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Abstract

We prove almost sure convergence of the maximum degree in an evolving tree model
combining local choice and preferential attachment. At each step in the growth of the
graph, a new vertex is introduced. A fixed, finite number of possible neighbors are
sampled from the existing vertices with probability proportional to degree. Of these
possibilities, the new vertex attaches to the vertex from the sample that has the
highest degree. The maximal degree in this model has linear or near-linear behavior.
This behavior contrasts sharply with the behavior in the same choice model with
uniform attachment as well as the preferential attachment model without choice.
The proof is based on showing the tree has a persistent hub by comparison with
the standard preferential attachment model, as well as martingale and stochastic
approximation arguments.
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1 Introduction

In the present work we further explore how the addition of choice affects the clas-
sic preferential attachment model (see [1, 10]), building on previous work [6, 13, 9].
The preferential attachment graph is a time-indexed sequence of graphs, inductively
constructed the following way. We start with some initial graph and then on each step
we add a new vertex. One of the old vertices is chosen with probability proportional to
degree, and an edge is drawn between the new vertex and the chosen old vertex. Many
different properties of this model have been obtained in both the math and physics
literature (see [1, 10, 15, 5]).

In this work, we will study the evolution of the maximal degree of a related model.
For the preferential attachment model this problem is studied in [7, 15, 16]. Letting
∆(n) be the maximum degree at time n, it is shown in [15] that ∆(n)n−1/2 converges
almost surely to a variable with absolutely continuous distribution (see also [16] for
properties of this distribution and the rate of convergence).

In [13], the authors introduce the min-choice preferential attachment model. This
model is also built inductively, but now a new vertex chooses 2 (or d in general) existing
vertices with probability proportional to degree and connects to the one with the lowest
degree, breaking ties uniformly. In [13] it is shown that the maximal degree at time n

∗YM gratefully acknowledges the support of the Weizmann Institute of Science, where this work was begun.
EP gratefully acknowledges the support of NSF Postdoctoral Fellowship DMS-1304057.
†Moscow State University and Tver State University, Russia. E-mail: yury.malyshkin@mail.ru
‡Weizmann Institute of Science, Israel. E-mail: paquette@weizmann.ac.il

http://dx.doi.org/10.1214/ECP.v19-3461
http://ecp.ejpecp.org/
mailto:yury.malyshkin@mail.ru
mailto:paquette@weizmann.ac.il


Choice and preferential attachment

in such a model will be log log n/ log 2+Θ(1) with high probability (log log n/ log d in case
of d choices). There, it is also conjectured that the max-choice preferential attachment
model, where we choose the vertex with the highest degree, has maximal degree of
order n/ log n. Subsequently, this is studied in the physics literature [9], where the
analysis is expanded to show that for d = 2 this is indeed the case while for d > 2, the
maximal degree has linear order.

We will give exact first-order asymptotics for the maximal degree in the max-choice
model, and we will show almost sure convergence of the appropriately scaled maximal
degree.

We now describe the model precisely. Define a sequence of trees (Pm)m≥0 given by
the following rule. Let P1 be the one-edge tree on vertices {v0, v1}. Given Pm, define
Pm+1 by first adding one new vertex vm+1. Let X1

m, . . . , X
d
m, where d ≥ 2, be i.i.d.

vertices from V (Pm) , where V (P ) is the set of vertices of P, chosen with probability

P
[
X1
m = w

]
=

deg w

2m
,

where deg w is the degree of vertex w in Pm; note that as the graph has m edges,∑
w deg w = 2m. Finally, create a new edge between vm+1 and Ym, where Ym is

whichever of X1
m,...,Xd

m has highest degree. In the case of a tie, break the tie by choos-
ing from the maximal vertices uniformly (any other tiebreaking rule works as well). We
call this the max-choice preferential attachment tree.

Our main theorem is the following.

Theorem 1.1. In the case d = 2, the maximum degree Mn of Pn has

lim
n→∞

Mn log n

n
= 4 a.s.

For d > 2,

lim
n→∞

Mn

n
= x∗ a.s.,

where x∗ is the unique positive solution of equation 1− (1− x/2)d = x with x ≤ 1.

