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Abstract

We give an estimate for the Kolmogorov distance between an infinitely divisible dis-
tribution (with mean zero and variance one) and the standard Gaussian distribution
in terms of the difference between the fourth moment and 3. In a similar fashion
we give an estimate for the Kolmogorov distance between a freely infinitely divisible
distribution and the Semicircle distribution in terms of the difference between the
fourth moment and 2.
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1 Introduction and Statement of Results

In recent years, many interests have been put in the characterization of those chaotic
sequences {XN ;N ≥ 1} verifying a Central Limit Theorem (CLT), that is, such that XN

converges in distribution to N (0, 1) (as N → ∞), where N (0, 1) denotes a centered
Gaussian law with unit variance. A solution to this problem was first given by Nualart
and Peccati in the form of the following “fourth moment theorem".

Theorem 1.1 ([11]). Let {XN ;N ≥ 1} be a sequence of multiple Wiener-Itô integrals of
the formXN = IWm (fN ), for kernels fN ∈ L2(Rm+ ,dt) (dt denotes the Lebesgue measure),
such that E[X2

N ]→ 1. Then the following are equivalent

1. E[X4
N ]→ 3.

2. µXN → N (0, 1).

Since this seminal work, a lot of efforts have been devoted in finding distributions
other than in a fixed chaos for which a “fourth moment theorem" would still hold. See
the survey [13] and the monograph [14] for details and references. More recent devel-
opments can be found in the webpage maintained by Ivan Nourdin

https://sites.google.com/site/malliavinstein/home

As an important example for us, in the free probability setting , it was proved by
Kemp et al. [9] that the Nualart-Peccati criterion also holds for the free Brownian
motion {St; t ≥ 0} and its multiple Wigner integrals ISm(f).
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Distance in 4th moment theorem

Theorem 1.2 ([9]). Let {XN ;N ≥ 1} be a sequence of mirror symmetric multiple
Wigner integrals of the form XN = ISm(fN ) in a fixed m-chaos with E[X2

N ] → 1 and
denote by S(0, 1) a centered Semicircle law with unit variance. Then the following are
equivalent

1. E[X4
N ]→ 2.

2. µXN → S(0, 1).

More recently, in [2] the first author proved analogous results to Theorem 1.1 and
Theorem 1.2 in the setting of infinitely divisible laws. Let ID(∗) and ID(�) denote the
classes of probability measures which are infinitely divisible with respect to classical
convolution ∗ and free convolution �, respectively.

Theorem 1.3 ([2]). Let {µN = µXN ;N ≥ 1} be a sequence of probability measures with
variance 1 and mean 0 such that µN ∈ ID(∗). If E[X4

N ]→ 3 then µXN → N (0, 1).

Theorem 1.4 ([2]). Let {µN = µXN ;N ≥ 1} be a sequence of probability measures with
variance 1 and mean 0 such that µN ∈ ID(�). If E[X4

N ]→ 2 then µXN → S(0, 1).

In this note we give quantitative versions of Theorems 1.3 and 1.4. That is, we give
precise estimates for the Kolmogorov distance between an infinitely divisible measure
µ and N (0, 1) ( resp. S(0, 1)) in terms of the fourth moment.

Theorem 1.5. Let µ ∈ ID(∗) be a probability measure with variance 1 and mean 0.
Then

dKol(N (0, 1), µ) ≤ C
√
m4 − 3,

where m4 denotes the fourth moment of µ and C is a universal constant.

Theorem 1.6. Let µ ∈ ID(�) be a probability measure with variance 1 and mean 0.
Then

dKol(S(0, 1), µ) ≤ K
√
m4 − 2,

where m4 denotes the fourth moment of µ and K is a universal constant.

The proof of Theorems 1.5 and 1.6 relies on the Berry-Esseen Theorem and its free
version (See Section 2.3). Furthermore, we can prove slightly stronger versions of
Theorems 1.3 and 1.4, changing infinite divisibility by just N -divisibility.

Theorem 1.7. Let {µN = µXN ;N ≥ 1} be a sequence of probability measures with
variance 1 and mean 0 such that µN is N -divisible with respect to classical convolution.
If E[X4

N ]→ 3 then µXN → N (0, 1).

