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Disjoint crossings, positive speed and
deviation estimates for first passage percolation
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Abstract

Consider bond percolation on the square lattice Z? where each edge is independently
open with probability p. For some positive constants po € (0, 1), €1 and ez, the follow-
ing holds: if p > po, then with probability at least 1 — <% there are at least 2™~ disjoint

ni logn
open left-right crossings in B, := [0, n]2 each having length at most 2n, for all n > 2.
Using the proof of the above, we obtain positive speed for first passage percolation
with independent and identically distributed edge passage times {t(e;)}; satisfying

E (logt(e1))™ < oo; namely, limsup,, W < @ a.s. for some constant Q@ < oo,
where T,;(0,n) denotes the minimum passage time from the point (0, 0) to the line
z = n taken over all paths contained in B,,. Finally, we also obtain deviation corre-
sponding estimates for nonidentical passage times satisfying inf; P(¢t(e;) = 0) > %
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1 Introduction

Consider bond percolation in Z? where each bond is independently open with prob-
ability p. A bond that is not open is said to be closed. For integer M > 1 and ¢ > 0, let
R,..(M) denote the rectangle [0, 7] x [0, [(M logn)1*€]]. Here [z] represents the smallest
integer greater than x. All constants mentioned henceforth are independent of n. A path
I = (e, ...,e;) of edges contained in R, (M) is said to be an open left-right crossing if
every e; is open and e; intersects the left side of R, (M) and e; touches the right side
of R, (M).

Proposition 1.1. Fixd > 0 and € > 0.

@) Ifp > %, there are positive constants C; = C1(p, d, €) so that with probability at least
- %, there exists an open left-right crossing of R,, ((1), for alln > 1.

(i) If p > %, there are positive constants Ms = Ms(p,d) and Cy = Co(p, ) so that with

probability at least 1 — %, there exists an open left-right crossing of R,, o(M,), for all

n>1.

(iii) If p > po = (1 —3*8)%, there are positive constants M3 = M;(p,§) and C3 =

Cs5(p, d) so that with probability at least 1 — %, there exists an open left-right crossing

of R, o(Ms3) containing at most 2n edges, for alln > 1.
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The proof of (i) uses the exponential decay theorem for subcritical percolation (Chap-
ter 4, Bollobas and Riordan (2006)). For (ii), we use a contour argument without re-
sorting to the exponential decay theorem. Finally, we use oriented paths to control the
length of the crossings in (iii). For further analysis regarding critical values for oriented
percolation, we refer to Durrett (1984) and references therein.

The following result is a consequence of Proposition 1.1. For n > 1, let B,, := [0, 7).

Theorem 1.2. Fixd > 0 and ¢ > 0 and let py be as in Proposition 1.1.

) Ifp > %, there are positive constants v; = v1(p,d,¢) and C; = C1(p, d,€) so that with
probability at least 1 — %, there are at least ﬁ disjoint open left-right crossings
of B, for alln > 2.

(i) If p > %, there are positive constants v2 = 7y2(p,0) and Cy = Ca(p,d) so that with
probability at least 1 — %, there are at least % open left-right crossings of B,,, for all
n > 2.

(iii) If p > po, there are positive constants v3 = v3(p,d) and C3 = C3(p,d) so that with
probability at least 1 — %, there are at least lzz’; open left-right crossings of B,,, each
containing at most 2n edges, for alln > 2.

As an application of Proposition 1.1, we obtain positive speed and deviation esti-
mates for first passage percolation.

1.1 First passage percolation

Consider the square lattice Z* with edges {e;}i>1. The passage times {t(e;)};>1 are
independent and identically distributed (i.i.d.) having the same distribution as a random
variable X. For a path 7 containing k edges ¢1, ..., gk, let T'(7) := Zle t(g;) denote its
passage time. Let 73;(0,n) = min, T(w) be the minimum passage time from the line
x = 0 to the line x = n where the minimum is taken over all paths 7 contained in
B,,. Similarly, T,,;(0,n) and T,,(0,n) = min, T'(7) be, respectively, the minimum passage
time from (0, 0) to the line = n and from (0, 0) to (n,0), again over all paths contained
in B,,. Clearly,

T3(0,n) < Tp(0,n) < Tpp(0,n) a.s.

We have the following result.

Theorem 1.3. IfP(X < co0) = 1, there exists a finite constant ()1 > 0 so that:
(i) lim sup,, W < @ a.s.

IfE(log X)* < oo, there exists a finite constant Q3 > 0 so that:

(ii) lim sup,, w < Q- a.s.

(iii) For every ¢ > 0, we have

IP(TPP(TLM>Q2+€> —0

asn — oo.
IfFEX < oo, then:
(iv) lim sup,, W <EX a.s.