Our proof is based on the existence of a persistent hub, i.e. a single vertex that in
some finite random time becomes the highest degree vertex for all time after. Many
preferential attachment graphs are known to have persistent hubs, including the classi-
cal one (see [4]). Using the existence of a hub, instead of analyzing the maximum degree
over all vertices we effectively only need to analyze the degree of just one vertex.

Proposition 1.2. There exists random T and K that are finite almost surely so that at
any time n ≥ T , the vertex vK has the highest degree among all vertices.

Let Ln denote the number of vertices at time n that have maximal degree. The
dynamics of Mn are given by the rule

Mn+1 −Mn =

{
1 with probability 1−

(
1− MnLn

2n

)d
,

0 else.
(1.1)

The effect of Proposition 1.2 is that for some T < ∞ random and sufficiently large,
Ln = 1 for all n > T. If we were to assume that Ln were identically one, we would be
considering a simple multi-choice urn.

This urn contains 2 types of balls, colored black and colored white, with the number
of black balls being Mn and the number of white balls being 2n−Mn. At every time step,
d balls are sampled from the urn with replacement and then put back into the urn. If all
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Choice and preferential attachment

are white, then two white balls are added back to the urn. If at least one is black, then
one white ball and one black ball are added to the urn. Such urn models with multiple
samplings have appeared recently in the literature (see for example [11, 3]), although
this appears to be an uncovered case.

Proof approach and organization

We start in section 3 with some initial lower-bound estimates for the maximal degree.
All subsequent arguments require that the maximal degree grows quickly enough to
ensure deterministic behavior takes over.

In section 4 we prove the existence of the persistent hub, which allows us to consider
the degree of a single vertex instead of the maximal degree. We present an argument
that follows the proof of [8] for convex preferential attachment models and consists
of two steps. First, we show that the number of possible leaders, vertices that have
maximal degree at some time, is almost surely finite; this follows on account of the
maximal degree growing quickly enough that vertices added after a long time have a
very small probability of ever catching up. Second, we show that any two vertices have
degrees that change leadership only finitely many times. These arguments rely heavily
on comparison with the preferential attachment model and the Pólya urn respectively.

In sections 5 and 6 we prove convergence of the scaled maximal degree in the cases
d = 2 and d > 2 respectively, which require different analyses. From (1.1), we anticipate
the maximal degree Mn of the graph evolves according to the differential equation

dM

dt
= 1− (1−M/2t)d.

Setting u(t) = M(et)e−t, we get that u satisfies the autonomous differential equation

u′ + u = 1− (1− u/2)d.

In the case d = 2, this can be explicitly solved to give M(t) = 4t/(log t+C), while in the
d > 2 case, we are led to consider critical points, which are solutions of 1−(1−x/2)d = x.

When d > 2 there are two solutions of the equation 1 − (1 − x/2)d = x in the interval
0 ≤ x ≤ 2, but it only has one stable solution x∗ (meaning that u′ has the opposite sign
of u− x∗ in a neighborhood of x∗).

In section 5 we prove the d = 2 case by considering explicit scale functions of Mn

that can be guessed from the solution of the differential equation.

In section 6, we prove the d > 2 case, which can be formulated generally as follows.
Consider a continuous function q : [0, 1] → [0, 1] and define a process {T (n), n ≥ n0},
started from point T (n0) = T0, 0 < T0 < n0, such that the increments T (n + 1) − T (n)

are independent Bernoulli(q(T (n)/n)) variables conditioned on σ(Tn). This problem has
appeared many times in the stochastic approximation literature under the name of the
Robbins-Monro model (see [18, 12, 2, 17]). Off the shelf techniques are applicable to
this situation, but still require that we show that Mn/n does not converge to 0, which
we show using martingale arguments.

