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Abstract

We consider a Markovian stochastic control problem with model uncertainty. The
controller (intelligent player) observes only the state, and, therefore, uses feedback
(closed-loop) strategies. The adverse player (nature) who does not have a direct inter-
est in the payoff, chooses open-loop controls that parametrize Knightian uncertainty.
This creates a two-step optimization problem (like half of a game) over feedback strate-
gies and open-loop controls. The main result is to show that, under some assumptions,
this provides the same value as the (half of) the zero-sum symmetric game where the
adverse player also plays feedback strategies and actively tries to minimize the payoff.
The value function is independent of the filtration accessible to the adverse player.
Aside from the modeling issue, the present note is a technical companion to a previous
work.
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1 Introduction

We consider a stochastic control problem with model uncertainty. At first, the problem
looks identical to the symmetric zero-sum game in [S14b]. However, here, only one
player is a true optimizer (intelligent player) who tries to maximize the payoff. The other
control variable is chosen by an adverse player (nature) who does not have a vested
interest in minimizing the payoff, and models Knightian uncertainty. We argue that the
two apparently identical problems (the symmetric zero-sum game in [S14b] and the
model uncertainty) should be rigorously defined differently.

More precisely, we interpret the control problem with model uncertainty as a two-step
optimization problem. The controller (intelligent players) observes the state process only,
so he/she chooses feedback (closed-loop) strategies. The adverse player chooses open-
loop controls, and such controls are actually adapted to a possibly larger filtration than
the one generated by the Brownian motion. In other words, the adverse player, while
not acting strategically against the controller, has access to the Brownian motion and
other information and may choose a parametrization of the model which just happens
to be totally adverse to the controller.
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Stochastic control with model uncertainty

A similar model of robust control over feedback/closed-loop/positional strategies for
the controller and open loop-controls for the adverse player has been considered in
[KS88] in deterministic setting. However, our discretization of time for the feedback
strategies is different, and, arguably, better fitted to the present case where the system
is stochastic, and allows for strong solutions of the state system. In addition, our note
deals with the (important, in our view) issue of the information available to the adverse
player. A part of our contribution is to prove that the value function does not depend on
the filtration accessible to the adverse player. This is not obvious a-priori.

There is a vast literature on robust optimization/model uncertainty, and we do not
even attempt to scratch the surface in presenting the history of the problem. However,
we have not encountered this very particular way to represent stochastic optimization
problems with model uncertainty, i.e. a strong formulation over elementary feedback
strategies for the controller vs. open-loop controls for the nature, nor the technical
result about the equality of the value functions we obtain.

The message of the present note is two-fold: first, an optimization problem with model
uncertainty is not the same as a zero-sum game, so it should be modeled differently.
We propose to use feedback strategies for the controller and open-loop controls for the
adverse player, obtaining a two-step/sup-inf optimization problem over strong solutions
of the state system. Second, with this formulation, the value function is, indeed, equal
to the (lower) value of the zero-sum game, where the adverse player is symmetric to
the controller and also plays pure feedback strategies. Beyond the modeling issue, the
mathematical statement does not seem obvious, and the proof is based on verification
by Stochastic Perron’s Method, along the lines of [S14b]. It is unclear how one could
prove directly, using only the probabilistic representation of the value functions, such
statement.

2 Stochastic Control with Model Uncertainty

2.1 The Stochastic System

We consider a stochastic differential system of the form:{
dXt = b(t,Xt, ut, vt)dt+ σ(t,Xt, ut, vt)dWt,