If we think of —*—, —~— or —+— as the corresponding speed of first passage
. Tp.,,(O,.n) Tpl(O,n) T”(O,’!L) X K . i
percolation, then (i)-(iv) of the above result implies positive speed even if expected
passage time is not finite.
Suppose now the passage time is zero with large probability. It is then intuitive to
expect infinite speed and we have the following result.

Proposition 1.4. Suppose one of the following two conditions hold:
(i) P(X = 0) >  and EY'"" < oo for some n > 0, where Y = (log X)*.
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(i) P(X = 0) > 2 and E(log X)* < co.

We have that W W

— 0 a.s. as n — oo and — 0 in probability as n — oo.

Finally, we obtain deviation estimates for first passage percolation with independent
passage times but not necessarily identically distributed.
Theorem 1.5. Suppose inf; P(t(e;) = 0) > 3 and inf; P(t(e;) < 00) = 1.
(i) We have w — 0 a.s. asn — oo.
(ii) If sup; Et(e;) < oo, then

ET,,(0,n) < C(logn)? (1.1)
foralln > 1 and for some positive constants $, and C. In particular, we have w —
0 in probability as n — oc.

(iii) If sup, Et(e; )X < oo for some K > 1, we have
> nfe) < &2
P (Tpp((),n) >n ) <5 (1.2)

for all n > 1 and for some positive constants 8, < min (1, ﬁ) ,Bs > 1 and Cs. In

. Ty (0
particular, we have w —0a.s. asn — 00.

(iv) If sup; Eestled) < oo for some s > 0, we have

P (Tp(0,n) > Ba(logn)®) < C;f (1.3)

nrs
for alln > 1 and for some positive constants 34, 35 > 1 and C3.

The proof of the above theorem uses Proposition 1.1(i) which in turn uses the expo-
nential decay theorem. If suppose inf; P(t(e;) = 0) > 2, the above result holds and is
also proved using Proposition 1.1(ii).

The paper is organized as follows: In Section 2, we prove Theorems 1.3 and 1.5
assuming Proposition 1.1. In Section 3, we prove Proposition 1.1.

2 Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3: We prove (iv) first. If EX < oo, then the result follows from
strong law of large numbers since

L0 iit(m

n

This proves (iv). We now prove (i)-(iii).

(i) Since P(X < oo) = 1, we choose N large so that P(X < N) > py. For M > 1
let R;, o(M) = [0,n] x [1, Mlogn + 1] be the shifted rectangle. Also for i > 1, let f;
denote the edge from (i — 1,0) to (i,0). We set an edge e in R, ,(M) to be open if its
passage time t(e) < N. Set § = 2 in Proposition 1.1 and let A4,, denote the event that the
rectangle R;m,o(M ) contains an open left-right crossing containing less than 2n edges,
where M = Mj is as in Proposition 1.1(iii). Since we only need to hit the line x = n
from the line x = 0, we have that

TuOn) _on 4 gaac) (2.1)
n

where J, = 1 3" | t(f;). Since P(AS) < % for some positive constant C;, we have that

> P(A) < oo

n>1
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Thus by Borel-Cantelli Lemma, we have that P(liminf,, 4,,) = 1 and this implies that
Wl(AS) — 0 aus. (2.2)

as n — oo. This proves (i) with Q1 = 2N.

To prove (ii)-(iii), we assume henceforth that X < oo a.s. and EX = oco. Choose N
sufficiently large so that P(X < N) > p,. Set the edge e to be open if t(e) < N. Clearly
each edge is independently open with probability at least pq.

We prove (iii) first and obtain (ii) as a Corollary.

(iii) Let {h1 i }1<i< M 10g n+1 be the set of edges forming the left vertical side of R;L’O(M)
and including the edge from (0, 0) to (0, 1). Similarly let {h, ;}1<i<am10gn+1 be the set of
edges forming the right vertical side of R;, (M) and including the edge from (n,0) to
(n,1). We then have that

Top(0,n) = Tpp(0,n)U(Ay) + Tpp(0, n)I(A7)

M log n+1 n
< S > t(hj) +2Nn | WA (Zt )AC (2.3)

j=1n i=1 i=1

Thus

T,,(0 .
T (Om) <2N+ @ p+ Loy + JLU(AS) (2.4)
n

where
M log n+1 M log n+1

1 1
L, = - Z; t(hii), lapm = - Z; t(hn,i)
and J, is as in (2.1). From (2.2), the third term goes to zero a.s. as n — oo. For the
first two terms, we apply Feller’s theorem (Theorem 8.9, Durrett (2001)) with a,, =
exp (%) . Indeed for a,, < n < a1, we have

| Mlogn+1 ] Al el/M Ml
= t(hq, <— t(hi,) = t(hy
so that
1 m
limsup I, < /M i — ) t(ha). 25
1mnsup In =€ lmwful) am; (ha,i) (2.5)
Since

n—1 n—1
= _— = + _—
P (t(hipn) > an) =P <logX > ) P ((logX) > >
for n > 2, we have that