2 Discussion

Theorem 1.1 allows us to complete Table 1 about the influence of choice on the
maximum degree of growing random trees. In summary, for the min-choice models, the
effect of choice completely overwhelms the effect of preferential attachment. On the
other hand, the combined effect of preferential attachment with max-choice completely
changes the structure of the graph and the order of the maximum degree (see also
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Choice and preferential attachment

Figure 1 for a simulation of these trees). In comparison, adding max-choice to the
uniform attachment model does not increase the order of the maximum degree.

Theorem 1.1 along with Proposition 1.2 provide us information about the degree
sequence of the graph and some structural information about the graph, but it would
be nice to know more topological information about the tree. One natural topological
property to consider is the diameter of the tree.

Table 1: Comparison of maximum degree at time n for max/min-choice with
2 choices versus preferential or uniform attachment.

max-choice no-choice min-choice

Preferential attachment 4n
logn (1 + o(1)) Θ(n1/2) (a) log logn

log 2 + Θ(1) (b)

Uniform attachment O(log n) (c) O(log n) (d) O(log log n) (c)

(a) [15] (b) [13] (c) [6] (d) To our knowledge, this is not claimed formally anywhere. However,
getting the correct order is an elementary exercise.

In the standard preferential attachment model the diameter is known to be logarith-
mic [5]. It is natural to wonder if the diameter in this situation is smaller. To increase
the diameter we must add an edge between a new vertex and an existing vertex of de-
gree 1. In the max-choice model, choosing such a vertex is still not too rare; for while
it is less likely to choose a degree 1 vertex than in preferential attachment, there are
Θ(n) degree one vertices. Thus, degree 1 vertices are selected at each time step with
some probability bounded away from 0. Conditional on choosing a vertex of degree 1,

the exact choice of vertex is uniform over all possible choices. Thus we conjecture the
diameter of the graph grows at a rate that is of the same order as that of preferential
attachment.

The rate might be different for other rules of breaking ties. The model we study
breaks ties uniformly, but in fact any tie breaking rule has the same degree sequence
evolution in law. However, we anticipate it could significantly affect the structure of
the graph. For example, if instead of a fair coin toss we define a function rad(vj) =

maxi(dist(vi, vj)), and on each step we choose the vertex with the smallest value of
rad(vi) among all vertices with the same degrees, we anticipate order log log n diameter
(see also [10], where such a model is considered).

We consider only graphs that are trees, but similar results should hold for classes
of models with more edges. One such natural model would be to add more than one
edge at each step. A second would be to flip a coin at each time step to choose between
adding a new vertex or adding an edge between existing vertices. If adding a vertex,
the rule would be the same as in our model, while for adding an edge there are a
few natural possibilities that could affect the structure of the graph. Here is one such
rule. We choose the first vertex with probability proportional to its degree (which is
preferential attachment without choice), and then we choose the second vertex among
all non-adjacent vertices using the max-d choice rule. Note that both these methods will
only increase the average degree of the vertices of the graph.

3 A priori estimates

We begin with a pair of lower bounds for the growth of the maximal degree. These
are needed both for the persistent hub proof and the eventual precise estimates. We
will frequently use the following lemma of [8].
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(a) Preferential
attachment tree.

(b) Max-choice preferential
attachment tree.

(c) Max-choice uniform
attachment tree.

Figure 1: All simulations are with 1000 vertices and are made for d = 2.

Lemma 3.1. Suppose that a sequence of positive numbers rn satisfies

rn+1 = rn

(
1 +

α

n+ x

)
, n ≥ k

for fixed reals α, n and x satisfying α > 0, k > −x. Then rn/nα has a positive limit.

This is easily checked from a direct computation.

Lemma 3.2. With probability 1, infnMn/n
3/8 > 0.

Proof. Define Cn+1 = 8n
8n−3Cn = (1 + 3

8n−3 )Cn, with C1 = 1. By Lemma 3.1 we have that

Cn/n
3/8 converges to a positive limit. Now, we will show that Cn/Mn is a supermartin-

gale from which the desired conclusion follows.
Let pn be the conditional probability that Mn+1 = Mn + 1 given Fn, where Fn =

σ(P1, P2, . . . , Pn). Calculating,

pn = 1−
(

1− MnLn
2n

)d
≥ 1−

(
1− Mn

2n

)d
= 1−

(
2n−Mn

2n

)2

=
Mn

n
− M2

n

4n2

=
Mn

n

4n−Mn

4n
≥ 3Mn

4n
.