Xs = x ∈ Rd, (2.1)

starting at an initial time 0 ≤ s ≤ T at some position x ∈ Rd. Here, the control u chosen
by the controller (intelligent player) belongs to some compact metric space (U, dU ) and
the parameter v (chosen by the adverse player/nature) belongs to some other compact
metric space (V, dV ) and represents the model uncertainty. In other words, the Brownian
motion W represents the “known unknowns”, and the process v stands for the “unknown
unknowns”, a.k.a. “Knightian uncertainty”. The state X lives in Rd and the process
(Wt)s≤t≤T is a d′-dimensional Brownian motion on a fixed probability space (Ω,F ,P) with
respect to some filtration F = (Ft)s≤t≤T . The filtration F satisfies the usual conditions
and is usually larger than the the augmented natural filtration generated by the Brownian
motion, by which we mean, FWt = σ(Wu, s ≤ u ≤ t) ∨ N (P,F) for s ≤ t ≤ T. The
space (Ω,F ,P), the Brownian motion W and the filtration F may depend on s. To keep
the notation simple, we do not emphasize the dependence on s, unless needed. The
coefficients b : [0, T ]×Rd ×U × V → Rd and σ : [0, T ]×Rd ×U × V →Md×d′ satisfy the
Standing assumption:

1. (C) b, σ are jointly continuous on [0, T ]×Rd × U × V
2. (L) b, σ satisfy a uniform local Lipschitz condition in x, i.e.

|b(t, x, u, v)− b(t, y, u, v)|+ |σ(t, x, u, v)− σ(t, y, u, v)| ≤ L(K)|x− y|
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Stochastic control with model uncertainty

∀ |x|, |y| ≤ K, t ∈ [0, T ], u ∈ U, v ∈ V for some L(K) <∞, and

3. (GL) b, σ satisfy a global linear growth condition in x

|b(t, x, u, v)|+ |σ(t, x, u, v)| ≤ C(1 + |x|)

∀ |x|, |y| ∈ Rd, t ∈ [0, T ], u ∈ U, v ∈ V for some C <∞.

Now, given a bounded and continuous function g : Rd → R, the controller is trying to
maximize E[g(Xs,x;u,v

T )]. Since v is "uncertain", optimizing “robustly”, means optimizing
the functional infv E[g(Xs,x;u,v

T )], leading to the two-step optimization problem

sup
u

(
inf
v
E[g(Xs,x;u,v

T )]
)
.

It is not yet clear what u, v mean in the formulation above, and giving a precise meaning
to this is one of the goals of the present note.

2.2 Modeling a Zero-Sum Game

For an identical stochastic system, imagine that v represents the choice of another
intelligent player and g(Xs,x;u,v

T ) is the amount payed by the v player to the u player.
For this closely related, but different problem it was argued in [S14b] that, as long as
both players only observe the state process, they should both play, symmetrically, as
strategies, some feedback functionals u, v of restricted form.

We denote by C([s, T ]) , C([s, T ],Rd) and endow this path space with the natural
(and raw) filtration Bs = (Bst )s≤t≤T defined by Bst , σ(y(u), s ≤ u ≤ t), s ≤ t ≤ T. The
elements of the path space C([s, T ]) will be denoted by y(·) or y. The stopping times on
the space C([s, T ]) with respect with the filtration Bs, i.e. mappings τ : C([s, T ])→ [s, T ]

satisfying {τ ≤ t} ∈ Bst ∀ s ≤ t ≤ T are called stopping rules, following [KS01]. We
denote by Bs the class of such stopping rules starting at s.

Definition 2.1 (Elementary Feedback Strategies). Fix 0 ≤ s ≤ T . An elementary strategy
α starting at s, for the first intelligent player/controller is defined by

• a finite non-decreasing sequence of stopping rules, i.e. τk ∈ Bs for k = 1, . . . , n and

s = τ0 ≤ . . . τk ≤ · · · ≤ τn = T,

• for each k = 1 . . . n, a constant value of the strategy ξk in between the times τk−1
and τk, which is decided based only on the knowledge of the past state up to τk−1,
i.e. ξk : C([s, T ])→ U such that ξk ∈ Bsτk−1

.

The strategy is to hold ξk in between (τk−1, τk], i.e. α : (s, T ]×C([s, T ])→ U is defined by

α(t, y(·)) ,
n∑
k=1

ξk(y(·))1{τk−1(y(·))<t≤τk(y(·))}.

