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Abstract

We construct loop soups for general Markov processes without transition densities
and show that the associated permanental process is equal in distribution to the
loop soup local time. This is used to establish isomorphism theorems connecting the
local time of the original process with the associated permanental process. Further
properties of the loop measure are studied.

Keywords: Markov processes, loop soups, permanental processes, local times.
AMS MSC 2010: Primary 60J40, 60J55, 60G55.
Submitted to EJP on January 10, 2014, final version accepted on July 3, 2014.

1 Introduction

A Markovian loop soup is a particular Poisson point process L on paths associated
to a Markov process X. It is determined by its intensity measure µ which we refer
to as loop measure. Loop measure for Brownian motion was introduced by Symanzik
in his seminal paper [25] on Euclidean quantum field theory, where it is referred to
as ‘blob measure’, and is a basic building block in his construction of quantum fields.
Brownian loop soup was introduced by Lawler and Werner [20], in their work on SLE
and conformally invariant processes in the plane. Le Jan extended the notion of loop
soups to other Markov processes [12], and this has been generalized further in [14, 15].
In all this work the loop measure is constructed using bridge measures for X. This
requires that X have transition densities. The main point of this paper is to show how
to construct loop measures and hence loop soups for Markov processes which have
potential densities but not transition densities.

Our motivation in studying Markovian loop soups is to better understand the won-
derful and mysterious Isomorphism Theorem of Dynkin, [7, 8], which connects the fam-
ily of total local times L = {Lx∞, x ∈ S} of a symmetric Markov process X in S with the
Gaussian process G = {Gx, x ∈ S} of covariance u(x, y). (When X is symmetric, u(x, y)
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Markovian loop soups

is positive definite.) Actually, in the Isomorphism Theorem it is the family of squares
of G, that is G2 = {G2

x, x ∈ S}, which is connected with L. This theorem is not an iso-
morphism in the usual sense, but the connection between L and G2 is sufficiently tight
that it has been used to derive many new properties of the local times, as described
in [23]. This is why we consider the Isomorphism Theorem to be wonderful. We call
it mysterious because it is hard to see intuitively why there should be any connection
between Markov local times and Gaussian processes.

As noted by Le Jan, [13, Theorem 9], loop soups offer a deep understanding of this
connection. Recall that each realization of L is a countable collection of paths ω. Set

L̂x =
∑
ω∈L

Lx∞(ω). (1.1)

We call L̂x the loop soup local time at x. A simple application of the Palm formula
for Poisson point processes provides a connection, an Isomorphism Theorem, between
L = {Lx∞, x ∈ S} and L̂ = {L̂x, x ∈ S}. Since L̂ is defined in terms of local times of X
this should not be surprising. What may be surprising is that when X is symmetric then
L̂ = {L̂x, x ∈ S} has the distribution of G2 = {G2

x, x ∈ S}! Furthermore, the definition of
(1.1) of L̂ does not require the symmetry of X, so we obtain an Isomorphism Theorem
for non-symmetric X.

In 1997, D. Vere-Jones, [27], introduced the α-permanental process θ := {θx, x ∈ S}
with kernel u(x, y), which is a real valued positive stochastic process with joint distri-
butions that satisfy

E

 n∏
j=1

θxj

 =
∑
π∈Pn

αc(π)
n∏
j=1

u(xj , xπ(j)), (1.2)

for any x1, . . . , xn ∈ S, where c(π) is the number of cycles in the permutation π of [1, n].
In addition, by [27, p. 128], the joint moment generating function of (θx1

, . . . , θxn) has a
non-zero radius of convergence. Consequently, an α-permanental process is determined
by its moments. It is not hard to show that in the symmetric case G2/2 = {G2

x/2, x ∈ S}
is a 1/2-permanental process with kernel u(x, y), the covariance of G.

In [9], Eisenbaum and Kaspi were able to show the existence of an α-permanental
process with kernel u(x, y) whenever u(x, y) is the potential density of a transient
Markov process X, and use this to obtain an Isomorphism Theorem for non-symmetric
X, where the role played in the symmetric case by the Gaussian squares G2 is now
played by a permanental process. In this paper we will see that the loop soup local time
L̂ is an α-permanental process with kernel u(x, y).