For 1/Mn we get

E [1/Mn+1|Fn] =
pn

Mn + 1
+

1− pn
Mn

=
Mn + 1− pn
Mn(Mn + 1)

=
1

Mn

(
1− pn

Mn + 1

)
≤ 1

Mn

(
1− pn

2Mn

)
≤ 1

Mn

(
1− 3

8n

)
=

1

Mn

Cn
Cn+1

,

which shows Cn/Mn is a supermartingale.

We will now show that with this initial argument, it is possible to improve the result
again using martingale convergence.

Lemma 3.3. For any fixed δ > 0, lim infn→∞Mn/n
3/4−δ =∞ a.s.
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Proof. For each fixed δ > 0 and each fixed ε > 0, let n0 = n0(ε, δ) be such that

1− 1

1 + εn3/8
≥ 1− 4δ

6

for all n ≥ n0. Let ζε be the stopping time given by

ζε = inf{n > n0 : Mn < εn3/8}.

From Lemma 3.2, we have that P [ζε <∞]→ 0 as ε→ 0. SetOζε to be the event {ζε =∞}.
As in the proof of Lemma 3.2, we get that pn ≥ 3Mn

4n . Then for 1/Mn+1, it holds that

E(1/Mn+1|Fn) =
1

Mn

(
1− pn

Mn + 1

)
≤ 1

Mn

(
1− 3

4n

Mn

Mn + 1

)
.

For any n with n0 ≤ n < ζε,

Mn

Mn + 1
= 1− 1

Mn + 1
≥ 1− 1

1 + εn3/8
≥ 1− 4δ

6
.

Hence for ζε > n > n0 we get

E(1/Mn+1|Fn) ≤ 1

Mn

(
1− 3/4− δ/2

n

)
.

Define Rn+1 = 4n
4n−3+2δRn ≥ (1+ 3/4−δ/2

n )Rn, n ≥ n0. Then Rn/Mn is a supermartingale,

and from Lemma 3.1 it follows that Rnn−(3/4−δ/2) converges to a positive finite limit.
Setting An = Rn/Mn, we have that by Doob’s theorem An∧ζε tends to a finite limit with
probability 1. Hence, conditioned on Oζε , we have that Mn/n

3/4−δ → ∞ a.s. Thus, it
follows that

P
[
lim inf
n→∞

Mn/n
3/4−δ =∞

]
≥ P

[
{lim inf
n→∞

Mn/n
3/4−δ =∞} ∩Oζε

]
= P

[
Oζε
]
.

Taking ε→ 0, we conclude the proof.

4 Persistent hub

Our method of proof is essentially by comparison with the preferential attachment
model, and we use the machinery of [8] developed for this task. First we estimate the
probability that the degree of the vertex added on the (k+1)-st step exceeds the degree
of the vertex with highest degree at step k. For this we use the following lemma.

Lemma 4.1. Let π(k) be the probability that the degree of vk becomes maximal at any
future time, given Fk. Then,

π(k) ≤ P (Mk)

2Mk
,

where P (A) is some polynomial of A and Mk is the maximum degree of Pk. Hence,
the number of vertices that at some point in the process have maximal degree is finite
almost surely.

Throughout this section, let degn v denote the degree of the vertex v in Pn. First we
prove a comparison between the degree evolutions in the max-choice model and the
standard preferential attachment model.

Lemma 4.2. Fix n0 > 0, and let vi and vj be any vertices from V (Pn0). Let (An0 , Bn0) =

(degn0
vi,degn0

vj), and let Tn = (An, Bn) for n ≥ n0 denote the Pólya urn started from
(An0 , Bn0), i.e. the random walk on Z2 that moves one step right or one step up with
probabilities proportional to An and Bn respectively. The probability that there is an
n ≥ n0 so that degn vi = degn vj is bounded above by the probability that Tn = (An, Bn)

reaches the line y = x.
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Proof. Consider the two-dimensional random walk Sn = (wn, un), where wn = degn vi
and un = degn vj . Without loss of generality assume that wn0

> un0
. We want to show

that

P[∃n ≥ n0 : wn = un] ≤ P[∃n ≥ n0 : An = Bn].