An elementary strategy β for the second player is defined in an identical way, but takes
values in V . We denote by A(s) and B(s) the collections of all possible elementary
strategies for the u-player and the v-player, respectively, given the initial deterministic
time s.

The main result in [S14b] is the description of the lower and upper values of such a
zero-sum symmetric game over elementary feedback strategies. We recall below
the result, for convenience:

Theorem 2.2. Under the standing assumption, we have
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Stochastic control with model uncertainty

1. for each α ∈ A(s), β ∈ B(s), there exists a unique strong solution (Xs,x;α,β
t )s≤t≤T

(such that Xs,x;α,β
t ∈ FWs ) of the closed-loop state system{

dXt = b(t,Xt, α(t,X·), β(t,X·))dt+ σ(t,Xt, α(t,X·), β(t,X·))dWt, s ≤ t ≤ T,
Xs = x ∈ Rd.

(2.2)

2. the functions

V −(s, x) , sup
α∈A(s)

inf
β∈B(s)

E[g(Xs,x;α,β
T )] ≤ V +(s, x) , inf

β∈B(s)
sup

α∈A(s)

E[g(Xs,x;α,β
T )]

are the unique bounded continuous viscosity solutions of the Isaacs equations (for
i = − and i = +) to the game{

−vt −Hi(t, x, vx, vxx) = 0 on [0, T )×Rd,
v(T, ·) = g(·), on Rd.

(2.3)

where,

H−(t, x, p,M) , sup
u∈U

inf
v∈V

L(t, x, p,M ;u, v)

≤H+(t, x, p,M) , inf
v∈V

sup
u∈U

L(t, x, p,M ;u, v),

using the notation

L(t, x, p,M ;u, v) , b(t, x, u, v) · p+
1

2
Tr
(
σ(t, x, u, v)σ(t, x, u, v)TM

)
.

2.3 Back to Control with Model Uncertainty

In our setting, v does not represent an intelligent player: we can think about it as
nature, which does not have a payoff to minimize (or a vested interest from playing
against player u). The controller (player u) does have a payoff to maximize. It is still
natural to assume that, the controller only observes the state of the system, so he/she
uses the same elementary feedback strategies α ∈ A(s). On the other hand, the
adverse player, the nature, can choose any parameter v, and, can actually do so using the
whole information available in the filtration F. In other words, we treat as the possible
(uncertain) choices of the model to be all open-loop control processes vt. We define

V(s) , {(vt)s≤t≤T |predictable with respect to F},

and set up the optimization problem under model uncertainty as

V (s, x) , sup
α∈A(s)

inf
v∈V(s)

E[g(Xs,x;α,v
T )].

The above formulation represents the modeling contribution of the present note. We
emphasize one last time that, in our model,

• nature uses open-loop controls v ∈ V(s), while the controller uses feedback strate-
gies α ∈ A(s),

• the nature’s controls are adapted to the filtration F which may be strictly larger
than the one generated by the Brownian motion.

Before even studying the well posed-ness of the state equation over one feedback strategy
α and one open loop control v, it is expected (proven rigorously below), that V ≤ V −.
The main result of the present note is:
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Stochastic control with model uncertainty

Theorem 2.3. Under the standing assumption, we have

1. for each α ∈ A(s) and v ∈ V(s), the state equation has a unique strong solution
(Xs,x;α,v

t )s≤t≤T with Xs,x;α,v
t ∈ Ft ⊃ FWt ,

2. V = V − is the unique continuous viscosity solution of the lower Isaacs equation,
i.e. equation (2.3) for i = −,

3. the value function V satisfies the Dynamic Programming Principle

V (s, x) = sup
α∈A(s)

inf
v∈V(s)

E[V (ρ(Xs,x;α,v
· ), Xs,x;α,v

ρ(Xs,x;α,v· )
)] ∀ ρ ∈ Bs.

