkTα (φ)

ξTα (φ, v) ≤ ξTα (φ, 1) +
∑
i≥2

ξTα (φ, i)1{ξTα (φ,i)≤ξTα (φ,1)+ξTα (i,i1)}.

The right-hand side in the above equation is an integrable random variable. For future
use let us compute its explicit expectation under the condition that φ has label o. First
decompose the sum term as∑

i≥2

ξTα (φ, 1)1{ξTα (φ,i)≤ξTα (φ,1)+ξTα (i,i1)}

+
∑
i≥2

(ξTα (φ, i)− ξTα (φ, 1))1{ξTα (φ,i)≤ξTα (φ,1)+ξTα (i,i1)}.

By exchanging the order of expectation and sum (we can freely do so as the terms are
nonnegative), we can replace the random variables ξTα (i, i1) with a single exponential
random variable ξ′ with mean 1. Using independent increments of the Poisson process
we can write the expectation as

E

∑
i≥1

α1{ξi≤ξ′}

+ E

∑
i≥1

ξi1{ξi≤ξ′}

,
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where (ξi)i≥1 is a Poisson process of rate 1/α, independent of ξ′. It is easy to see that
this expectation equals 1 + 1/α. Thus we have,

E

ξTα (φ, 1) +
∑
i≥2

ξTα (φ, i)1{ξTα (φ,i)≤ξTα (φ,1)+ξTα (i,i1)} | label(φ) = o

 = α+ 1 + 1/α.

(9.5)
The case when φ is conditioned to have label m can be analyzed similarly, but we do not
need the explicit value of the expectation.

Equation (9.3) and the dominated convergence theorem give

lim
k→∞

E

 ∑
v∈πkTα (φ)

ξTα (φ, v)

 = E

 ∑
v∈Mopt(φ)

ξTα (φ, v)

.
Involution invariance gives (see Corollary 5.5)

lim
k→∞

E

 ∑
v∈πkTα (φ)

ξTα (φ, v) | label(φ) = o

 = E

 ∑
v∈Mopt(φ)

ξTα (φ, v) | label(φ) = o


= c∗α, (9.6)

where the last equality follows from Theorem 5.3.

By Theorem 9.4 and Lemma 9.5, using the definition of local weak convergence, we
have ∑

v∈πkKn,n/α (φ)

ξKn,n/α (φ, v)
P−→

∑
v∈πkTα (φ)

ξTα (φ, v) as n→∞. (9.7)

We now apply the arguments that lead to (9.4) to πkKn,n/α(φ), and obtain

v ∈ πkKn,n/α(φ)⇒ ξKn,n/α (φ, v) ≤ ξKn,n/α (φ, 1) + ξKn,n/α (v, v1) .

For any two vertices u, v of Kn,n/α, define Sn(u, v) = minw 6=u,v ξKn,n/α (u,w). Then for a
vertex v of Kn,n/α, ξKn,n/α (φ, 1) ≤ Sn(φ, v) and ξKn,n/α (v, v1) ≤ Sn(v, φ). This gives

v ∈ πkKn,n/α(φ)⇒ ξKn,n/α (φ, v) ≤ Sn(φ, v) + Sn(v, φ).

Consequently,∑
v∈πkKn,n/α (φ)

ξKn,n/α (φ, v) ≤
∑
v

ξKn,n/α (φ, v)1{
ξKn,n/α (φ,v)≤Sn(φ,v)+Sn(v,φ)

}. (9.8)

Condition that φ has label o. Observe that ξKn,n/α (φ, v) , Sn(φ, v), and Sn(v, φ) are
independent exponential random variables with means n, n/(dn/αe − 1), and n/(n− 1)

respectively. So we can write

E

[
ξKn,n/α (φ, v)1{

ξKn,n/α (φ,v)≤Sn(φ,v)+Sn(v,φ)
} | label(φ) = o

]
=

∫ ∞
0

∫ x

0

t

n
e−t/n dt

(
(dn/αe − 1)(n− 1)

n(n− dn/αe)

)(
e−( dn/αe−1

n )x − e−(n−1
n )x

)
dx

=

(
n

dn/αe
+ 1

)(
1

dn/αe
+

1

n
− 1

ndn/αe

)
− 1

dn/αe
.
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Summing over all neighbors of φ, we get

E

[∑
v

ξKn,n/α (φ, v)1{
ξKn,n/α (φ,v)≤Sn(φ,v)+Sn(v,φ)

}
]

=

(
n

dn/αe
+ 1

)(
1 +
dn/αe
n
− 1

n

)
− 1, (9.9)

which converges to 1 + α+ 1/α as n→∞.
Using local weak convergence, we can see that∑
v

ξKn,n/α (φ, v)1{
ξKn,n/α (φ,v)≤Sn(φ,v)+Sn(v,φ)

}
P−→ ξTα (φ, 1) +

∑
i≥2

ξTα (φ, i)1{ξTα (φ,i)≤ξTα (φ,1)+ξTα (i,i1)}.