To accomplish this, we will show the existence of an appropriate coupling of (Sn)n≥n0

and (Tn)n≥n0
. Set

Fn =
∑

vk∈V (Pn)

degn vk 1 {degn vk < degn vi} and

Gn =
∑

vk∈V (Pn)

degn vk 1 {degn vk ≤ degn vj} ,

and let pwn = P[wn+1 = wn + 1] and pun = P[un+1 = un + 1].

The probability that wn = degn vi increases is at least the probability that vi ∈
{X1

n,...,Xd
n} and that all the other Xk

n have degree strictly less than degn vi. Thus

pwn ≥
(
Fn + wn

2n

)d
−
(
Fn
2n

)d
.

Likewise, the probability that un = degn vj increases is at most the probability that
vertex vj ∈ {X1

n,...,Xd
n} and degn vj = max1≤k≤d degnX

k
n. Thus

pun ≤
(
Gn
2n

)d
−
(
Gn − un

2n

)d
.

So long as wn = degn vi > degn vj = un, we have Fn ≥ Gn. Hence

pwn
pun
≥ (Fn + wn)d − (Fn)d

(Gn)d − (Gn − un)d

≥ (Gn + wn)d − (Gn)d

(Gn)d − (Gn − un)d
.

Using the convexity of xd, we have the bound |x+ y|d ≥ xd + dxd−1y for x ≥ 0. Applying
this to the previous inequality, we get:

pwn
pun
≥ d(Gn)d−1wn
d(Gn)d−1un

=
wn
un

.

Thus,
pwn

pwn + pun
=

1

1 +
pun
pwn

≥ 1

1 + un
wn

=
wn

wn + un
.

Letting τ1, τ2, τ3, . . . be the times at which Sn moves, we have that Sτn and Tn can be
coupled in such a way that both wτn ≥ An and uτn ≤ Bn until the first time wτn = uτn .

Thus if at some finite time wn = un, it must also be that there is a time m ≤ n at which
Am = Bm, completing the proof.

The walk Tn describes the evolution of the degrees of two vertices in the preferen-
tial attachment model without choices. Hence we can apply to it some of the results
from [8]. We will now use it to prove Lemma 4.1.

ECP 19 (2014), paper 44.
Page 7/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3461
http://ecp.ejpecp.org/


Choice and preferential attachment

Proof. The vertex vk has degree 1 at time k. Let Ak = Mk, Bk = 1, and n0 = k. By
Lemma 4.2, it suffices to estimate the probability that Tn = (An, Bn) started from
(Ak, Bk) reaches the line y = x. Corollary 15 of [8] gives the following estimate for the
probability q(Mk) that the walk Tn, n > k moves from the point (Mk, 1) to the diagonal:

q(Mk) ≤ P (Mk)

2Mk
,

where P (Mk) is some polynomial.
By Lemma 3.2 we get that Mn ≥ Mn3/8 for some random M > 0 almost surely. In

particular, π(k) forms a convergent series with probability 1, and by Borel-Cantelli, the
number of k for which the vertex added at the k-th step have maximal degree at some
point in time is finite almost surely.

To complete the proof of Proposition 1.2 we now need the following lemma.

Lemma 4.3. Consider two vertices that at some time have maximal degree. With
probability 1 there are only a finite number of times when these vertices have the same
degree and are maximal.

Proof. Let vi and vj be two vertices that at some point have equal, maximal degree,
and let m0 be the first time that this occurs. Consider a two-dimensional random walk
S with coordinates equal to (degn vi,degn vj) for all time n ≥ m0. They have the same
degree if and only if the walk is on the line y = x. As in Lemma 4.2, the probability that
S hits the line y = x when started off the line is bounded from above by the probability
that T hits the line y = x. Hence the number of times n ≥ m0 that S returns to the line
y = x is bounded above by the number of times T returns to the line y = x.