It is important, in our view, to obtain strong solutions of the state equation, and this
is the main reason to restrict feedback strategies to the class of elementary strategies.
Mathematically, our result states that the use of open-loop controls by the stronger player
(here, the nature), even adapted to a much larger filtration than the one generated by
the “known randomness” W , does not change the value function, from the one where
the stronger player only observes the state process, as long as the weaker player only
observes the state. More precisely, the technical contribution of the note is to show
that

sup
α∈A(s)

inf
v∈V(s)

E[g(Xs,x;α,v
T )] = sup

α∈A(s)

inf
β∈B(s)

E[g(Xs,x;α,β
T )].

In our understanding, this is not entirely obvious.

Remark 2.4. 1. one possible way to model the robust control problem is to assume
that α is an Elliott-Kalton strategy (like in [EK72] or [FS89]) and v is an open-loop
control. While such an approach is present in the literature, we find it quite
hard to justify the assumption that the controller can observe the changes in
model uncertainty in real time, i.e. really observe vt right at time t. Locally
(over an infinitesimal time period), this amounts for the nature to first choose the
uncertainty parameter v, then, after observing v for the controller to choose
u. This contradicts the very idea of Knightian uncertainty we have in mind. If
one actually went ahead and modeled our control problem in such a way, than
V would be equal to V +, since the Elliott-Kalton player is the stronger player as
described above (see [FS89] for the mathematics, under stronger assumptions on
the system).

2. another way would be to model the “nature” as the Elliott-Kalton strategy player β
an let the controller/intelligent player use open loop controls u. This does not seem
too appealing either, since nature does not have any payoff/vested interest. Why
would nature be able to observe the controller’s actions and act strategically
against him/her? In addition, if the controller chooses open-loop controls, he/she
needs to have the whole information in F available. The controller does not usually
observe directly even the noise W , leave alone the other possible information in
F. However, with such a model, mathematically, the resulting value function is
expected to be the same, V = V − (see, again, [FS89], up to technical details).

3 Proofs

The proposition below contains the proof of the first item in Theorem 2.3.

Proposition 3.1. Fix s, x and α ∈ A(s) and v ∈ V(s). Then, there exists a unique strong
(and square integrable) solution (Xs,x;α,v

t )s≤t≤T , Xs,x;α,v
t ∈ Ft of the state equation{

dXt = b(t,Xt, α(t,X·), vt)dt+ σ(t,Xt, α(t,X·), vt) dWt, s ≤ t ≤ T,
Xs = x ∈ Rd. (3.1)
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Stochastic control with model uncertainty

Proof: The proof of the above proposition (both existence and uniqueness) is based on
solving the equation, successively on [τk (Xs,x;α,v

· ) , τk+1 (Xs,x;α,v
· )] for k = 1, . . . , n. The

details are rather obvious and, even in [S14b], the proof of a similar lemma (where both
players choose elementary feedback strategies, unlike here) was only sketched. �

Before we proceed, let α ∈ A(s), β ∈ B(s). We can consider

(vt)s≤t≤T , (β(t,Xs,x;α,β
· ))s≤t≤T ∈ V(s),

such that Xs,x;α,β
· = Xs,x;α,v

· . This means that, for a fixed α, there are more open-loop
controls nature can use, than feedback strategies an adverse zero-sum player could use.
This shows that

V (s, x) = sup
α∈A(s)

inf
v∈V(s)

E[g(Xs,x;α,v
T )] ≤ sup

α∈A(s)

inf
β∈B(s)

E[g(Xs,x;α,β
T )] = V −(s, x).

The goal is to prove the inequality above is actually a true equality. The proof of the main
Theorem 2.3 relies on a similar adaptation of the Perron’s Method that was introduced
in [S14b] for symmetric zero-sum games played over elementary feedback strategies. As
mentioned, the present note is a technical companion to [S14b]. The main (but not only)
technical difference is that the stochastic sub-solutions of the robust control problem
need to be defined differently, to account for the fact that the adverse player is using
open-loop controls.

Following [S14b], we first define elementary feedback strategies starting at sequel
times to the initial (deterministic) time s. The starting time is a stopping rule.