The advantage of using loop soups to construct permanental processes and obtain
Isomorphism Theorems is two-fold. First, as mentioned, loop soups provide an intuitive
understanding of the connection between permanental processes and local times. Sec-
ond, this approach is capable of great generalization. Recent work, [14, 15], uses loop
soups for Markov processes with potential densities u(x, y) which may be infinite on the
diagonal. In this case there are no local times and no permanental processes. Rather,
loop soups are used to prove the existence of permanental fields (indexed by measures
rather than points in S) with which to establish Isomorphism Theorems: for continu-
ous additive functionals in [14], and for intersection local times in [15]. We know of no
way other than using loop soups to prove the existence of permanental fields associated
with not necessarily symmetric X, and the Isomorphism Theorems contain constructs
which seem inaccessible without the loop soup. For example, in the symmetric case
the Isomorphism Theorems contain random variables which are not in the associated
Gaussian sigma field.
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Markovian loop soups

Here is an outline of this paper. The loop measure is constructed and studied in
Section 2. In the short sub-Section 2.1 we show that when transition densities exist, our
definition of loop measure agrees with the standard definition using bridge measures.
In Section 3 we introduce the loop soup and quickly show that the loop soup local time L̂
is an α-permanental process with kernel u(x, y). In the short Section 4 we use the Palm
formula to prove our Isomorphism Theorem. Further properties of the loop measure are
derived in Sections 5-7. These include invariance under loop rotation, and the behavior
of the loop measure under restriction and space-time transformations. Here again the
novelty is in deriving these properties in great generality and without the assumption
of transition densities.

A recent paper of Lupu, [22], uses the results of this paper to construct a loop soup
for Brownian motion on a simplicial complex associated with a graph. This Brownian
motion does not have transition densities.

Acknowledgements: We would like to thank Yves Le Jan for pointing out the connec-
tion between loop soups and isomorphism theorems.

2 The loop measure

Let S be a locally compact topological space with a countable base. Let X =

(Ω,Ft, Xt, θt, P
x) be a transient Borel right process with state space S, and continu-

ous potential densities u(x, y) with respect to some σ-finite measure m on S. That is

P x
(∫ ∞

0

f(Xt) dt

)
=

∫
S

u(x, y)f(y)m(dy), ∀x ∈ S,

for each non-negative Borel function f : S → [0,∞). We assume further that u(x, y) > 0

for all x, y ∈ S. This amounts to the assumption that each point is regular, and that
the process is irreducible in the sense that P x(Ty < ∞) > 0 for all x, y. Then there
is a function (ω, s, y) → Lys(ω) from Ω × [0,∞) × S to [0,∞) that is jointly progressively
measurable in (ω, s) and Borel measurable in y, such that for each y ∈ S, t 7→ Lyt is a CAF
increasing only when X is in state y (i.e., a local time at y), and Ex(Ly∞) = u(x, y) for all
x, y ∈ S. This follows from the proofs in [23, Section 3.6] if we choose the approximate
delta functions fε,y(x) used there to be of the form

fε,y(x) =
fε(d(y, x))∫

S
fε(d(y, z))m(dz)

(2.1)

where d is a metric for the topology of S, and fε is a continuous function supported on
[0, ε], and define Lyt (ω) = lim infn→∞

∫ t
0
fn−1,y(Xs) ds. (This is used to show measurability

in y).

Under our assumption that u(x, y) is continuous, it follows as in the proof of [23,
Lemma 3.4.3], that uniformly in x, u(x, y) as a function of y is locally bounded and
continuous. This implies that for any β > 0, the same is true for

uβ(x, y) := u(x, y)− β
∫
Uβ(x, dz)u(z, y), (2.2)

and it follows from the resolvent equation that for each x, uβ(x, y) is a density for
Uβ(x, dy) with respect to m(dy). It then follows from the resolvent equation that for
any α, β > 0 and all x, y

uα(x, y)− uβ(x, y)

β − α
=

∫
uα(x, z)uβ(z, y) dm(z) =

∫
uβ(x, z)uα(z, y) dm(z). (2.3)
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Markovian loop soups

Using (2.2) and the resolvent equation for additive functionals we see that

uβ(x, y) = Ex
(∫ ∞

0

e−βtdtL
y
t

)
. (2.4)

We now show that m(K) < ∞ for each compact K ⊆ S. To see this note first that
from (2.4) and our assumption that u(x, y) > 0 for all x, y ∈ S, that also u1(x, y) > 0 for
all x, y ∈ S. It then follows from the last paragraph that y 7→ u1(x, y) is bounded below
for y ∈ K by a constant C = C(x) > 0. Consequently