Theorem 1.8. Let {µN = µXN ;N ≥ 1} be a sequence of probability measures with
variance 1 and mean 0 such that µN is N -divisible with respect to free convolution. If
E[X4

N ]→ 2 then µXN → S(0, 1).

Finally, we want to point out that explicit bounds (for the total variation) in the
Gaussian approximations of random variables in a fixed Wiener chaos were given by
Nourdin and Peccati in [12, 15].

The paper is organized as follows. In Section 2 we give some preliminaries. In Sec-
tion 3 we prove Theorems 1.5-1.8. In Section 4, we give few examples of application
of the main results of this paper. Finally, we include an appendix where we show in-
equalities on the fourth moment for N -divisible measures which explain somehow the
role of the Gaussian and Semicircle distribution as extremal points among the class of
infinitely divisible measures.
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2 Preliminaries

In this section we give some basic preliminaries on cumulants and free cumulants.
The reader familiar with these objects may skip this part. We also present the Berry-
Esseen theorem and its free version.

2.1 Cumulants

LetM denote the set of Borel probability measures on R. We say that a measure µ
has all moments if mk(µ) =

∫
R t

kµ(dt) exists and is finite, for each integer k ≥ 1.
Recall that the classical convolution of two probability measures µ1, µ2 on R is de-

fined as the probability measure µ1 ∗ µ2 on R such that Cµ1∗µ2
(t) = Cµ1

(t) + Cµ2
(t), t ∈ R,

where Cµ(t) = log µ̂(t), with µ̂(t) the characteristic function of µ.
Let µ ∈M be a probability measure having all moments. The coefficients cn = cn(µ)

in the series expansion

Cµ(t) =

∞∑
n=1

cn
n!
tn

are called (classical) cumulants or semi-invariants.
Since the cumulant transform Cµ linearizes classical convolution, then the cumulants

are also additive with respect to the convolution µ1 ∗ µ2

cn(µ1 ∗ µ2) = cn(µ1) + cn(µ2) (2.1)

and
cn(µ∗t) = tcn(µ). (2.2)

The relation between the cumulants and the moments is given in terms of the set
P (n) of partitions of {1, . . . , n}, be the so-called moment-cumulant formula,

mn(µ) =
∑

π∈P (n)

cπ(µ), (2.3)

where π → cπ is the multiplicative extension of the cumulants to partitions, that is

cπ := c|V1| · · · c|Vr| for π = {V1, ..., Vr} ∈ P (n).

The first moments are written in terms of cumulants as follows:

m1 = c1

m2 = c2 + c21 (2.4)

m3 = c3 + 3c2c1 + c31

m4 = c4 + 4c3c1 + 3c22 + 6c2c
2
1 + c41.

LetX be a random variable with distribution µ. We say thatX has absolute moments
up to order n if mn(|X|) = E(|X|n) =

∫
|x|nµ(dx) < ∞. For a random variable X with

absolute moments up to order n we can still define the cumulant of order n by the
moment-cumulant formula

mn(X) = E(Xn) =
∑

π∈P (n)

cπ(X). (2.5)

It will be important for us that cumulants are linear with respect to addition of
random variables. That is, for independent random variables X,Y , and λ ∈ C,

cn(X + λY ) = cn(X) + λncN (Y ). (2.6)
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2.2 Non-Commutative Probability Spaces

A C∗-probability space is a pair (A, τ), where A is a unital C∗-algebra and τ : A → C
is a positive unital linear functional. The elements of A are called (non-commutative)
random variables. An element a ∈ A such that a = a∗ is called self-adjoint.

The functional τ should be understood as the analogue of the expectation in classical
probability. For a1, . . . , ak ∈ A, we will refer to the values of τ(ai1 · · · ain), 1 ≤ i1, ..., in ≤
k, n ≥ 1, as the mixed moments of a1, . . . , ak.

For any self-adjoint element a ∈ A there exists a unique probability measure with
compact support µa (its distribution) with the same moments as a, that is,∫

R
xkµa(dx) = τ(ak), ∀k ∈ N.

