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Abstract

In a recent work, Blanc, Le Bris, and Lions defined a notion of increment-stationarity
for random point sets, which allowed them to prove the existence of a thermo-
dynamic limit for two-body potential energies on such point sets (under the addi-
tional assumption of ergodicity), and to introduce a variant of stochastic homoge-
nization for increment-stationary coefficients. Whereas stationary random point sets
are increment-stationary, it is not clear a priori under which conditions increment-
stationary random point sets are stationary. In the present contribution, we give a
characterization of the equivalence of both notions of stationarity based on elemen-
tary PDE theory in the probability space. This allows us to give conditions on the
decay of a covariance function associated with the random point set, which ensure
that increment-stationary random point sets are stationary random point sets up to a
random translation with bounded second moment in dimensions d > 2. In dimensions
d = 1 and d = 2, we show that such sufficient conditions cannot exist.
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1 Introduction and main results

1.1 Increment-stationarity

Let d be the dimension, and denote by L(Rd) the set of locally finite simple point
sets of Rd. In what follows we consider random variables on some probability space
(Ω,F ,P) taking values in L(Rd). We call such random variables random point sets. In
[2], Blanc, Le Bris and Lions addressed the issue of defining the thermodynamic limit
of the energy of random sets ` of particles (seen as simple random point sets). Typical
energies to be considered are given by two-body potentials V : Rd \ {0} → R, so that
the energy in some bounded region D ⊂ Rd writes

E(`,D) :=
1

2

∑
x,y∈`∩D,x6=y

V (x− y).

As noticed in [2, 3], the existence of a deterministic thermodynamic limit

lim
D↑Rd

1

|D|
E(`,D) (1.1)
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Stationary random point sets

(when D properly invades Rd) does not require the point set ` to be stationary, which
lead the authors to define a notion of increment-stationarity.

Let us start by recalling the definition of increment-stationarity. We say that ` is
increment-stationary if there exist a sequence of random vectors {Yk}k∈Zd of L2(Ω,Rd)

and a measure-preserving group action {θk}k∈Zd such that ` satisfies for almost all
ω ∈ Ω and all k ∈ Zd,

`(θkω) = `(ω) + Yk(ω) (1.2)

that is, `(θkω) is the translation of `(ω) by the vector Yk(ω). Assume in addition that

Y0 ≡ 0, (1.3)

Yj(θkω)− Yi(θkω) = Yj+k(ω)− Yi+k(ω) (1.4)

for all i, j, k ∈ Z and almost every ω ∈ Ω (properties which directly follow from (1.2) if Yk
is uniquely defined by (1.2)). Let us check that such a definition ensures that the limit in
(1.1) is deterministic if it exists. For almost all ω, Yk(ω) is finite for all k ∈ Zd. Hence, for
allD ⊂ Rd, the points of `(θkω)∩D are the translations of the points of `(ω)∩(D−Yk(ω)).
Since the two-body potential is non-negative and translation-invariant, this yields

E(`(θkω), D) = E(`(ω), D − Yk(ω)) ≤ E(`(ω), B|Yk(ω)|(D)),

where for all t > 0, Bt(D) := {x ∈ Rd, d(x, ∂D) < t}. Likewise,

E(`(ω), D) = E(`(θkω), D + Yk(ω)) ≤ E(`(θkω), B|Yk(ω)|(D)).

Hence, since for all t ≥ 0, limD↑Rd
|Bt(D)|
|D| = 1, these two estimates yield for all k ∈ Zd,

lim sup
D↑Rd

1

|D|
E(`(ω), D) = lim sup

D↑Rd

1

|D|
E(`(θkω), D),

and the thermodynamic limit is invariant by the group action, and therefore constant if
the group action is ergodic.

We say that ` is stationary if it is increment-stationary and if Yk is given for all k ∈ Zd
by

Yk := Tk (1.5)

for some deterministic d× d matrix T .
In [2], the authors prove that if the positions of an infinite set of nuclei are given

by a stationary random point set (satisfying in addition uniform hard-core and non-
empty space properties), then the thermodynamic limit of the associated electronic
cloud exists in the sense that the notions of averaged energy and cloud density are
well-defined, in the case of Thomas-Fermi models. This was later extended by Blanc
and Lewin [4], and Cancès, Lahbabi and Lewin [5], to quantum models with Coulomb
forces and to Hartree-Fock and Kohn-Sham type models, respectively. In terms of point
sets, their proofs essentially rely on the stationarity of two-body interactions and an
ergodic theorem, so that, using the argument above, these proofs should extend to the
more general case of increment-stationary random point sets.

The aim of this contribution is to investigate in which respect increment-stationarity
is more general than stationarity, and identify under which conditions on the sequence
Yk one can conclude that an increment-stationary random point set is stationary. In
particular, both the probability space and the group action are fixed, and we are indeed
investigating the rigidity of increment-stationary random point sets. As we shall see,
the validity of such a rigidity result depends on the dimension.
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Stationary random point sets

1.2 Main results

In what follows we endow (Ω,F ,P) with an ergodic measure-preserving discrete
group action {θk}k∈Zd : Ω → Ω, and we denote by 〈·〉, var [·], and cov [·; ·] the associated
expectation, variance, and covariance, respectively. We denote by L2

0(Ω,Rd) the space
of random vectors with bounded second moments and vanishing expectations. We let
{el}l∈{1,...,d} denote the canonical basis of Rd.