Definition 3.2 (Elementary Strategies starting later). Fix s and let τ ∈ Bs be a stopping
rule. An elementary strategy, denoted by α ∈ A(s, τ), for the first player, starting at τ , is
defined by

• (again) a finite non-decreasing sequence of stopping rules, i.e. τk ∈ Bs, k = 1, . . . n

for some finite n, and with τ = τ0 ≤ . . . τk ≤ · · · ≤ τn = T.

• for each k = 1 . . . n, a constant action ξk in between the times τk−1 and τk, which is
decided based only on the knowledge of the past state up τk−1, i.e. ξk : C([s, T ])→
U such that ξk ∈ Bsτk−1

.

The strategy is, again, to hold ξk in between (τk−1, τk], i.e..

α : {(t, y)|τ(y) < t ≤ T, y ∈ C([s, T ])} → U

with

α(t, y(·)) ,
n∑
k=1

ξk(y(·))1{τk−1(y(·))<t≤τk(y(·))}.

The notation is consistent with A(s) = A(s, s).

We recall, still from [S14b], that strategies in A(s, τ) cannot be used by themselves
for the game starting at s, but have to be concatenated with other strategies.

Proposition 3.3 (Concatenated elementary feedback strategies). Fix s and let τ ∈ Bs
be a stopping rule and α̃ ∈ A(s, τ). Then, for each α ∈ A(s, s), the mapping α ⊗τ α̃ :

(s, T ]× C([s, T ])→ U defined by(
α⊗τ α̃

)
(t, y(·)) , α(t, y(·))1{s<t≤τ(y(·))} + α̃(t, y(·))1{τ(y(·))<t≤T}

is a simple strategy starting at s, i.e. α⊗τ α̃ ∈ A(s, s).

Compared to [S14b] the definition below has to be carefully modified.
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Stochastic control with model uncertainty

Definition 3.4 (Stochastic Sub-Solution). A function w : [0, T ] × Rd → R is called a
stochastic sub-solution of the lower Isaacs equation, i.e. equation (2.3) for i = −, if

1. it is bounded, continuous and w(T, ·) ≤ g(·),
2. for each s and for each stopping rule τ ∈ Bs there exists an elementary strategy

α̃ ∈ A(s, τ) such that, for any α ∈ A(s), any v ∈ V(s), any x and each stopping
rule ρ ∈ Bs, τ ≤ ρ ≤ T , with the simplifying notation X , Xs,x,α⊗τ α̃,v and
τ ′ , τ(X), ρ′ , ρ(X), we have

w(τ ′, Xτ ′) ≤ E[w(ρ′, Xρ′)|Fτ ′ ] P− a.s.

Let w a stochastic sub-solution. Fix s. There exists α̃ ∈ A(s) such that, for each x,
each ρ ∈ Bs and each v ∈ V(s) we have

w(s, x) ≤ E
[
w(ρ(Xs,x,α̃,v

· ), Xs,x,α̃,v

ρ(Xs,x,α̃,v· )
)|Fs

]
, P− a.s. (3.2)

Taking the expectation it is obvious that, if w is a stochastic sub-solution, then we have
the half DPP/sub-optimality principle

w(s, x) ≤ sup
α∈A(s)

inf
v∈V(s)

E
[
w(ρ(Xs,x,α,v

· ), Xs,x,α,v
ρ(Xs,x,α,v· )

)
]
, ∀ρ ∈ Bs. (3.3)

Since w(T, ·) ≤ g(·), we obtain w(s, x) ≤ V (s, x) ≤ V −(s, x).

We have already characterized V − as the unique solution of the lower Isaacs equation
in [S14b]. Therefore, we actually need only half of the Perron construction here. We
denote by L the set of stochastic sub-solutions in Definition 3.4 (non-empty from the
boundedness assumptions). Define

w− , sup
w∈L

w ≤ V ≤ V −.

Proposition 3.5 (Stochastic Perron for Robust Control). Under the standing assumptions,
w− is a LSC viscosity super-solution of the lower Isaacs equation, up to t = 0.

The following lemmas are very similar to their counterparts in [S14b].