It is a standard fact about the Pólya urn that if Tn = (An, Bn) starts from a point
(t, t), then the fraction An/(An +Bn) tends in law to a random variable H(t) as n tends
to infinity, where H(t) has a beta probability distribution:

H(t) ∼ Beta(t, t).

(See also Proposition 16 of [8]) Since the beta distribution is absolutely continuous, the
fraction An/(An+Bn) tends to an absolutely continuous probability distribution for any
starting point of the process T . Thus the limit of An/(An + Bn) exists almost surely,
and it takes value 1/2 with probability 0. Hence this fraction can be equal to 1/2 only
finitely many times, and so T can return to the line y = x only finitely many times.

Thus, the only way that there can be infinitely many times for which degn vi = degn vj
is if both degn vi and degn vj stabilize, i.e. there is a D not depending on n and an n1 for
which degn vi = degn vj = D for all n ≥ n1. However, in this case, these degrees are only
maximal for finitely many times as the maximal degree goes to infinity by Lemma 3.2,
which completes the proof.

Proof of Proposition 1.2 . From Lemma 4.1 the number of vertices that at some point
have maximal degree is finite almost surely, and from Lemma 4.3 these finitely many
vertices only change leadership finitely many times almost surely. Thus, after some suf-
ficiently long time, a single vertex remains the maximal degree vertex for all subsequent
time.

5 The case d = 2

In this section, we show the limiting behavior of the maximum degree in the case
d = 2. From Proposition 1.2 it follows that

lim
C→∞

P[Ln = 1, ∀n ≥ C] = 1.
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Introduce events D(C) = {Ln = 1, ∀n ≥ C}, and the stopping times ηC = infn≥C{n :

Ln > 1}. For fixed c > 0 we define the following set of scale functions of Mn.

Qcn = exp(cn/Mn)/n

U cn = n exp(−cn/Mn).
(5.1)

Lemma 5.1. In the following, let ε > 0 and C > 0 be fixed positive numbers.

1. For each c < 4, there is a constant n1 = n1(C, c, ε) ≥ C sufficiently large so that if
τε = infn>n1{n : Mn < εn0.67} then Qcn∧τε∧ηC , n ≥ n1 is a supermartingale.

2. For each c > 4, there is a constant n2 = n2(C, c, ε) ≥ C sufficiently large so that if
τε = infn>n2

{n : Mn < εn0.67} then U cn∧τε∧ηC , n ≥ n0 is a supermartingale.

Proof of Lemma 5.1. Since we only consider n ≤ ηC we have that Ln = 1 almost surely,
and hence pn = (1 −Mn/4n)Mn/n for the conditional probability at the n-th step that
Mn increases.
Proof of (1): We must estimate E[Qcn+1|Fn] for c < 4 under the assumption that Mn ≥
εn0.67. As we wish to show this is a supermartingale, it suffices to show that there is a
n0 sufficiently large so that under these assumptions

E
[Qcn+1

Qcn
|Fn

]
≤ 1.

The proof follows by Taylor expansion.

E
[Qcn+1

Qcn
|Fn

]
=

n

n+ 1

[
e(

c
Mn

)(1− pn) + pne

(
c
n+1
Mn+1−

cn
Mn

)]
= 1− 1

n
+

c

Mn
+ cpn

(
−1

Mn
+

Mn − n
Mn(Mn + 1)

)
+O

(
1

M2
n

+
n2pn
M4
n

)
.

Noting that pn ≤ Mn/n and that under our assumption, Mn = ω(n2/3), it follows that
this error term is o(1/n). Substituting in the definition of pn, we get

E
[Qcn+1

Qcn
|Fn

]
= 1− 1

n
+

c

Mn
− c

(
n+ 1

n(Mn + 1)

)(
1− Mn

4n

)
+O

(
1

n1.001

)
.

≤ 1− 1

n
+

c

4n
+O

(
1

n1.001

)
.