ZIP (him) > an) => P (M(log X)* +1>n) < ME(log X)" + 2

n

Since E(log X) < oo, we have from Feller’s theorem that the right hand side of (2.5) is
zero a.s. This implies that
L, —0as. (2.6)

as n — oo. Since Iy ,, has the same distribution as I, we have that
I5 , — 0 in probability.

From (2.4), the result (iii) then follows with Q> = 2.
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(ii) The analysis is the same as above except that we obtain

W <2N + I , + JA(AS) 2.7)
instead of (2.5), since we only need to hit the line x = n. From (2.6) and (2.2), the result
then follows. O

Proof of Proposition 1.4: We prove (ii) using Proposition 1.1(ii). An analogous anal-
ysis holds for (i) using Proposition 1.1(i). Fix § = 2 in Proposition 1.1(ii) and let A,
denote the event that the rectangle R], ,(M) defined in proof of Theorem 1.3 contains a
left-right crossing containing only edges with zero passage time. Here M = M, is as in
Proposition 1.1(ii). Arguing as in the paragraph preceding (2.4), we get that

T
pp(ov n) S Il,n + IZ,n + Jn]]-(AfL)
n

where I ,,I>, and J, are as in (2.4). The result follows by an analogous analysis
following (2.4). O

Proof of Theorem 1.5: We consider the shifted rectangle R/, ; (M) = [1,n]x[1, (log n)*+
1]. Let A, denote the event that R; ;(M) has a left-right crossing consisting of edges
with zero passage times. Following an analogous analysis as preceding (2.3) we obtain

Tpp(0,m) < Z Z

(logn)®+1
j=1ln =1

t(hy) | 1A + (it(f») I(AS). 2.8)

i=1

(i) follows by an analogous analysis as Proposition 1.4.
(ii) For the estimate on ET,,,(0,n), we obtain from (2.8) that

ET,,(0,n)

IN

(2(logn)? + 2)Et(h1,1) + E (ﬁ: t(fi)]l(AfL)>
(2(logn)? + 2)Et(h1,1) + E (iﬂfi)) P(A7)

i=1

< (200gn)? + 2)Bi(h,1) + nBi(f1) >
for some constant C; > 0. The second equality is because A¢ is independent of {¢(f;)}.
This proves (1.1) in (ii). The convergence in probability follows since %]ETM,(O, n) — 0
as n — oo.

(iii) Let 6 > 0 be fixed. From (2.3) and from the estimate on P(A¢) in Proposition 1.1
we then have for z > 0 that

P (T,,(0,n) > 2x)

(logn)?+1

C
j=l,n  i=1
(log n)2+1 " C

<P tth;i) > ————— —.

e\ U U o )

< ZIP (t(hji) > z((logn)* +1)7") + 5 (2.9)

Jy
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We now set § = 2 and = = ((logn)? + 1)n? in (2.9). Here we choose 6 > 0 so that
max(1, K — 1) < #~! < K. Thus from (2.9), we get

P (T,,(0,n) > (2(logn)? + 2)n’)

C
< Z]P (t(hiﬂ‘) > ne) + ﬁ
]
C

< (2(logn)? +2)Lbupmt(ez) o (2.10)

This proves (1.3) in (iii). Since #K > 1 and # < 1, we obtain from (2.10) and Borel-
Cantelli Lemma that M — 0 a.s. as n — oo.
(iv) We set § = 2 and x = 241 (logn)3 in (2.9). From (2.9), we get

P (T,,(0,n) > 46, (logn)®)

C
< ZIP hij) > 261 (logn)®((logn)® + 1)) + povs

IA

C
ZIP hi >5110gn)+n5

IN

—s01 lognypn st(hi,j) g
E e Ee + oy
0,J

C
(2(logn)? + 2)e~s01logm sgp Eest(e) 4 e

IN

where the second estimate follows from Markov inequality. Choosing §; large, proves
(iv). O

3 Proof of Proposition 1.1

Proof of Proposition 1.1(i): Fix a midpoint = of an edge in the bottom side of R,, .(M).
From exponential decay theorem (Chapter 4, Bollobas and Riordan (2006)), we know
that a closed dual top bottom crossing of R, (M) intersecting = occurs with probability

at most exp ( Ch %) for some constant C; > 0. This is seen by considering the

(logn)1*e x (logn)'*< box B/, (z) centred at x. If there is a closed dual top bottom cross-
ing, then there is a closed dual path intersecting = and hitting the boundary of B/, (z).
Since there are at most n choices for x, we have that a closed dual top bottom crossing
occurs with probability at most

(log n)

nexp (_Cl (loglogn)?

for all n sufficiently large. Since a closed dual top-bottom crossing or an open left-right

crossing of Rn,E(M) always must occur (Chapter 1, Bollobas and Riordan (2006)), we
have the result.