Even if we know the individual distribution of two self-adjoint elements a, b ∈ A,
their joint distribution (mixed moments) can be quite arbitrary, unless some notion of
independence is assumed to hold between a and b. Here, we will work with free inde-
pendence.

Definition 2.1. Let (An)n≥1 be a sequence of subalgebras of A and, for a ∈ A, denote
by ā := a− τ(a). We say that (An)n≥1 are freely independent or free if

τ(ā1ā2 · · · āk) = 0, (2.7)

whenever k ≥ 1, a1, . . . ak ∈ A, are such that ai ∈ Aj(i), 1 ≤ i ≤ k and j(i) 6= j(i+ 1).

2.2.1 Free convolution

Free convolution was defined in [21] for probability measures with compact support
and later extended in [10] for the case of finite variance, and in [5] for the general
unbounded case.

The upper half-plane and the lower half-plane are respectively denoted as C+ and
C−. Let Gµ(z) =

∫
R
µ(dx)
z−x (z ∈ C+) be the Cauchy transform of µ ∈ M and Fµ(z) its

reciprocal 1
Gµ(z)

.

It was proved in Bercovici and Voiculescu [5] that there are positive numbers η and
M such that Fµ has a right inverse F−1µ defined on the region Γη,M := {z ∈ C+; |Re(z)| <
ηIm(z), |z| > M}.

The Voiculescu transform of µ is defined by φµ (z) = F−1µ (z)− z, on any region of the
form Γη,M where F−1µ is defined; see [5]. The free cumulant transform or R-transform

is a variant of φµ defined as C�µ (z) = Rµ (z) = zφµ( 1
z ) for z in a domain Dµ ⊂ C− such

that 1/z ∈ Γη,M where F−1µ is defined.

The free additive convolution of two probability measures µ1, µ2 on R is the proba-
bility measure µ1 � µ2 on R such that

φµ1�µ2
(z) = φµ1(z) + φµ2(z), for z ∈ Γη1,M1 ∩ Γη2,M2

or, equivalently,

C�µ1�µ2
(z) = C�µ1

(z) + C�µ2
(z), for z ∈ Dµ1

∩Dµ1
.

Free additive convolution corresponds to the sum of free random variables: µa�µb =

µa+b, for a and b free random variables.
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2.3 Free cumulants

Free cumulants were introduced by Speicher [17] in his combinatorial approach to
Free Probability. Let µ ∈ M be a probability measure having all moments. The free
cumulants are the coefficients kn = kn(µ) in the series expansion

C�µ (z) =
∑∞

n=1
kn(µ)zn.

Since the cumulant transform C�µ linearizes additive free convolution, then the free
cumulants are also additive with respect to the free convolution µ1 � µ2

kn(µ1 � µ2) = kn(µ1) + kn(µ2)

and
kn(µ�t) = tkn(µ).

The main object that describes the relation between the free cumulants and the
moments is the set of non-crossing partitions of {1, . . . , N}, denoted by NC (N). We
will identify partitions π on the set {1, . . . , N} with equivalence relations ∼π such that
a ∼π b iff a, b ∈ A, for A ∈ π. We say that a partition π is non-crossing if a ∼π c ,
b ∼π d⇒ a ∼π b ∼π c ∼π d, for all 1 ≤ a < b < c < d ≤ n.

The so-called moment-cumulant formula of Speicher [17] gives a relation between
moments and free cumulants.

mn(µ) =
∑

π∈NC(n)

kπ(µ), (2.8)

where π → kπ is the multiplicative extension of the free cumulants to non-crossing
partitions, that is

kπ := k|V1| · · · k|Vr| for π = {V1, ..., Vr} ∈ NC(n).

The first moments are written in terms of cumulants as follows:

m1 = k1

m2 = k2 + k21 (2.9)

m3 = k3 + 3k2k1 + k31

m4 = k4 + 4k3k1 + 2k22 + 6k2k
2
1 + k41

Similarly as for the classical case, free cumulants are linear with respect to addition
of free random variables. That is, for free random variables X,Y , and λ ∈ C,

kn(X + λY ) = kn(X) + λnkn(Y ). (2.10)

2.4 Classical and free Berry-Esseen Theorem

Let Y,Z two random variables with values in R with distribution functions FY , FZ .
The Kolmogorov distance between FY (x) := P[Y ≤ x] and FZ(x) := P[Z ≤ x] is defined
by

dKol(FY , FZ) = sup
x∈R
|FY (x)− FZ(x)| .