Lemma 3.6. If w1, w2 ∈ L then w1 ∨ w2 ∈ L.

Fix τ ∈ Bs a stopping rule. Let α̃1, α̃2 ∈ A(s, τ) be the two feedback strategies of the
controller, starting at τ corresponding the the sub-solutions w1 and w2 for the Definition
3.4. The new strategy starting at τ , defined for any y ∈ C([s, T ]) by

α̃(t, y) = α̃1(t, y) 1{w1(τ(y),y(τ(y)))≥w2(τ(y),y(τ(y)))}

+α̃2(t, y) 1{w1(τ(y),y(τ(y)))<w2(τ(y),y(τ(y)))}

does the job for the definition of w , w1 ∨ w2 as a stochastic sub-solution . �
Lemma 3.7. There exists a non-decreasing sequence L 3 wn ↗ w−.

Proof: according to Proposition 4.1 in [BS12], there exist w̃n ∈ L such that w− =

supn w̃n. Now, we can just define wn = w̃1 ∨ · · · ∨ w̃n ∈ L ↗ w−. �
Proof of Proposition 3.5 The proof is similar to [S14b]. Since Itô formula applies
the same, regardless of filtration, it produces sub-martingales in a similar way, even
though v is an open-loop control, and the filtration may be larger than the one generated
by W . This is the key point that allows us to obtain the result. We only sketch some key
points of the proof, in order to avoid repeating all the similar arguments in [S14b].

The interior super-solution property for w−: Let (t0, x0) in the parabolic interior
[0, T ) × Rd such that a smooth function ϕ strictly touches w− from below at (t0, x0).
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Assume, by contradiction, that ϕt +H−(t, x, ϕx, ϕxx) > 0 at (t0, x0). In particular, there
exists û ∈ U and ε > 0 such that

ϕt(t0, x0)+ inf
v∈V

[
b(t0, x0, û, v) · ϕx(t0, x0)

+
1

2
Tr(σ(t0, x0, û, v)σ(t0, x0, û, v)Tϕxx(t0, x0))

]
> ε.

To simplify notation, all small balls here are actually included in (i.e. intersected with)
the parabolic interior. Since b, σ are continuous, and V is compact, the uniform continuity
of the above expression in (t, x, v) for (t, x) around (t0, x0) implies that there exists a
smaller ε > 0 such that

ϕt(t, x) + inf
v∈V

[
b(t, x, û, v) · ϕx(t, x) +

1

2
Tr(σ(t, x, û, v)σ(t, x, û, v)Tϕxx(t, x))

]
> ε,

on B(t0, x0, ε). Now, on the compact (rectangular) torus T = B(t0, x0, ε)−B(t0, x0, ε/2)

we have that ϕ < w− and the max of ϕ− w− is attained, therefore it is strictly negative.
In other words ϕ < w− − η on T for some η > 0. Since wn ↗ w−, a Dini type argument
similar to [BS14] and [BS13] shows that, for n large enough we have ϕ < wn − η/2 on T.
For simplicity, fix such an n and call v = wn. Now, define, for small δ << η/2

vδ ,

{
(ϕ+ δ) ∨ v on B(t0, x0, ε),

v outside B(t0, x0, ε).

Since vδ(t0, x0) > w−(t0, x0), we have a contradiction if vδ ∈ L. To begin with, we
emphasize that vδ = v on T. Fix s and let τ ∈ Bs be a stopping rule for the initial time
s. We need to construct an elementary strategy α̃ ∈ A(s, τ) in the Definition 3.4 of
stochastic sub-solution for vδ. We do that as follows:

1. with the notation ∂ , ∂B(t0, x0, ε/2) we define the stopping rule
τ1 : C([s, T ])→ [s, T ], τ ≤ τ1 ∈ Bs by

τ1(y) ,

{
τ(y), if v(τ(y), y(τ(y))) = vδ(τ(y), y(τ(y)))

inf{t| τ(y) ≤ t ≤ T, (t, y(t)) ∈ ∂}, if v(τ(y), y(τ(y))) < vδ(τ(y), y(τ(y))).