Proof of Proposition 1.1(ii): We use a counting argument and again the fact that
either an open left-right crossing occurs or a closed dual top-bottom crossing occurs
but not both. As above, we fix a midpoint x of an edge at the bottom side of R, o(M) and
suppose that there is a dual top-bottom crossing of R, o(}) with length k£ > M logn,
intersecting x. There are at most 4.3*~! dual paths intersecting = and each is closed
with probability (1 — p)”. Since there are at most n choices for x, we have that a closed
dual top bottom crossing occurs with probability at most

_ 1
no Yy 431 -pf <

n
k>M logn

14+¢
) < nexp (—(0+2)logn)
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provided M is large. The sum above is convergent since 1 — p < % Fixing such an M
proves the result.

Proof of Proposition 1.1(iii): Fix pg > 0 and p > pg. We use comparison with oriented
percolation. We draw oriented arrows from (i,j) to (i + 1,5 — 1) and from (i,j) to
(i4+ 1,7 +1). To draw arrows from (4,j) to (i + 1,5 — 1), we let S; and S; be the bonds
from (i,7) to (i,7 — 1) and from (é,5 — 1) to (i + 1,j — 1), respectively. Let F; denote the
event that S; is open. We draw arrow from (i,5) to (¢ + 1,5 — 1) if E4 N E; holds. An
analogous procedure is used for drawing oriented arrows from (7, j) to (i + 1,5 + 1).

We have that P,(E; N E2) = p? > pZ. We start from the left side of R, o(M) and
continue this oriented percolation process iteratively. Let IP,,- denote the corresponding
probability measure and let LR,, denote the event that there exists an oriented left-
right crossing of R,, o(M). If LR,, occurs, there is an open left-right crossing of R,, (M)
containing at most 2n edges in the original bond percolation. Using a contour argument
as in Durrett (1984), we have that

1

]Por(LRn) >1- W

provided pg and M are large. Fixing such a pp and M establishes the result.

To obtain the estimate on P,,.(LR,), we let C denote the collection of all oriented
paths starting from the left side Ej.s; of R, o(M). Recall that we grow the cluster from
Ej.s+ and for every vertex x € C, there is an oriented path from Fj.f; to x. As in Durrett
(1984), we place a square S” on each vertex r € Z? of C. If x = (i, ), then S/ has
endvertices (i,5—1), (i+1,7), (¢,7+1) and (i —1, 5). The edges of S/ are oriented in such
a way that the square S forms a clockwise oriented contour around z. If two oriented
edges in opposite directions coincide, they “cancel” each other and we draw nothing.
There is an outermost contour IT of U,¢¢.S” that is oriented clockwise and encloses Ej. fi-
Oriented arrows with at least one end-vertex in C and crossing II are called boundary
arrows and we say such arrows were terminated in the cluster growing process.

Suppose that there is no oriented left-right crossing of R,, o(M). Let z,, and zy denote
the rightmost points of intersection of II and the top and bottom edge of R, (M),
respectively. Let II; denote the part of II from z, to zy. The path II; is contained in
Ry 0(M). We write LR}, = J,<;<,,_; 4 N LRy, where A; denotes the event that II; cuts
the horizontal segment [j — 1, j] x {M K,, } of the top edge of R}**. Suppose that A; N LR,
occurs and suppose that II; contains k£ > M log n oriented edges.

We count up and down arrows as in Durrett (1984) and obtain a subset II, of II;
consisting of at least % edges, each cutting a boundary arrow that was independently
terminated. Since the number of choices of II; is at most 4.3*~! and each boundary
arrow was terminated with probability at most 1 — p3, we obtain that

]Por(Aj N LR?,) <4 Z 3]“71 (1 _ pg)k/S < efaIVIlogn
k>M logn

for all n sufficiently large and for some constant o > 0, provided
po > (1 —37%)1/2, Fixing such an p,, we get that

P, (LRS) = > Por(A;NLRS) < ne @Mlosn <

: = el
1<j<n—1

provided M is large. O
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