Let ` be a stationary point set in Rd and Y ∈ L2
0(Ω,Rd) be some non-identically zero

random vector. Then `+Y is not stationary but is clearly increment-stationary. We shall
say that a random point set ` is stationary up to translation if there exists some Ỹ ∈
L2

0(Ω,Rd) such that `+ Ỹ is a stationary random point set. The following theorem gives
a characterization of the equivalence between increment-stationarity and stationarity
up to translation. This result is directly inspired by the treatment of the corrector
equation in stochastic homogenization by Papanicolaou and Varadhan in [13] (see [11]
for the case of discrete elliptic equations). It relies on the differential calculus in the
probability space generated by the group action {θk}θ∈Zd .

Proposition 1.1. Let ` : Ω → L(Rd) be an increment-stationary random point set for
the group action {θk}k∈Zd . Let {Yk}k∈Zd ∈ L2(Ω,Rd) be a sequence satisfying (1.2)—
(1.4). For all µ > 0 and i ∈ {1, . . . , d}, consider the unique weak solution φµ,i ∈ L2(Ω) of
the equation: For all ψ ∈ L2(Ω),

〈µφµ,iψ +Dψ ·Dφµ,i〉 = 〈Dψ · ζi〉 , (1.6)

where ζi := (Ze1 · ei, . . . , Zed · ei) ∈ L2(Ω,Rd), Zel := Yel − 〈Yel〉 for all l ∈ {1, . . . , d},
and D := (D1, . . . , Dd) is the differential operator from L2(Ω) → L2(Ω,Rd) defined by
Dlψ(ω) = ψ(θelω) − ψ(ω). If {φµ,i}i∈{1,...,d} is bounded in L2(Ω) uniformly wrt µ > 0,
then ` is stationary up to translation. Conversely, if ` is stationary up to translation and
if ` is non-degenerate (in the sense for almost all ω, if X is such that `(ω) + X = `(ω)

then X = 0), then {φµ,i}i∈{1,...,d} is bounded in L2(Ω) uniformly wrt µ > 0.

Remark 1.2. The condition that ` be non-degenerate ensures that the sequence Yk is
unique and rules out periodicity. In this case, (1.3) and (1.4) follow from (1.2). If the
point set is degenerate, the sequence Yk is not uniquely defined due to some translation-
invariance.

It remains to identify sufficient conditions on {Yel}l∈{1,...,d} for the boundedness of
the functions φµ,i. These conditions are written in terms of the decay of a covariance
function as follows.

Hypothesis 1.3 (Decay of order α > 0). The random point set ` : Ω → L(Rd) is
increment-stationary for the group action {θk}k∈Zd , and the associated random vec-
tors Ye1 , . . . , Yed display the following covariance decays: There exists α > 0 such that
for all k ∈ Zd and l, l′, n ∈ {1, . . . , d}

cov
[
Yel ◦ θk · en;Yel′ · en

]
.

1

1 + |k|α
,

where . means ≤ up to a universal multiplicative constant.

As the following result shows, there are two types of behavior, depending on the
dimension d (d = 2 is critical).

Theorem 1.4. We have:
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• For d = 1 and d = 2: There exists an increment-stationary random point set
` : Ω → L(Rd) satisfying Hypothesis 1.3 with a finite range of dependence and
which is not stationary up to translation.

• For all d > 2: If ` : Ω→ L(Rd) is increment-stationary and satisfies Hypothesis 1.3
for some α > 2, then ` is stationary up to translation.

Let us comment on this result. On the one hand, there is a rather natural similarity
with the behavior of the corrector in stochastic homogenization. On the other hand,
there is also some connection with the Palm-Khinchin theory for point processes on the
real line.

We start with the connection to stochastic homogenization. In this case the gradient
of the corrector is stationary (which corresponds to the increment-stationarity of the
point set), and we investigate whether the corrector can be stationary itself. In dimen-
sion d = 1, there cannot exist stationary correctors in L2(Ω) (for this would contradict
the central limit theorem, see discussion [7, p. 790]), dimension d = 2 is critical and
stationary correctors do not exist either, whereas in dimensions d > 2, stationary cor-
rectors exist under some assumptions on the statistics (a spectral gap estimate, see [7]).
Equation (1.7) can indeed be seen as the corrector equation in the regime of vanishing
ellipticity contrast (the variable-coefficients elliptic operator is replaced by a constant-
coefficients elliptic operator). In particular, in dimensions d = 1 and d = 2, the corrector
in the regime vanishing ellipticity contrast for independent and identically distributed
random conductivities provides with an example of increment-stationary point set which
is not stationary up to translation, see Step 2 in the proof of Theorem 1.4 for details.

Let us now turn to the connection to the Palm-Khinchin theory. Let d = 1, and
consider a random point set ` on the real line. Recall (see for instance [6, Chapter 3])
that the random point set ` is characterized by the sequence of (measurable) random
variables {Xi}i∈Z, where Xi < Xi+1 and X0 is the closest point to the origin on the
negative axis. The associated sequence of intervals is denoted by {τi}i∈Zd and defined
by τi = Xi+1−Xi. The random point set ` is said to be interval-stationary if the sequence
{τi}i∈Z is stationary in the following sense: For allm ∈ N, i1, . . . , im ∈ Z, the distribution
of (τi1+k, . . . , τim+k) does not depend on k ∈ Z. In turn, this implies (and is indeed
equivalent to, up to changing the probability space, see for instance such a construction
in [10, Section 16.1]) the existence of a discrete group action {θz}z∈Z which preserves
the probability measure and is such that for all i, k ∈ Z and almost every ω ∈ Ω,

τi(θkω) = τi+k(ω).