Denote by Φ(x) the distribution function of the standard Gaussian random variable.
Let {XN ;N ≥ 1} be a sequence of independent and identically distributed random
variables with m1(X1) = 0,m2(X1) = σ2, and E[|X1|3] <∞. Define

YN :=
1

σ
√
N

N∑
k=1

Xk.
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The Berry-Esseen Theorem provides the following bound for the error of the Gaussian
approximation to the distribution function FN (x) := P[YN ≤ x];

dKol(Φ, FN ) ≤ C

σ3
√
N

E[|X1|3], (2.11)

where C is an absolute constant smaller than 0.4748.

The analogue of the Berry-Esseen theorem for free random variables was proved
by Chistyakov and Götze [8] and is as follows. Let {XN ;N ≥ 1} be a sequence of
freely independent and identically distributed random variables with mean zero and
variance 1, and let YN := 1√

N

∑N
k=1Xk. Denote by S the distribution function of a

standard Semicircle random variable. If the fourth moment of XN exists, then we have
the following estimate for the error of the semi-circular approximation to YN ;

dKol(S, FYN ) ≤ K�√
N

(|m3|+
√
m4), (2.12)

where K� > 0 is an absolute constant, and m3,m4 denote the third and fourth moment
of X1.

3 Main Theorems

In this section we prove Theorems 1.5 and 1.6. In fact, we will prove stronger
versions which include N -divisible measures from where we can deduce also Theorems
1.7 and 1.8.

3.1 Classical convolution

Definition 3.1. Let µ be a probability measure on R.

1. The measure µ is called N -divisible with respect to classical convolution ∗ if it is
the N -fold convolution of another probability measure. That is µ = µ∗NN , for some
probability measure µN .

2. The measure µ is called infinitely divisible with respect to classical convolution ∗
if it is N -divisible for all N ∈ N.

During this section, divisibility will be understood in the classical sense, that is, with
respect to the classical convolution.

Theorem 3.2. Let µ be a classical N -divisible probability measure with mean 0 and
variance 1. Assume that m4(µ) :=

∫
x4µ(dx) <∞. Then we have the following estimate

for the error of the Gaussian approximation to µ

dKol(Fµ,Φ) ≤ C
√
m4(µ)− 3 +

3

N
, (3.1)

where Φ(x) :=
∫ x
−∞

1√
2π
e−

s2

2 ds, Fµ(x) := µ(−∞, x], and C is the universal constant from
the Berry-Esseen Theorem.

Remark 3.3. In Theorem 3.2 we implicitly assume that m4(µ) − 3 + 3/N is positive
when µ is N -divisible. In Section A.1 we will show that this is indeed the case and
furthermore characterize when the minimum m4 − 3 is achieved.

If we apply the previous theorem to a sequence of Nn-divisible measures, we deduce
the following corollary which implies Theorem 1.7 when Nn = n.
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Corollary 3.4. Let {µn;n ≥ 1} be a sequence of Nn-divisible probability measures with
variance 1 and mean 0. If Nn →∞ and

∫
s4µn(ds)→ 3 as n→∞, then µn converges in

distribution to a standard Gaussian measure.

Moreover, taking the limit as N →∞ in Theorem 3.2 we get Theorem 1.5.

Corollary 3.5. Let µ be infinitely divisible satisfying the conditions of Theorem 3.2,
then

dKol(Fµ,Φ) ≤ C
√
m4(µ)− 3,

where m4(µ) denotes the fourth moment of µ.

Finally, we obtain a characterization for the normal distribution among infinitely
divisible measures. This characterization was already observed in [3].

Corollary 3.6. Let µ be infinitely divisible with finite fourth moment m4(µ). If m1(µ) =

0,m2(µ) = 1 and m4(µ) = 3 then µ = N (0, 1).

We now prove the main result of the section.