C ·m(K) ≤
∫
K

u1(x, y)m(dy) ≤
∫
S

u1(x, y)m(dy) = U11(x) ≤ 1. (2.5)

We may take the canonical representation of X in which Ω is the set of right contin-
uous paths ω in S∆ = S ∪∆ with ∆ /∈ S, and is such that ω(t) = ∆ for all t ≥ ζ = inf{t >
0 |ω(t) = ∆}. Then Xt(ω) = ω(t). We define a σ-finite measure µ on (Ω,F) by∫

F dµ =

∫
S

P x
(∫ ∞

0

1

t
F ◦ kt dtLxt

)
dm(x), (2.6)

for all F -measurable functions F on Ω. Here kt is the killing operator defined by
ktω(s) = ω(s) if s < t and ktω(s) = ∆ if s ≥ t. We call µ the loop measure of X be-
cause, when X has continuous paths, µ is concentrated on the set of continuous loops.
See also Lemma 2.4 below. Even if X is not assumed to have continuous paths we can
verify that µ is concentrated on {X0 = Xζ− , ζ < ∞}. To see this, note first of all that
since 1{ζ=∞} ◦ kt = 0 for each t, it is clear from (2.6) that µ(ζ =∞) = 0. Then, since Lxt
is constant for t ≥ ζ, while on t ≤ ζ we have ζ ◦ kt = t,

P x
(∫ ∞

0

1

t
1{X0 6=Xζ−} ◦ kt dtL

x
t

)
= P x

(∫ ∞
0

1

t
1{x 6=Xt−} dtL

x
t

)
. (2.7)

But by right-continuity of paths, the set of times for which Xt−(ω) either fails to exist or
exists but is different from Xt(ω) is at most countable, for each ω ∈ Ω, [4, IV, Theorem
88D], while Lxt is continuous in t so that dtLxt has no atoms. Hence (2.7)

= P x
(∫ ∞

0

1

t
1{x 6=Xt} dtL

x
t

)
= 0, (2.8)

where the last equality used the fact that dtLxt is supported on {Xt = x}.
As usual, if F is a function, we often write µ(F ) for

∫
F dµ.

Lemma 2.1. For any k, and any y1, . . . , yk ∈ S

µ

 k∏
j=1

Lyj∞

 =
∑

π∈Pk−1

u(yk, yπ(1)) · · ·u(yπ(k−2), yπ(k−1))u(yπ(k−1), yk), (2.9)

where Pk−1 denotes the set of permutations of [1, k−1]. When k = 1 this means µ (Ly1∞) =

u(y1, y1).

Proof We present a derivation of Lemma 2.1 suggested by Symanzik, [25]. We first
show that for any k, α ≥ 0 and x, y ∈ S

V := P x

∫ ∞
0

e−αt
k∏
j=1

L
zj
t dtL

y
t

 (2.10)

=
∑
π∈Pk

uα(x, zπ(1))u
α(zπ(1), zπ(2)) · · ·uα(zπ(k−1), zπ(k))u

α(zπ(k), y).

EJP 19 (2014), paper 60.
Page 4/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3255
http://ejp.ejpecp.org/
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To see this, note that

V =
∑
π∈Pk

P x

∫ ∞
0

e−αt
∫
{0<s1<···<sk<t}

k∏
j=1

dL
zπ(j)
sj dtL

y
t

 , (2.11)

and for each π ∈ Pk we have

Jπ := P x

∫ ∞
0

e−αt
∫
{0<s1<···<sk<t}

k∏
j=1

dL
zπ(j)
sj dtL

y
t

 (2.12)

= P x

∫
{0<s1<···<sk<∞}

(∫ ∞
sk

e−αt dtL
y
t

) k∏
j=1

dsjL
yπ(j)
sj


= P x

∫
{0<s1<···<sk<∞}

e−αsk
(∫ ∞

0

e−αt dtL
y
t

)
◦ θsk

k∏
j=1

dsjL
zπ(j)
sj

 .