In terms of the random point set `, this turns into: For all i, j, k ∈ Z and almost every
ω ∈ Ω,

Xi+k(ω)−Xj+k(ω) = Xi(θkω)−Xj(θkω).

The latter implies that the random point set ` is increment-stationary with Yk(ω) =

X0(θkω) − X0(ω). The Palm-Khinchin theory (see for instance [6, Theorem 13.3.I]) es-
tablishes a one-to-one relation between interval-stationary and stationary random point
sets, the proof of which shows that to pass from one to the other one has to consider
some random translation which is not in L2(Ω). The argument behind this is best illus-
trated by the “waiting time paradox" (see e. g. [6, p6]), which shows that the Poisson
point process, which is obviously stationary, is not interval-stationary (the probability
that 0 belongs to a large interval is larger than the one it belongs to a small interval, so
that the length of the interval around the origin cannot be exponentially distributed: this
interval has to be sent to infinity to turn the Poisson process into an interval-stationary
process). The general incompatibility between stationary and interval-stationary point
sets gives another interpretation of the example of Theorem 1.4 for d = 1. Define
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` = {Xk}k∈Z by X0 = 0, and for all k ∈ N by Xk = Xk−1 +τk−1 and X−k = X−(k−1)−τ−k,
where {τk}k∈Z is an iid sequence of non-negative random variables with bounded sec-
ond moment. This point set is interval-stationary, has finite range of dependence but is
not stationary up to translation according to Theorem 1.4. We believe there could the
following dichotomy in dimension 1: an increment-stationary point set that satisfies Hy-
pothesis 1.3 for some α > 2 is either stationary up to translation or interval-stationary
up to translation.

Before we turn to the proofs of these results, let us focus on a specific class of
examples of increment-stationary random point sets given by the image of Zd by an
“increment-stationary stochastic diffeomorphism". This case is of interest for disor-
dered crystals and their thermodynamic limits, and was a motivation for [3]. It will also
allow us to emphasize that, although Hypothesis 1.3 can be interpreted as a condition
on the decay of the correlation between “stationary increments" (whenever this notion
is well-defined), the distance is the one given by the group action (that is, k ∈ Zd as-
sociated with θk). In particular Hypothesis 1.3 is not a condition on the decay of the
correlation between the “stationary increments" wrt to the Euclidean distance.

1.3 Increment-stationary stochastic diffeomorphisms

In [3], Blanc, Le Bris and Lions introduced a variant of stochastic homogenization of
linear elliptic equations where the diffusion coefficients are random but not necessarily
stationary. These diffusion coefficients are obtained using a stochastic diffeomorphism
Φ : Rd × Ω → Rd which is increment-stationary in the following sense: For all k ∈ Zd,
all x ∈ Rd, and almost every ω ∈ Ω,

∇Φ(x+ k, ω) = ∇Φ(x, θkω).

Such random fields Φ allow one to define a specific class of increment-stationary random
point sets. Set ` := Φ(Zd). Since Φ is a diffeomorphim, ` is a simple point process
almost surely. The interest of such a definition is the natural labeling of the points by
Zd. Define Xi = Φ(i) for all i ∈ Zd so that ` = ∪i∈Zd{Xi}. The increment-stationarity of
Φ then implies that for all i, j, k ∈ Zd and almost every ω ∈ Ω we have

Xi(θkω)−Xj(θkω) = Xi+k(ω)−Xj+k(ω),

from which we deduce that ` is increment-stationary.

Such increment-stationary point sets are very specific in the sense that they satisfy
the so-called hard-core and non-empty space properties (that is, positive minimal dis-
tance between any point x ∈ ` and ` \ {x}, and existence of R <∞ such that any ball of
radius R contains at least a point of ` almost surely) and that they inherit the invariance
group of Zd (in a statistical way), but not more. In particular such point sets cannot
be statistically isotropic (see [1, Theorem 10]), as opposed e. g. to the random parking
point set (defined in [14], the properties of which are listed in [8, Proposition 2.1]).
Anisotropy of the point set is the necessary drawback of the natural labeling of such
point sets. The labeling of ` = Φ(Zd) has the advantage to allow one to define the no-
tion of increments in the form of the quantities Xi − Xj . As mentioned above, these
increments are stationary, and one may consider the associated covariances, that is,
cov [(Φ(k + el)− Φ(k)) · en; (Φ(el)− Φ(0)) · en]. As we shall show, conditions on the de-
cay of such quantities may ensure the stationarity of the random field Φ, but not the
stationarity of the point process ` = Φ(Zd). More precisely, we have the following
counterpart of Proposition 1.1 and Theorem 1.4 for increment-stationary random fields.
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Proposition 1.5. Let Φ : Zd × Ω → Rd be an increment-stationary (discrete) ran-
dom field for the group action {θk}k∈Zd , that is, such that its discrete gradient ∂Φ =

(∂1Φ, . . . , ∂dΦ), with ∂iΦ := Φ(· + ei) − Φ(·), is stationary: For all k, z ∈ Zd and almost
every ω ∈ Ω,

∂Φ(z + k, ω) = ∂Φ(z, θkω).