Proof of Theorem 3.2. In what follows, for every random variable Z, cj(Z) will denote
the j-th cumulant of Z and mj(Z) its j-th moment. Let S be a random variable with

law µ. There exist i.i.d. random variables X1, ..., XN , such that S
law
= X1 + · · · + XN .

Consequently,

S =
1√
N

N∑
k=1

√
NXk.

Thus, by the Berry Esseen theorem we obtain the estimate

dKol(Fµ,Φ) ≤ C√
N

E[|
√
NX1|3]. (3.2)

Using the additivity of cumulants (relation (2.6)) we obtain

1 = c2(S) =

N∑
k=1

c2(Xk) = Nc2(X1) = c2(
√
NX1), (3.3)

and

Nc4(S) = N

N∑
k=1

c4(Xk) = N2c4(X1) = c4(
√
NX1). (3.4)

Thus, applying the Hölder inequality, as well as relations (2.4),

E[|
√
NX1|3]2 ≤ E

[
(
√
NX1)2

]
E
[
(
√
NX1)4

]
= c2(

√
NX1)

(
c4(
√
NX1) + 3c2(

√
NX1)2

)
= Nc4(S) + 3. (3.5)

Finally, substituting (3.5) in (3.2), and using relation (2.4) we get

dKol(Fµ,Φ) ≤ C√
N

√
Nc4(S) + 3

= C

√
m4(S)− 3 +

3

N
.

The same result can be proven in a similar way for free random variables.

ECP 19 (2014), paper 26.
Page 7/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3354
http://ecp.ejpecp.org/


Distance in 4th moment theorem

3.2 Free convolution

During this section, divisibility will be understood in the free sense, and the sum of
random variables will be understood as the sum of free random variables in a suitable
non-commutative probability space.

Definition 3.7. Let µ be a probability measure on R.

1. The measure µ is said to be N -divisible with respect to free convolution � if it is
the N -fold free convolution of another probability measure. That is µ = µ�N

N , for
some probability measure µN .

2. The measure µ is called infinitely divisible with respect to the free convolution �
if it is N -divisible for all N ∈ N.

Theorem 3.8. Let µ be a N -divisible probability measure with variance 1 and mean
0. Assume that m4(µ) :=

∫
x4µ(dx) < ∞. Then we have the following estimate for the

error of the semi-circular approximation to µ

dKol(Fµ, Fw) ≤ K

√
m4(µ)− 2 +

2

N
,

where Fw(x) :=
∫ x
−∞

1
2π1(−2,2)

√
4− s2ds, Fµ(x) := µ(−∞, x], and K is 2 times the uni-

versal constant from the free Berry-Esseen Theorem.

Remark 3.9. In Theorem 3.8 we implicitly assume that m4(µ) − 2 + 2/N is positive
when µ is N -divisible. In Section A.1 we will show that this is indeed the case and
furthermore characterize when the minimum m4(µ)− 2 is achieved.

From Theorem 3.8 we can deduce the following result, analogous to Corollary 3.4

Corollary 3.10. Let {µn;n ≥ 1} be a sequence of Nn-divisible probability measures
with variance 1 and mean 0. If Nn → ∞ and

∫
s4µn(ds) → 2 as n → ∞, then µn

converges in distribution to a standard semicircle distribution.

Again, taking the limit as N →∞ in Theorem 3.8 we get Theorem 1.5.

Corollary 3.11. Let µ be freely infinitely divisible satisfying the conditions of Theorem
3.8, then

dKol(Fµ, Fw) ≤ K
√
m4(µ)− 2,

where m4(µ) denotes the fourth moment of µ.

As for the classical case, we obtain a characterization for the semicircle distribution
among infinitely divisible measures. This characterization was already observed in [3].

Corollary 3.12. Let µ be freely infinitely divisible with finite fourth moment m4(µ). If
m1(µ) = 0,m2(µ) = 1 and m4(µ) = 2 then µ = S(0, 1).

Proof of Theorem 3.8. Let S be a random variable with law µ. There exist i.i.d. random

variables X1, ..., XN , such that S
law
= X1 + · · ·+XN . Consequently,

S =
1√
N

N∑
k=1

√
NXk.