Using the Markov property, see for example Theorems 28.7 and 22.8 of [24], and (2.4),
we have

Jπ = P x

∫
{0<s1<···<sk<∞}

e−αskEXsk

(∫ ∞
0

e−αt dtL
y
t

) k∏
j=1

dsjL
zπ(j)
sj


= P x

∫
{0<s1<···<sk<∞}

e−αsk
k∏
j=1

dL
zπ(j)
sj

 uα(zπ(k), y). (2.13)

It then follows by induction that

Jπ = uα(x, zπ(1))u
α(zπ(1), zπ(2)) · · ·uα(zπ(k−1), zπ(k))u

α(zπ(k), y). (2.14)

Using (2.11) then proves (2.10).
It follows from (2.10) that

∫
S

P x

∫ ∞
0

e−αt
k∏
j=1

L
zj
t dtL

x
t

 dm(x) (2.15)

=
∑
π∈Pk

∫
S

uα(x, zπ(1))u
α(zπ(1), zπ(2)) · · ·uα(zπ(k−1), zπ(k))u

α(zπ(k), x) dm(x).

By (2.4) we have that uβ(x, y) ↑ uα(x, y) as β ↓ α. Hence by (2.3) and the monotone
convergence theorem ∫

S

uα(y, x)uα(x, z) dm(x) = − d

dα
uα(y, z). (2.16)

Hence the right hand side of (2.15)

= −
∑
π∈Pk

uα(zπ(1), zπ(2)) · · ·uα(zπ(k−1), zπ(k))
d

dα
uα(zπ(k), zπ(1)). (2.17)

The sum is over all permutations of the ‘labels’ of the points z1, . . . , zk which in this
expression appear in a circle. By fixing zk and considering permutations π ∈ Pk−1, we
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can rewrite (2.17) as

−
∑

π∈Pk−1

k∑
j=1

uα(zk, zπ(1)) · · ·
d

dα
uα(zπ(j−1), zπ(j)) · · ·uα(zπ(k−1), zk) (2.18)

= −
∑

π∈Pk−1

d

dα

(
uα(zk, zπ(1)) · · ·uα(zπ(j−1), zπ(j)) · · ·uα(zπ(k−1), zk)

)
,

where for notational convenience we set π(0) = π(k) = k for π ∈ Pk−1 in the first line.
The second line is the product rule for differentiation.

By (2.4)
lim
α→∞

uα(x, y) = 0. (2.19)

Hence by what we have shown about the right hand side of (2.15)∫ ∞
0

(∑
π∈Pk

∫
S

uα(x, zπ(1))u
α(zπ(1), zπ(2)) · · ·uα(zπ(k), x) dm(x)

)
dα

= −
∑

π∈Pk−1

∫ ∞
0

d

dα

(
uα(zk, zπ(1)) · · ·uα(zπ(j−1), zπ(j)) · · ·uα(zπ(k−1), zk)

)
dα

=
∑

π∈Pk−1

u(zk, zπ(1)) · · ·u(zπ(j−1), zπ(j)) · · ·u(zπ(k−1), zk). (2.20)

Thus by (2.15) ∫ ∞
0


∫
S

P x

∫ ∞
0

e−αt
k∏
j=1

L
zj
t dtL

x
t

 dm(x)

 dα (2.21)

=
∑

π∈Pk−1

u(zk, zπ(1)) · · ·u(zπ(j−1), zπ(j)) · · ·u(zπ(k−1), zk),

and Lemma 2.1 follows by applying Fubini’s theorem to interchange the order of inte-
gration.

Let Qx,y denote the measure defined on (Ω,F) by

Qx,y(F ) = P x
(∫ ∞

0

F ◦ kt dtLyt
)
, (2.22)

for all F measurable functions F on Ω. Since ζ◦kt = ζ∧t, it follows that if Fs ∈ bF0
s where

F0
s is the σ-algebra generated by {Xr, 0 ≤ r ≤ s} then (1{ζ>s} Fs) ◦ kt = 1{ζ∧t>s} Fs.

Hence

Qx,y(1{ζ>s} Fs) = P x
(
Fs

∫ ∞
s

dtL
y
t

)
(2.23)

= P x (Fs L
y
∞ ◦ θs) = P x(Fs u(Xs, y)).

We remark that under the measures P x/h = 1
u(x,y)Q

x,y, the paths of X are conditioned

to hit y and die on their last exit from y. P x/h is the h-transform of P x, with h(x) =

u(x, y)/u(y, y) = P x(Ty <∞).
In the proof of the Isomorphism Theorem we will need the following Lemma.