Assume that ∂Φ(0) ∈ L2(Ω,Rd×d), and for all µ > 0 and i ∈ {1, . . . , d} consider the
unique weak solution φµ,i ∈ L2(Ω) of the equation: For all ψ ∈ L2(Ω),

〈µφµ,iψ +Dψ ·Dφµ,i〉 = 〈Dψ · ∂(Φ · ei)(0)〉 . (1.7)

Then, Φ is stationary up to translation, that is, there exists a unique random vector
X̃ ∈ L2

0(Ω,Rd) such that (z, ω) 7→ Φ(z, ω) + X̃(ω) is stationary in the sense that for all
k, z ∈ Zd and almost every ω ∈ Ω,

Φ(z + k, ω) + X̃(ω) = Φ(z, θkω) + X̃(θkω),

if and only if the family {φµ,i}i∈{1,...,d} is bounded in L2(Ω) uniformly wrt µ > 0.

The conditions corresponding to Hypothesis 1.3 are now

Hypothesis 1.6 (Decay of order α > 0). The random field Φ : Zd×Ω→ Rd is increment-
stationary for the ergodic group action {θk}k∈Zd , and there exists α > 0 such that for
all k ∈ Zd and l, l′, n ∈ {1, . . . , d}

cov [∂lΦ(k) · en; ∂l′Φ(0) · en] .
1

1 + |k|α
,

where . means ≤ up to a universal multiplicative constant.

Theorem 1.7. We have:

• For d = 1 and d = 2: There exists an increment-stationary random field Φ : Zd ×
Ω → Rd satisfying Hypothesis 1.6 with finite range of dependence and which is
not stationary up to translation.

• For all d > 2: If Φ : Zd × Ω → Rd is increment-stationary and satisfies Hypothe-
sis 1.6 for some α > 2, then it is stationary up to translation.

As a direct corollary of Theorem 1.7, we have the following result on random Lips-
chitz fields with stationary gradients:

Corollary 1.8. Let d > 2 and Φ : Rd × Ω → Rd be a random Lipschitz field such that
its (continuum) gradient ∇Φ is stationary and uniformly bounded. If there exists α > 2

such that for all k ∈ Zd, x ∈ [0, 1)d and l, l′, n ∈ {1, . . . , d}

cov [∂lΦ(x+ k) · en; ∂l′Φ(x) · en] .
1

1 + |k|α
,

then there exists a [0, 1)d-periodic random field X̃ ∈ W 1,∞
per ([0, 1)d, L2

0(Ω,Rd)) such that

(x, ω) 7→ Φ(x, ω) + X̃(x, ω) is a stationary field: For all x ∈ Rd, k ∈ Zd, and almost every
ω ∈ Ω,

Φ(x+ k, ω) + X̃(x+ k, ω) = Φ(x, θkω) + X̃(x, θkω).

To conclude, let us compare the two notions of stationarity for a random field Φ and
for the associated random point set ` = Φ(Zd). The following result shows that these
notions are essentially incompatible.
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Proposition 1.9. Let Φ : Zd × Ω → Rd be an increment-stationary (discrete) injective
random field for the ergodic group action {θk}k∈Zd , that is, such that its discrete gradi-
ent ∂Φ = (∂1Φ, . . . , ∂dΦ), with ∂iΦ := Φ(· + ei) − Φ(·), is stationary. If Φ and ` = Φ(Zd)

are stationary up to translation, then Φ is linear and ` is periodic up to a random trans-
lation. Indeed, we then have Φ(·, ω) : x 7→ 〈∂Φ〉x+ Φ(0, ω), and `(ω) = 〈∂Φ〉Zd + Φ(0, ω)

for almost every ω ∈ Ω.

This proposition illustrates that even in the case when one may properly define the
notion of “stationary increments", Hypothesis 1.3 cannot be turned into a condition on
the decay of the correlation between the “stationary increments" wrt to the Euclidean
distance (which corresponds to Hypotheses 1.6).

2 Proofs

The proofs of Proposition 1.5 and Theorem 1.7 are straightforward adaptations of
the proofs of Proposition 1.1 and Theorem 1.4, and we only prove the latter.

2.1 Proof of Proposition 1.1

We split the proof into two steps.

Step 1. Proof that boundedness of {φµ,i}i∈{1,...,d} implies stationarity up to translation.
Let ` be an increment-stationary random point set. Since the action group is ergodic,
it generates a Weyl decomposition of L2(Ω,Rd) into potential fields (that is, the clo-
sure in L2(Ω,Rd) of gradient fields) and solenoidal fields (that is, the vector fields that
are orthogonal to potential fields for the L2(Ω,Rd)-scalar product), see for instance [9,
Lemma 7.3], the adaptation of which is straightforward in the case of a discrete group
action. Taking ψ = φµ,i in (1.7) yields

µ
〈
φ2
µ,i

〉
+
〈
|Dφµ,i|2

〉
= 〈Dφµ,i · ζi〉 ,

which turns, by Cauchy-Schwarz’ inequality and the assumption ζi ∈ L2(Ω,Rd), into the
energy estimate

µ
〈
φ2
µ,i

〉
+
〈
|Dφµ,i|2

〉
. 1.

By the Banach-Alaoglu theorem the sequence Dφµ,i is weakly compact, and converges
weakly in L2(Ω,Rd) to some potential field χi ∈ L2(Ω,Rd) up to extraction. Passing to
the limit along the subsequence in the defining equation (1.7) for φµ,i and using the a
priori estimate µ

〈
φ2
µ,i

〉
. 1 yield for all ψ ∈ L2(Ω),

〈Dψ · χi〉 = 〈Dψ · ζi〉 .