By the free Berry Esseen theorem we obtain

dKol(Fµ, Fw) ≤ K�√
N

(E[|
√
NX1|3] +

√
E[|
√
NX1|4] (3.6)
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By Hölder inequality, E[|
√
NX1|3]2 ≤ E[(

√
NX1)4], and thus

dKol(Fµ, Fw) ≤ K√
N

√
E[|
√
NX1|4], (3.7)

where K = 2K�,. Now, as in Theorem 3.2, we have k2(
√
NX1) = 1 and Nk4(S) =

k4(
√
NX1). Hence, using (3.7), as well as relations (2.9), we get

dKol(Fµ, Fw) ≤ K√
N

√
k4(
√
NX1) + 2k2(

√
NX1)2)

= K

√
m4(S)− 2 +

2

N
.

4 Examples

Example 4.1 (Poisson Distribution). Let XN be a random variable with distribution
Poiss(N), the random variable YN = XN−N√

N
converges weakly to N(0, 1). YN is infinitely

divisible and E(YN ) = 0, E(Y 2
N ) = 1, E(Y 4

N ) = 3 + 1/N . Thus, we can apply Theorem 1.6
to quantify this approximation.

dKol(Poiss(N),Φ) ≤ C
√

1/N.

Example 4.2 (Compound Poisson Distribution). More generally, let µ be a Compound
Poisson distribution Poiss(λ, ν). That is, the n−th cumulant of µ is given by cn(µ) =

λmn(ν). If ν is centered with variance 1/λ then m1(µ) = 0,m2(µ) = 1 and m4(µ) =

λm4(ν) + 3. Thus, Theorem 1.5 gives us,

dKol(Poiss(λ, ν),Φ) ≤ Cλm4(ν).

In particular, if λm4(ν)→ 0 then Poiss(λ, ν)→ N (0, 1).

Example 4.3 (Double Integrals). Let {FN : N ≥ 1} be a sequence living in a second
chaos (see [11] for definitions) and suppose that E[F 2

N ] = 1. It is known that the random
variable FN are infinitely divisible, see [16]. Thus, by Theorem 1.3 if E[F 4

N ] → 3 then
FN → N (0, 1). Moreover, the Kolmogorov distance is bounded by

dKol(FN ,Φ) ≤ C
√
E[F 4

N ]− 3 ≈ 0.4748
√
E[F 4

N ]− 3.

This shall be compared with the estimate given in Theorem 5.2.6 of [14],

dKol(FN ,Φ) ≤ 1√
6

√
E[F 4

N ]− 3 ≈ 0.4082
√
E[F 4

N ]− 3.

Example 4.4 (Log-normal). The log-normal distribution l(m,σ2) with parameters m

and σ2 > 0 is the distribution of the random variable em+σZ , where Z ∼ N (0, 1). It is
a well-known example of an infinitely divisible distribution which is not determined by

moments (see [18]). The moments of em+σZ are given by E[en(m+σZ)] = enm+n2σ2

2 . Thus,

for m(σ) = −1/2(log(e2σ
2 − eσ2

) the random variable Y = em+σZ − em+σ2

2 is centered
with variance one. Now, E(Y 4)− 3 = e4σ

2

+ 2e3σ
2

+ 3e2σ
2 − 6 ≤ 6e4σ

2 − 6 = 6(e4σ
2 − 1).

Thus, for small σ (since C < 1/2), we have,

dKol(l(m(σ), σ2),Φ) ≤ 1/2
√

6(e4σ2 − 1) ≈
√

6σ.

This shows that Theorems 1.3 and 1.5 can be applied even if µ is not determined by
moments.
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Example 4.5 (q-Gaussian). The family of q-Gaussian distributions Gq introduced by
Bożejko and Speicher in [7] (see also the paper [6] of Bożejko, Kümmerer and Speicher)
interpolate between the normal (q = 1) and the semicircle (q = 0) laws. They are
determined in terms of their moments by

m2n+1(Gq) = 0, m2n(Gq) =
∑

π∈P2(2n)

qcross(π)

where P2(2n) denotes the pair partitions of {1, 2.., 2n} and cross(π) is the number of
crossings of π. In particular, m1(Gq) = 0, m2(Gq) = 1 and m4 = 2 + q. It was proved in
[1] that the q-Gaussian distributions are freely infinitely divisible for all q ∈ [0, 1]. Thus
from Theorem 1.6 we get the estimate

dKol(Gq, Fw) ≤ K√q.