Lemma 2.2. For any k, x, xj ∈ S, j = 1, . . . , k, and any bounded measurable function H
on Rk we have

µ (Lx∞H (Lx1
∞ , · · · , Lxk∞ )) = Qx,x (H (Lx1

∞ , · · · , Lxk∞ )) . (2.24)
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Proof of Lemma 2.2: Let x, y, xj ∈ S, j = 1, . . . , k. Since L
xj
∞ ◦ kt = L

xj
t , it follows

from (2.22) that

Qx,y

 k∏
j=1

Lxj∞

 = P x

∫ ∞
0

k∏
j=1

L
xj
t dtL

y
t

 . (2.25)

It then follows from (2.10) that

Qx,y

 k∏
j=1

Lxj∞

 =
∑
π∈Pk

u(x, xπ(1))u(xπ(1), xπ(2)) · · · (2.26)

· · ·u(xπ(k−1), xπ(k))u(xπ(k), y).

Comparing (2.26) with y = x and (2.9) we see that (2.24) holds for all polynomial H.
But it is easily seen from (2.9) and (2.26) that the random variables Lz∞ are exponen-
tially integrable both under Qx,x and µ (Lx∞ ·), hence finite dimensional distributions are
determined by their moments.

Since ζ ◦ kt = ζ ∧ t, we note for future reference that

µ(F ) =

∫
S

P x
(∫ ∞

0

1

t
F ◦ kt dtLxt

)
dm(x) (2.27)

=

∫
S

P x
(∫ ∞

0

(
F

ζ

)
◦ kt dtLxt

)
dm(x)

=

∫
S

Qx.x
(
F

ζ

)
dm(x).

In the sequel we will use the fact that (t, x) 7→ Lxt (ω) is an occupation density with
respect to m: ∫ t

0

f(Xs) ds =

∫
S

f(x)Lxt m(dx), (2.28)

for all t ≥ 0 and all non-negative Borel functions f , almost surely. It suffices to prove
this for f ≥ 0 which are continuous and compactly supported. This case follows from
the proof of [23, Theorem 3.7.1], with one change. That theorem assumed the joint
continuity of Lxt in order to show that the right hand side of (2.28), which we denote by
At, is a CAF. But this can be seen directly. At is obviously monotone increasing in t and
constant for t ≥ ζ. Also, using (2.5)

Ey (A∞) =

∫
S

u(y, x)f(x)m(dx) <∞, (2.29)

hence A∞ < ∞ a.s. Hence the a.s. continuity of At follows from the dominated con-
vergence theorem after applying Fubini to the fact for each x ∈ S, a.s. in ω, Lxt (ω) is
continuous in t. Finally, fix s, t > 0. We have Lxs+t(ω) = Lxs (ω)+Lxt ◦θs(ω) for each x ∈ S,
a.s. in ω. Hence by Fubini this holds a.s. in ω for a.e. x ∈ S. From the right hand side
of (2.28) we then see that a.s. in ω, As+t(ω) = As(ω) + At ◦ θs(ω), which completes the
proof that At is a CAF, and hence the proof of (2.28).

2.1 Transition densities

For this sub-Section only, we assume that Pt(x, dy) � dm(y) for each t > 0 and
x ∈ S; in other words, Pt(x, dy) has transition densities with respect to m. Under this
assumption we give an alternate description of the loop measure. This is the description
found in the literature. Using this description we give a simple proof of the fact that
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Markovian loop soups

the loop measure is invariant under loop rotation. A proof of this fact without assuming
transition densities is given in Section 5. The material in this sub-section will not be
used in the following sections of the paper.

Under our assumption that Pt(x, dy) has transition densities with respect to m, it
follows from [6] that we can find jointly measurable transition densities pt(x, y) with
respect to m which satisfy the Chapman-Kolmogorov equation∫

ps(x, y)pt(y, z) dm(y) = ps+t(x, z). (2.30)

Assume that pt(x, y) < ∞, for all 0 < t < ∞ and x, y ∈ S. It then follows as in [10] that
for all 0 < t < ∞ and x, y ∈ S, there exists a finite measure Qx,yt on Ft− , of total mass
pt(x, y), such that

Qx,yt (Fs) = P x (Fs pt−s(Xs, y)) , (2.31)

for all Fs ∈ Fs with s < t. In particular, for any 0 < t1 ≤ · · · ≤ tk−1 ≤ tk < t and bounded
Borel measurable functions f1, . . . , fk

Qx,yt

 k∏
j=1

fj(Xtj )

 (2.32)

=

∫
Sk
pt1(x, y1)f1(y1)pt2−t1(y1, y2)f2(y2) · · ·

· · · ptk−tk−1
(yk−1, yk)fk(yk)pt−tk(yk, y) dm(y1) · · · dm(yk).