The above identity for arbitrary ψ ∈ L2(Ω) shows that the L2(Ω)-projections of χi and ζi
onto potential fields coincide. Since ζi = ((Ze1 − Z0) · ei, . . . , (Zed − Z0) · ei) = D(Z · ei)
and χi (as limit of potential fields Dφµ,i) are potential fields themselves, this implies
χi = ζi and yields the uniqueness of the limit. Assume in addition that the family φµ,i
is bounded in L2(Ω) uniformly wrt µ. Then, by weak compactness, there exists some
φi ∈ L2(Ω) such that, up to extraction, φµ,i converges to φi weakly in L2(Ω). Note that
〈φi〉 = 0 since 〈φµ,i〉 = 0 for all µ > 0. Combined with the argument above, this shows
that Dφi = ζi, and this implies in turn the uniqueness of φi and the convergence of the
entire sequence. Indeed, let ϕ ∈ L2(Ω) be such that 〈ϕ〉 = 〈φi〉 = 0 and Dϕ = ζi. Then
ϕ − φi ∈ L2(Ω) is such that

〈
|D(ϕ− φi)|2

〉
= 0. This implies by ergodicity that ϕ − φi is

constant, and therefore ϕ = φi by the mean-free condition.
We then define Ỹ : Ω → Rd, ω 7→

∑d
i=1 φi(ω)ei, and for all i ∈ {1, . . . , d}, we set

Ti := 〈Yei〉. It remains to check that `+ Ỹ is stationary.

ECP 19 (2014), paper 30.
Page 7/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3288
http://ecp.ejpecp.org/


Stationary random point sets

Using that Y0 ≡ 0 one can decompose Yk as a sum of differences along the d canoni-
cal directions, i. e.

Yk =

k1∑
i1=1

(
Yk1+1−i1,k2,...,kd − Yk1−i1,k2,...,kd

)
+

k2∑
i2=1

(
Y0,k2+1−i2,k3,...,kd − Y0,k2−i2,k3,...,kd

)
+ · · ·+

kd∑
id=1

(
Y0,...,0,kd+1−id − Y0,...,0,kd−id

)
.

By stationarity of the increments and definition of {Zei}i∈{1,...,d}, this yields

〈Yk〉 =

d∑
i=1

ki 〈Yei〉 ,

Yk(ω)− 〈Yk〉 =

k1∑
i1=1

Ze1(θk1−i1,k2,...,kdω) +

k2∑
i2=1

Ze2(θ0,k2−i2,k3,...,kdω)

+ · · ·+
kd∑
id=1

Zed(θ0,...,0,kd−idω).

Using Z0 ≡ 0 and Dφi = ζi, this turns into

Yk(ω)− 〈Yk〉 =

k1∑
i1=1

d∑
l=1

D1φl(θk1−i1,k2,...,kdω)el +

k2∑
i2=1

d∑
l=1

D2φl(θ0,k2−i2,k3,...,kdω)el

+ · · ·+
kd∑
id=1

d∑
l=1

Ddφl(θ0,...,0,kd−idω)ed.

By definition of the difference operators Di, terms cancel two by two, and the sum
simplifies to

Yk(ω)− 〈Yk〉 =

d∑
l=1

φl(θkω)el −
d∑
l=1

φl(ω)el.

This implies the desired property by the choice of Ỹ and Ti: For all k ∈ Zd,

`(θkω) + Ỹ (θkω) = `(ω) + Ỹ (ω) +

d∑
i=1

kiTi.

Step 2. Proof that stationarity up to translation implies boundedness of {φµ,i}i∈{1,...,d}.
On the one hand, since ` is stationary up to translation, there exist Ỹ ∈ L2(Ω,Rd) and
{Ti}1≤i≤d ∈ Rd such that for all k ∈ Zd and almost all ω,

`(θkω) + Ỹ (θkω) = `(ω) + Ỹ (ω) +

d∑
i=1

kiTi.

On the other hand, increment-stationarity implies there exists Yk ∈ L2(Ω,Rd) such that
`(θkω) = `(ω) + Yk(ω). Since ` is assumed to be non-degenerate, this implies that
Yk(ω) = Ỹ (ω)− Ỹ (θkω) +

∑d
i=1 kiTi. Hence, 〈Yk〉 =

∑d
i=1 kiTi and Zel takes the form

Zel(ω) = Ỹ (θelω)− Ỹ (ω).

ECP 19 (2014), paper 30.
Page 8/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3288
http://ecp.ejpecp.org/


Stationary random point sets

Recall that for all µ > 0 and i ∈ {1, . . . , d}, φµ,i ∈ L2(Ω) is solution of: For all ψ ∈ L2(Ω),

µ 〈φµ,iψ〉+ 〈Dψ ·Dφµ,i〉 = 〈Dψ · ζi〉

with ζi = (Ze1 · ei, . . . , Zed · ei). For all i ∈ {1, . . . , d}, set φ̃i := Ỹ · ei ∈ L2(Ω), so that
Dφ̃i = ζi. We then have for all ψ ∈ L2(Ω),

µ
〈

(φµ,i − φ̃i)ψ
〉

+
〈
Dψ ·D(φµ,i − φ̃i)

〉
= −µ

〈
φ̃iψ

〉
,

whence the a priori estimate〈
(φµ,i − φ̃i)2

〉
≤
〈
φ̃2
i

〉
=
〈

(Ỹ · ei)2
〉
,

which yields the desired uniform-in-µ boundedness estimate by the triangle inequality:〈
φ2
µ,i

〉
.
〈

(Ỹ · ei)2
〉
.