By (9.5), the expectation of the limit above equals 1 + α + 1/α. Using this with (9.7),
(9.8), and (9.9), the generalized dominated convergence theorem yields

lim
n→∞

E

 ∑
v∈πkKn,n/α (φ)

ξKn,n/α (φ, v) | label(φ) = o


= E

 ∑
v∈πkTα (φ)

ξTα (φ, v) | label(φ) = o

. (9.10)

Combining (9.10) and (9.6) gives

lim
k→∞

lim
n→∞

E

 ∑
v∈πkKn,n/α (φ)

ξKn,n/α (φ, v) | label(φ) = o

 = c∗α. (9.11)

Use of

E

 ∑
e∈M

(
πkKn,n/α

) ξKn,n/α (e)

 = nE

 ∑
v∈πkKn,n/α (φ)

ξKn,n/α (φ, v) | label(φ) = o


with (9.11) completes the proof of Theorem 2.2.

9.4 Completing the proof of Theorem 2.1

As remarked earlier,M
(
πkKn,n/α

)
, unlike its limitMopt, is not a many-to-one matching.

The matching condition is violated for a vertex v ∈ A if there are more than one vertices
w such that v ∈ πkKn,n/α(w). We now show how to construct a valid many-to-one matching

fromM
(
πkKn,n/α

)
with little increase in cost.

Theorem 9.6. Fix ε > 0. There exist many-to-one matchingsMn on Kn,n/α such that
for all sufficiently large k

lim sup
n→∞

n−1 E

[ ∑
e∈Mn

ξKn,n/α (e)

]
≤ lim
n→∞

n−1 E

 ∑
e∈M

(
πkKn,n/α

) ξKn,n/α (e)

+ ε.
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Proof. Define a partial matching M̃
(
πkKn,n/α

)
=
{
{v, w} | w ∈ πkKn,n/α(v), v ∈ A

}
. Be-

cause it is a subset of M
(
πkKn,n/α

)
, the cost of M̃

(
πkKn,n/α

)
denoted costkn is bounded

above by the cost ofM
(
πkKn,n/α

)
. Every vertex in A has exactly one edge in M̃

(
πkKn,n/α

)
,

but some vertices in B may be unmatched. Call this set of unmatched vertices Ukn . By
Theorem 9.4, for a vertex w ∈ B,

P
{
w ∈ Ukn

}
→ P

φ /∈
⋃
v∼φ

πkTα(v) | label(φ) = m

 =: r

as n → ∞. We have r → 0 as k → ∞ (Theorem 9.3). For any δ > 0, we then have
E
∣∣Ukn ∣∣ ≤ (r + δ)n/α for all sufficiently large n.

Section 3.3 of [25] describes a method (which is based on [13]) for constructing a
perfect matching in the random complete graph Kn from a diluted matching that has a
small fraction of vertices unmatched, with a small increase in cost. Our case is much
simpler because more than one edge is allowed for a vertex in B. We start with the first
step of the proof in [25], and deviate afterwards.

In Kn,n/α substitute the single edge between every pair of vertices with a countably
infinite number of edges and take their weights according to a Poisson process on R+

with rate 1/n. The weight of the smallest edge between every pair of vertices is still
distributed as the original (exponential with mean n), and so the optimal many-to-one
matching in this new network is same as that in Kn,n/α. Independently color every edge
red with probability 1− p and green with probability p (we will later take p to 0). Obtain
a partial matching M̃

(
πkKn,n/α

)
on this network using only red edges. The restriction

to red edges just affects the scaling of the cost: the weight of the smallest red edge
between a vertex pair has exponential distribution with mean n/(1− p), and so the cost
of this partial matching is costkn/(1− p).

For every matched vertex w in B \Ukn leave out one vertex in πkKn,n/α(w) (choice made

arbitrarily if size more than 1) and collect the remaining vertices in a set Skn. There are
exactly n−(dn/αe−

∣∣Ukn ∣∣) vertices in this set. We can complete the many-to-one matching
by greedily matching every vertex in Ukn with a distinct vertex in Skn and dropping the
original matched edge of that vertex. We will do this by using only green edges. The
conditional expected cost of these green edges, given the coloring and the weight of the

red edges, is at most
|Ukn|

|Skn|−|Ukn |+1
n
p ≤

|Ukn|
(1−1/α)p . We get this because the choice of the sets

Ukn and Skn is governed by the red edges, whose weights are independent of those of the
green edges.

The expected cost of the constructed many-to-one matching is at most

E

[
costkn

(1− p)
+

∣∣Ukn ∣∣
(1− 1/α)p

]
≤

E
[
costkn

]
(1− p)

+
(r + δ)n

(α− 1)p

for large n.
Since r → 0 as k →∞ and δ > 0, p > 0 are arbitrary, we can bound the expected cost

by E
[
costkn

]
+ εn for large k and large n.

By Theorem 2.2 for any ε > 0, we can find k large such that

lim
n→∞

n−1 E

 ∑
e∈M

(
πkKn,n/α

) ξKn,n/α (e)

 ≤ c∗α + ε.
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This combined with Theorem 9.6 gives

lim sup
n→∞

n−1 EMn ≤ c∗α + 2ε.

Since ε is arbitrary, we get the upper bound

lim sup
n→∞

n−1 EMn ≤ c∗α.

With the lower bound from Theorem 6.1, we have proved Theorem 2.1.
Observe that for any ε > 0, there exist Kε and Nε such that for all k ≥ Kε and n ≥ Nε,

we have

n−1 E

 ∑
e∈M

(
πkKn,n/α

) ξKn,n/α (e)

 ≤ c∗α + ε.

Thus, for large n, the BP algorithm gives a solution with cost within ε of the optimal
value in Kε iterations. In an iteration, the algorithm requires O(n) computations at
every vertex. This gives an O(Kεn

2) running time for the BP algorithm to compute an
ε-approximate solution.
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