Recall that v = vδ on ∂.

2. starting at τ and up to the stopping rule τ1 , follow the constant action û

3. starting at τ1, (when vδ = v, by construction) follow the strategy α1 ∈ A(s, τ1)

corresponding to the Definition 3.4 of the stochastic sub-solution v with respect to
the starting stopping rule τ1.

More precisely, we define the strategy α̃ : {(t, y)|τ(y) < t ≤ T, y ∈ C([s, T ])} → U, by

α̃(t, y) , û1{τ(y)<t≤τ1(y)} + α1(t, y)1{τ1(y)<t≤T}.

We follow similar arguments to [S14b] to show that α̃ ∈ A(s, τ) is a strategy that satisfies
the Definition 3.4 for vδ as a stochastic sub-solution corresponding to the stopping rule τ .
Actually, the construction of α̃ above is slightly simpler than the construction in [S14b]
(and fixes some typos there). To summarize, we obtained that vδ ∈ L, so we reached a
contradiction. The terminal condition property for w− is proved very similarly. �
Proof of Theorem 2.3: Recall that the first part was proved by Proposition 3.1.

Next, the proof of the second item is finished, once we use the comparison result
from Lemma 4.1 in [S14b]. More precisely, we know that w− ≤ V ≤ V − and w− is
a viscosity super-solution and V − is a viscosity solution of the lower Isaacs equation
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(from [S14b][Theorem 4.1]). Therefore, according to [S14b][Lemma 4.1], we also have
V − ≤ w−, so V = V − is the unique viscosity solution.

Finally, the DPP in Item 3 of Theorem 2.3 is actually an easy observation based on
the fact that the value function V − = V satisfies a similar (but not identical) DPP (see
[S14b]) and the half DPP (3.2).�

4 Additional Modeling Comments

In our (strong) model of robust control, the value function of the intelligent player
turns out to be V = V −. Obviously, one can ask the question: should this player try to
randomize feedback strategies somehow, to get the potentially better value V mix of the
value over mixed strategies (for both players) obtained in [S14a] (but in a martingale
symmetric formulation)?

Modeling mixed feedback strategies for the controller, and open loop-strategies
controls for the adverse player is a highly non-trivial issue, and not obviously possible in
strong formulation (see [S14a] for some comments along these lines, for the case of a
zero-sum symmetric game). In our formulation of optimization with model uncertainty,
the maximizing player has to settle with the value V = V −. However, the controller
couldn’t do better anyway in one of the two situations:

1. when the Isaacs condition over pure strategies is satisfied, i.e.

sup
u∈U

inf
v∈V

L(t, x, p,M ;u, v) = inf
v∈V

sup
u∈U

L(t, x, p,M ;u, v)

so V − = V mix = V +

2. in any additional situation when V − = V mix < V +, i.e. all situations in which (even
at the formal level) potential randomization for the u player does not change the
Hamiltonian. More precisely, if

sup
u∈U

inf
ν∈P(V )

∫
L(t, x, p,M, u, v)ν(dv) = inf

ν∈P(V )
sup
u∈U

∫
L(t, x, p,M, u, v)ν(dv),

since

sup
u∈U

inf
v∈V

L(t, x, p,M ;u, v) = sup
u∈U

inf
ν∈P(V )

∫
L(t, x, p,M, u, v)ν(dv)

and

inf
ν∈P(V )

sup
u∈U

∫
L(t, x, p,M, u, v)ν(dv) = inf

ν∈P(V )
sup

µ∈P(U)

∫
L(t, x, p,M, u, v)µ(dv)ν(dv)

we have

H− = Hmix ≤ H+

although the Isaacs condition over pure strategies may not be satisfied (H− < H+).
In such a situation, the robust controller cannot expect to get a better value then
V = V −. A sufficient condition for this is for the map

u→ L(t, x, p,M ;u, v)

to be concave. Up to different modeling of strategies, this is exactly the case in the
interesting recent contribution [TTU13].
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