2.2 Proof of Theorem 1.4

Let ` be an increment-stationary random point set, and for all i ∈ {1, . . . , d} and
µ > 0, let ζi and φµ,i be as in Proposition 1.1. We first derive an integral representation
for φµ,i in physical space, then treat the case d ≤ 2 in Step 2, and the case d > 2 in
Step 3.

Step 1. Green representation formula for φµ,i.
In this step we derive a Green representation formula for φµ,i, see [7, Lemma 2.6].
Equation (1.7) indeed admits an equivalent form in the physical space. Let φ̄µ,i, ζ̄i :

Zd × Ω → R be the stationary extensions of φµ,i and ζi, that is, the random fields
defined by φ̄µ,i(k, ω) := φµ,i(θkω) and ζ̄i(k, ω) := ζi(θkω), respectively. Then, φ̄µ,i solves
almost surely the elliptic PDE

µφ̄µ,i −4φ̄µ,i = ∂∗ · ζ̄i in Zd, (2.1)

where ∂ is the forward discrete gradient, ∂∗· the backward discrete divergence, and
−4 := −∂∗ · ∂ the discrete Laplace operator on Zd.

Let Gµ : Zd → R denote the Green’s function associated with the elliptic operator
µ−4 on Zd, that is, the only solution in L2(Zd) of

µGµ(x)−4Gµ(x) = δ(x),

where δ is such that δ(0) = 1 and δ(x) = 0 for all x 6= 0 (the existence and uniqueness of
Gµ follows from the Riesz representation theorem).

Testing equation (2.1) with y 7→ Gµ(y − x) yields the desired Green representation
formula

φ̄µ,i(x) =

∫
Zd

∂Gµ(y − x) · ζ̄i(y)dy,

where
∫
Zd dy stands for the sum over y ∈ Zd.

Step 2. Case d ≤ 2.
In this step we prove that even in the case when {ζ̄i(z)}z∈Zd is a field of independent and
identically distributed (iid) variables, the family

〈
φ2
µ,i

〉
may be unbounded in µ. Consider

in particular the field Yk characterized by: Y0 ≡ 0 and Yel ◦ θk = Yk+el − Yk = al(k)el,
where {al(k)}l∈{1,...,d},k∈Zd are iid variables following the law of some a ∈ L2(Ω). Then,
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the random point set ` satisfies Hypothesis 1.3 for any α > 0 (it has finite correlation-
length). In view of Step 1, we have〈

φ2
µ,i

〉
=
〈
(φ̄µ,i(0))2

〉
=

∫
Zd

∫
Zd

∂Gµ(y)⊗ ∂Gµ(y′) :
〈
ζ̄i(y)⊗ ζ̄i(y′)

〉
dydy′. (2.2)

Since ζ̄i(y) = (ai(y)− 〈a〉)ei, the sum reduces by independence to〈
φ2
µ,i

〉
= var [a]

∫
Zd

(∂iGµ(y))2dy. (2.3)

Since ∂Gµ converges locally to the gradient ∂G of the whole space Green’s function of
the discrete Laplace operator −4 on Zd as µ ↓ 0, the RHS of (2.3) cannot be bounded
in dimensions d ≤ 2. If it were, this would imply that ∂G ∈ L2(Zd), which is not true for
d ≤ 2 (as can be seen in Fourier space [12], or by comparison to the large scale behavior
of the continuum Green’s function). This qualitative behavior is enough for the proof
of Theorem 1.4. To be more quantitative, one indeed expects

〈
φ2
µ,i

〉
∼ µ−

1
2 for d = 1,

and
〈
φ2
µ,i

〉
∼ | lnµ| for d = 2. The proof of these estimates would require a more careful

analysis of the Green’s functions.

Step 3. Case d > 2.
The starting point in dimensions d > 2 is again (2.2) which in view of Hypothesis 1.3
implies 〈

φ2
µ,i

〉
.
∫
Zd

∫
Zd

|∂Gµ(y)||∂Gµ(y′)| 1

1 + |y − y′|α
dydy′.

Without loss of generality, we assume in addition that α < d. We shall use the follow-
ing uniform-in-µ bounds on ∂Gµ: ‖∂Gµ‖L∞(Zd) . 1 (cf. [7, Corollary 2.3]), and for all
exponents 1 ≤ p <∞, all i ∈ N and d > 2,∫

2i<|y|≤2i+1

|∂Gµ(y)|pdy . (2i)d(2i)p(1−d), (2.4)

which is optimal in terms of scaling. This estimate is standard and relies on the Lp-
regularity theory for the operator µ − 4. For a proof, we refer to [7, Lemma 2.9],
which treats in addition the variable-coefficients case using the perturbation approach
by Meyers. Indeed, Steps 3–6 of that proof show that if for some p > 2 the operator
has an Lp-regularity theory, then (2.4) holds, whereas Step 1 shows that µ −4 has an
Lp-regularity theory for all 1 < p < ∞. The case 1 ≤ p < 2 in (2.4) follows from the
estimate for p = 2 by Hölder’s inequality.

We now prove the boundedness of
〈
φ2
µ,i

〉
if α > 2 by estimating the integrals using a

doubly dyadic decomposition of Zd × Zd. Note that the exponent α = 2 is borderline in
terms of integrability.