Example 4.6 (Kesten-Mckay distribution). Let t > 1/2 and denote by µ(t) the so-called
Kesten-Mckay distributions (see [19, 20]) with density

1

2π
.

√
4t− x2

1− (1− t)x2
, |x| < 2

√
t.

The first moments of µ(t) are given by m1 = 0,m2 = 1,m3 = 0 and m4 = 1+ t. Moreover,
as proved in [4], for t < 1 the measure µ(t) is 1/(1−t)-divisible. Thus if 1/(1−t) = N ∈ N
we can apply Theorem 3.8 to get the inequality

dKol(µ(t), Fw) ≤ K
√
m4 − 2 +

2

N
= K
√

1− t. (4.1)

On the other hand for t ≥ 1 the measure µ(t) is infinitely divisible, in this case we apply
Theorem 1.5 to get

dKol(µ(t), Fw) ≤ K
√
m4 − 2 = K

√
t− 1.

A Kurtosis and N-divisibility

The kurtosis of a probability distribution is a widely used quantity in statistics and
gives information about the shape of a given distribution. Here we derive a simple nec-
essary conditions for N -divisibility with respect to the classical and free convolutions.
We use the first four cumulants with respect to these convolutions.

The classical kurtosis of a probability measure µ with finite fourth moment is defined
as

Kurt(µ) =
c4(µ)

(c2(µ))2
=

m̃4(µ)

(m̃2(µ))2
− 3,

where c2(µ) and c4(µ) are the second and fourth classical cumulants, and m̃2(µ) and
m̃4(µ) the second and fourth moments around the mean1. It is always true thatKurt(µ) ≥
−2.

Proposition A.1. Let µ be a probability measure on R with finite fourth moment. If µ is
N -divisible in the classical sense then Kurt(µ) ≥ − 2

N . Additionally, equality is achieved
if and only if

µ = (
1

2
δ1 +

1

2
δ−1)∗N .

1the n-th moment around the mean is given by m̃n(µ) =
∫
R (x−m0(µ))ndµ
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Proof. Suppose µ is N -divisible. Let µN be such that µN ∗ · · · ∗ µN︸ ︷︷ ︸
N times

= µ, by linearity of

the cumulants we can see that

Kurt(µN ) =
1
N c4(µ)

( 1
N c2(µ))2

= N
c4(µ)

(c2(µ))2
= NKurt(µ)

So Kurt(µ) = 1
NKurt(µN ) ≥ − 2

N , where we used the fact that Kurt(µ) ≥ −2. Equality
Kurt(µ) = −2 holds only when µ = 1/2δ1 + 1/2δ−1 proving the second part of the
statement.

The free kurtosis is defined similarly using the free cumulants instead of the classical
cumulants. That is, the free kurtosis of a probability measure µ is defined as

Kurt�(µ) =
κ4(µ)

(κ2(µ))2
=

m̃4(µ)

(m̃2(µ))2
− 2 = Kurt(µ) + 1

where κ2(µ) and κ4(µ) are the second and fourth free cumulants. Notice thatKurt�(µ) ≥
−1.

Using similar arguments as in Proposition A.1, we obtain a sufficient condition for
free N -divisibility.

Proposition A.2. Let µ be a probability measure on R with finite fourth moment. If µ is
N -divisible in the free sense then Kurt�(µ) ≥ −1/N. Additionally, equality is achieved
if and only if

µ = (
1

2
δ1 +

1

2
δ−1)�N .

Proof. Let µ be N -divisible in the free sense and µN be such that

µN � · · ·� µN︸ ︷︷ ︸
N times

= µ.

Since Kurt�(µN ) = NKurt�(µ) and Kurt�(µN ) ≥ −1, we get the result. Again, since
Kurt(µ) = −2 holds only when µ = 1/2δ1 + 1/2δ−1 we obtain the second part of the
statement.
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