Note that the constant in the O(· · · ) term depends only on ε and c. Hence, when c < 4,
we may find a constant n0 > C sufficiently large so that this is always strictly less than
1, which completes the proof.
Proof of (2) This is nearly the same calculation as was done for (1). Once more, it
suffices to show that for c > 4,

E
[Ucn+1

Ucn
|Fn

]
≤ 1.

If we expand this expectation, we get

E
[Ucn+1

Ucn
|Fn

]
=
n+ 1

n

[
e(

−c
Mn

)(1− pn) + pne

(
−c n+1

Mn+1+
cn
Mn

)]
.

The same calculus shows that we have

E
[Ucn+1

Ucn
|Fn

]
= 1 +

1

n
− c

4n
+O

(
1

n1.001

)
,

so that when c > 4, the desired claim holds.
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Using the a priori estimates, we are able to use Qcn to prove the main theorem for
d = 2.

Proof of Theorem 1.1. Using these supermartingales, the proof proceeds along similar
lines as in Lemma 3.3. Once again set Oτε to be the event {τε = ∞}. From Lemma 3.3
we have

lim inf
n→∞

Mn/n
0.67 =∞ a.s.

Hence, we have that

lim
ε→0

1

{
inf
n>0

Mn/n
0.67 ≤ ε

}
= 0 a.s.

Thus, limε→0P[Oτε ] = 1.

Recall that D(C) = {Ln = 1, ∀n ≥ C}. For c < 4, on the event Oτε ∩DC , we have by
positive supermartingale convergence that there is some large Rε random so that

sup
n>0

Qcn < Rε <∞.

Hence, on this event,
Mn ≥

cn

log n+ logRε
,

and so

lim inf
n→∞

Mn log n

n
≥ c.

Thus we have that

P
[{

lim inf
n→∞

Mn logn
n ≥ c

}
∩Oτε ∩DC

]
= P [Oτε ∩DC ] ,

and so taking ε→ 0 and C →∞ we have that

lim inf
n→∞

Mn log n

n
≥ c a.s.

As this holds for any c < 4, we conclude the desired lower bound.
The upper bound follows by the exact same machinery. On the event Oτε ∩ DC , we

have by positive supermartingale convergence that there is some large Rε random so
that for c > 4

sup
n>0

U cn < Rε <∞.

Hence, on this event,
Mn ≤

cn

log n− logRε
,

and so

lim sup
n→∞

Mn log n

n
≤ c.

Thus we have that

P
[{

lim sup
n→∞

Mn logn
n ≤ c

}
∩Oτε ∩DC

]
= P [Oτε ∩DC ] ,

and so taking ε→ 0 and C →∞ we have that

lim sup
n→∞

Mn log n

n
≤ c a.s.

As this holds for any c > 4, the proof is complete.
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6 The case d > 2

The case d > 2 requires different analysis from the case d = 2. Let x∗ be the solution
of equation 1 − (1 − x/2)d = x in the interval (0, 1); we will briefly argue that x∗ exists
and is unique. Note that by concavity of left side of the equation, there are at most 2

solutions of this equation on (−∞, 2]. Further, 0 is always a solution, and for d > 2 the
value of the derivative of the left hand side is greater than 1. As when x = 1, the right
hand side is already greater than the left, there must be a solution on (0, 1). As there
are at most two solutions, x∗ exists and is well-defined.

We will apply the stochastic approximation framework laid out in [17] to show that
Zn := Mn/n→ x∗ almost surely. A process (Zn)n≥0 adapted to the filtration (Fn)n≥0 is
called a stochastic approximation process if it can be decomposed as

Zn+1 − Zn =
1

n
(F (Zn) + ξn+1 +Rn) ,

where F is some function, E[ξn+1|Fn] = 0, and Rn is an (Fn) adapted process satisfying∑
n≥1 n

−1|Rn| <∞ almost surely.
From (1.1), we have that

E [Zn+1 − Zn|Fn] =
−Zn
n+ 1

+
1− (1− MnLn

2n )d

n+ 1
.