We write the integral as:∫
Zd

∫
Zd

|∂Gµ(y)||∂Gµ(y′)| 1

1 + |y − y′|α
dydy′

=

∫
|y|≤2

|∂Gµ(y)|
∫
|y−y′|≤2

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ (2.5a)

+

∫
|y|≤2

|∂Gµ(y)|
∞∑
j=1

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ (2.5b)

+

∞∑
i=1

∫
2i<|y|≤2i+1

|∂Gµ(y)|
∫
|y−y′|≤2

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ (2.5c)

+

∞∑
i=1

∫
2i<|y|≤2i+1

|∂Gµ(y)|
∞∑
j=1

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′.(2.5d)
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By the uniform bound on ‖∂Gµ‖L∞(Zd), the RHS term (2.5a) is of order 1. For the RHS
term (2.5b), this uniform bound and the triangle inequality yield

(2.5b) . 1 +

∞∑
j=1

∫
2j−2<|y′|≤2j+1+2

|∂Gµ(y′)| 1

1 + |y′|α
dy′.

Estimate (2.4) for p = 1 then yields that (2.5b) . 1 since α > 1. The proof of the
boundedness of the RHS term (2.5c) is similar. The most subtle part is the RHS term
(2.5d). We split the double sum into two parts:

∑∞
i=1

∑
j≤i and

∑∞
i=1

∑
j>i, and start

with the latter. If j > i, and y, y′ are such that 2i < |y| ≤ 2i+1 and 2j < |y − y′| ≤ 2j+1,
then 2j−1 < |y′| ≤ 2j+2. Hence, by (2.4) for q = 1,∫

2i<|y|≤2i+1

|∂Gµ(y)|
∫

2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′

≤ (2j)−α
∫

2i<|y|≤2i+1

|∂Gµ(y)|dy
∫

2j−1<|y′|≤2j+2

|∂Gµ(y′)|dy′

. (2i)d−(d−1)(2j)d−(d−1)−α = (2i)(2j)1−α.

Since α > 1, summing over j > i yields∫
2i<|y|≤2i+1

|∂Gµ(y)|
∑
j>i

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ . (2i)2−α,

and therefore, using that α > 2,

∞∑
i=1

∫
2i<|y|≤2i+1

|∂Gµ(y)|
∑
j>i

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ . 1. (2.6)

We now treat the sum
∑∞
i=1

∑
j≤i. If j ≤ i, and y, y′ are such that 2i < |y| ≤ 2i+1 and

2j < |y − y′| ≤ 2j+1, then 2i−1 < |y′| ≤ 2i+2. Let q > 1 be such that that d
q > α (which is

possible since d > α), and p > 1 be the associated dual exponent, i. e. 1
p + 1

q = 1. Then,
by Hölder’s inequality with exponents (p, q), and (2.4) with exponents 1 and p, we have∫

2i<|y|≤2i+1

|∂Gµ(y)|
∫

2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′

≤
∫

2i<|y|≤2i+1

|∂Gµ(y)|dy

(∫
2i−1<|y′|≤2i+2

|∂Gµ(y′)|pdy′
) 1

p

×

(∫
2j<|y−y′|≤2j+1

1

1 + |y − y′|qα
dy′

) 1
q

. (2i)d−(d−1)(2i)
1
p (d−p(d−1))(2j)

1
q (d−qα) = (2i)2−d(1− 1

p )(2j)
d
q−α.

Summing over j ≤ i and using that d
q − α > 0 then yields

∫
2i<|y|≤2i+1

|∂Gµ(y)|
∑
j≤i

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′

. (2i)2−d(1− 1
p )
∑
j≤i

(2j)
d
q−α . (2i)2−d(1− 1

p )+ d
q−α = (2i)2−α.
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Since α > 2, this yields a bound for the first sum
∑∞
i=1

∑
j≤i:

∞∑
i=1

∫
2i<|y|≤2i+1

|∂Gµ(y)|
∑
j≤i

∫
2j<|y−y′|≤2j+1

|∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ . 1. (2.7)

The combination of (2.6) and (2.7) shows that (2.5d) . 1, which, combined with the
estimates of (2.5a), (2.5b), and (2.5c), implies the uniform-in-µ bound∫

Zd

∫
Zd

|∂Gµ(y)||∂Gµ(y′)| 1

1 + |y − y′|α
dydy′ . 1,

as desired.

2.3 Proof of Corollary 1.8

For all x ∈ Rd, consider the random field Φx : Zd × Ω : (k, ω) 7→ Φ(x + k, ω).
By Theorem 1.7, there exists some random vector X̃(x, ·) ∈ L2

0(Ω) such that (z, ω) 7→
Φx(z, ω) + X̃(x, ω) is stationary: For all z, k ∈ Zd and almost every ω ∈ Ω,

Φx(z + k, ω) + X̃(x, ω) = Φx(z, θkω) + X̃(x, θkω),

which we may rewrite by definition of Φx as

Φ(x+ z + k, ω) + X̃(x, ω) = Φ(x+ z, θkω) + X̃(x, θkω). (2.8)

Since Φx+k(k′) = Φx(k + k′) for all k, k′ ∈ Zd, the uniqueness of X̃ (cf. uniqueness of φi
in Step 1 of the proof of Proposition 1.1) shows that X̃(x+ k, ·) = X̃(x, ·) for all k ∈ Zd
and x ∈ Rd. Hence, (2.8) turns into: For all x ∈ Rd, there exists a set of full measure Ωx
such that for all z, k ∈ Zd and ω ∈ Ωx, we have

Φ(x+ z + k, ω) + X̃(x+ z + k, ω) = Φ(x+ z, θkω) + X̃(x+ z, θkω).

To conclude, it remains to prove the measurability of X̃ : Rd × Ω → Rd (where Rd is
endowed with the Borel sets). It is enough to show that X̃ is a Carathéodory func-
tion, since Carathéodory functions are equivalent to Borel functions. Recall that X̃ is a
Carathéodory function if for almost all ω ∈ Ω, x 7→ X̃(x, ω) is continuous, and if for all
x ∈ Rd, ω 7→ X̃(x, ω) is measurable. The measurability of X̃(x, ·) follows form the defi-
nition of X̃. It remains to prove the continuity, which we do in the form of a Lipschitz
estimate. There exists a set Ω′ ∈ F of full measure such that for all x ∈ Qd, z, k ∈ Zd
and ω ∈ Ω′,

Φ(x+ z, ω) + X̃(x+ z, ω) = Φ(x, θkω) + X̃(x, θkω). (2.9)

The uniform Lipschitz assumption on Φ yields: There exists C < ∞ such that for all
k ∈ Zd and x, h ∈ Rd, |Φ(x+h+k, ·)−Φ(x+k, ·)| ≤ C|h|. Hence, substracting (2.9) once
with x; x+ h and once with x implies that for all x, h ∈ Qd, k ∈ Zd, and ω ∈ Ω′,

X̃(x+ h, ω)− X̃(x, ω)−
(
X̃(x+ h, θkω)− X̃(x, θkω)

)
≤ C|h|.

By summation over k, this yields for all N ∈ N

X̃(x+h, ω)− X̃(x, ω)− 1

#([−N,N) ∩Z)d

∑
k∈([−N,N)∩Z)d

X̃(x+h, θkω)− X̃(x, θkω) ≤ C|h|.

By the ergodic theorem, and since
〈
X̃(x, ·)

〉
=
〈
X̃(x+ h, ·)

〉
= 0, there exists some

Ω′′ ∈ F with full measure such that for all x ∈ Qd, h ∈ Qd, k ∈ Zd and ω ∈ Ω′′ the limit
N ↑ ∞ yields

X̃(x+ h, ω)− X̃(x, ω) ≤ C|h|.
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By symmetry, this implies

|X̃(x+ h, ω)− X̃(x, ω)| ≤ C|h|,

so that X̃|Qd×Ω′′ can be extended to a Lipschitz function on Rd for all ω ∈ Ω′′. Hence, X̃
is a Carathéodory function, as desired.

2.4 Proof of Proposition 1.9

We split the proof into two steps, using the stationarity of `+ Ỹ = Φ(Zd) + Ỹ , and of
Φ + X̃, respectively. Recall that T = 〈∂Φ〉.

Step 1. Stationarity of `.
Since ` is stationary up to translation, there exists some Ỹ ∈ L2

0(Ω) such that for all
k ∈ Zd and almost every ω ∈ Ω,

`(θkω) + Ỹ (θkω) = `(ω) + Ỹ (ω) + Tk.

Every point of `(θkω) + Ỹ (θkω) is mapped to a point of `(ω) + Ỹ (ω) + Tk. Hence for
almost all ω ∈ Ω, there exists a function γω : Zd × Zd → Zd such that for all k ∈ Zd,
γω(k, ·) is bijective on Zd and satisfies

Xy(θkω) + Ỹ (θkω) = Xγ(k,ω,y)(ω) + Ỹ (ω) + Tk,

where Xy(ω) = Φ(y, ω) as before. Combined with the stationarity of the increment
Xy −X0, this turns into

Xy(θkω) + Ỹ (θkω) = X0(θkω) + Ỹ (θkω) +Xy(θkω)−X0(θkω)

= Xy(ω) + Ỹ (ω) + Tk +Xγ(k,ω,0)(ω)−X0(ω). (2.10)

Step 2. Stationarity of Φ and conclusion.
Since Φ is stationary up to translation, there exists X̃ ∈ L2

0(Ω) such that for all y, k ∈ Zd
and almost every ω ∈ Ω,

Xy+k(ω) + X̃(ω) = Xy(θkω) + X̃(θkω).

Combined with (2.10) this yields

Xy+k(ω)−Xy(ω) = Tk + X̃(θkω)− X̃(ω) + Ỹ (ω)− Ỹ (θkω) +Xγ(k,ω,0)(ω)−X0(ω).

Since the RHS does not depend on y, the increment Xy+k − Xy does not depend on y

either. By the ergodic theorem, and since the increment is stationary, this yields for
almost every ω ∈ Ω and for all y, k ∈ Zd,

Xy+k −Xy = lim
R→∞

1

#([−R,R) ∩Z)d

∑
z∈([−R,R)∩Z)d

Xz+k −Xz

= 〈Xk −X0〉 = 〈∂Φ〉 k = Tk.

Hence, for almost every ω ∈ Ω and all y ∈ Zd,

Xy(ω) = X0(ω) + Ty,

so that we obtain

Φ(y, ω) = 〈∂Φ〉 y + Φ(0, ω),

`(ω) = 〈∂Φ〉Zd + Φ(0, ω),

as desired.
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