Set F (x) = 1−(1−x/2)d−x. Thus, as Ln is eventually 1, we get that E [Zn+1 − Zn|Fn] =
F (Zn)
n+1 for all n larger than some sufficiently large random time. Set

Rn = nE [Zn+1 − Zn|Fn]− F (Zn),

and note that we then must take ξn+1 = n(Zn+1 − E[Zn+1|Fn]).

By Proposition 1.2, there is a T < ∞ almost surely so that for all n ≥ T, Ln = 1. As
|F (Zn)| ≤ 1 almost surely, we have that

∞∑
n=1

|Rn|
n
≤
T−1∑
n=1

|Rn|
n

+

∞∑
n=T

(
1

n
− 1

n+ 1

)
=

1

T
+

T−1∑
n=1

|Rn|
n

.

This is finite almost surely by the finiteness of T, and hence (Zn)n≥0 is a stochastic
approximation process.

We now use the following corollary of Lemma 2.6 of [17].

Proposition 6.1. If E[ξ2n+1|Fn] ≤ K for some K > 0 almost surely and if F is con-
tinuous with isolated zero set, then Zn converges almost surely to a point in the zero
set.

As n+1
n ξn+1 is Bernoulli given Fn, the second moment condition is clearly satisfied.

Hence, we know that with probability 1, Zn converges to either 0 or to x∗. Thus, we
need only show that the process does not converge to 0 almost surely.

From section 5, recall the events D(C) = {Ln = 1, ∀n ≥ C}, and the stopping
time ηC = infn≥C{n : Ln > 1}. Given Propositions 1.2 and 6.1, it suffices to show the
following.

Lemma 6.2. Conditional on D(C), for any n0 > C and ε > 0 there is an N <∞ random
with N > n0 so that x∗ − ε < MN/N.

Proof. Recall that pn is the probability that Mn+1 = Mn+1 conditional on Fn. Note that
for n with C ≤ n ≤ ηC ,

pn = 1−
(

1− Mn

2n

)d
=
Mn

2n

(
d−1∑
i=0

(1− Mn

2n
)i

)
.
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Hence if we define the function

f(x) =
1

2

d−1∑
i=0

(1− x/2)i,

then pn
Mn

= 1
nf(Mn

n ). If x 6= 0 this function is equal to 1−(1−x/2)d
x . Therefore x∗ is the

solution of equation f(x) = 1 in the interval (0, 1). Note that for any ε > 0 there is a
δ > 0 so that f(x) > 1 + δ if 0 ≤ x ≤ x∗ − ε and f(x) < 1− δ if x∗ + ε ≤ x ≤ 1.

We will start by proving the lower bound. Assume that for n0, x∗ − ε > Mn0/n0
(otherwise we could just put N = n0). Consider the expectation

E

(
Mn

Mn+1
| Fn

)
= pn

Mn

Mn + 1
+ 1− pn = pn

(
1− 1

Mn + 1

)
+ 1− pn

= 1− pn
Mn

+O(M−2n ) = 1− 1

n
f
(
Mn

n

)
+O(M−2n ).

Thus, by the monotonicity of f(x) there is a δ > 0 such that

E

(
1

Mn+1
| Fn

)
<

(1− (1 + δ/2)/n)

Mn
,

provided n ≥ n0 for some large n0 and n ≤ N ∧ ηC . Setting Cn+1 = (1 + (1 + δ)/n)Cn,

n > n0, we have that An = Cn/Mn is a supermartingale for this same range of n. By
Lemma 3.1 we have that Cnn−1−δ converges to a positive limit, and by Doob’s theorem
An∧φ1∧ηC tends to a finite limit with probability 1. Thus there is a random constant
B > 0 so that Mn ≥ Bn1+δ for all n ≤ N ∧ ηC . On the other hand, Mn ≤ 2n, and so
it must be that N ∧ ηC < ∞ almost surely. Thus, on the event that ηC = ∞, we have
N <∞.

Remark 6.3. By looking at Mn/Cn, it is possible to show by an identical argument that
Mn/n < x∗ + ε infinitely often. This can be combined with an upcrossing inequality to
show that Mn/n indeed converges to x∗. This argument is available in full in an earlier
version of this paper on the arXiv [14].
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