Lemma 2.3.

µ(F ) =

∫ ∞
0

1

t

∫
S

Qx,xt (F ◦ kt) dm(x) dt (2.33)

for all F measurable functions F on Ω.

Proof of Lemma 2.3 Let us temporarily use the notation µ̃(F ) to denote the right
hand side of (2.33). It suffices to show that µ(F ) = µ̃(F ) for all F of the form F =∏k
j=1 fj(Xtj ), for all 0 < t1 ≤ · · · ≤ tk−1 ≤ tk < ∞ and bounded Borel measurable

functions f1, . . . , fk on S ∪∆ with fj(∆) = 0, j = 1, . . . , k. Note that this last condition
implies that

k∏
j=1

fj(Xtj ◦ kt) = 1{tk<t}

k∏
j=1

fj(Xtj ). (2.34)

Using (2.32)

µ̃(F ) =

∫ ∞
0

1

t

∫
S

Qx,xt

 k∏
j=1

fj(Xtj )

 ◦ kt
 dm(x) dt (2.35)

=

∫ ∞
tk

1

t

∫
S

Qx,xt

 k∏
j=1

fj(Xtj )

 dm(x) dt

=

∫ ∞
tk

1

t

∫
Sk+1

pt1(x, y1)f1(y1)pt2−t1(y1, y2)f2(y2) · · · ptk−tk−1
(yk−1, yk)

· · · fk(yk) pt−tk(yk, x) dm(y1) · · · dm(yk) dm(x) dt.
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Markovian loop soups

Similarly, using the Markov property

µ (F ) =

∫
S

P x

∫ ∞
0

1

t

k∏
j=1

fj(Xtj ) ◦ kt dLxt

 dm(x) (2.36)

=

∫
S

P x

∫ ∞
tk

1

t

k∏
j=1

fj(Xtj ) dL
x
t

 dm(x)

=

∫
S

P x

 k∏
j=1

fj(Xtj )

(∫ ∞
tk

1

t
dtL

x
t−tk

)
◦ θtk

 dm(x)

=

∫
S

P x

 k∏
j=1

fj(Xtj )E
Xtk

(∫ ∞
tk

1

t
dtL

x
t−tk

) dm(x)

=

∫
Sk+1

pt1(x, y1)f1(y1)pt2−t1(y1, y2)f2(y2) · · · ptk−tk−1
(yk−1, yk)

· · · fk(yk)Eyk
(∫ ∞

tk

1

t
dtL

x
t−tk

)
dm(x) dm(y1) · · · dm(yk).

For y, x ∈ S, we define the measure Γy,x(·) on [0,∞) with cdf:

Γy,x([0, t]) := Ey(Lxt ), (2.37)

so that for all bounded measurable functions g on [0,∞)∫ ∞
0

g(t)Γy,x(dt) = Ey
(∫ ∞

0

g(t) dtL
x
t

)
. (2.38)

We claim that for each y, we can find a set Sy ⊂ S with m(Sy) = 0 such that

Ey(Lxt ) =

∫ t

0

ps(y, x) ds (2.39)

for all t and x ∈ Scy. Then by (2.38), for any tk and all x ∈ Scy∫ ∞
tk

1

t
pt−tk(yk, x) dt = Eyk

(∫ ∞
tk

1

t
dtL

x
t−tk

)
. (2.40)

Since the right hand side of (2.36) involves a dm(x) integral, by Fubini we can replace

the term Eyk
(∫∞

tk
1
t dtL

x
t−tk

)
which appears there with the left hand side of (2.40). Thus

we will obtain

µ(F ) =

∫ ∞
tk

1

t

∫
Sk+1

pt1(x, y1)f1(y1)pt2−t1(y1, y2)f2(y2) · · · (2.41)

· · · ptk−tk−1
(yk−1, yk)fk(yk)pt−tk(yk, x) dm(y1) · · · dm(yk) dm(x) dt.

Comparing with (2.35) then shows that µ(F ) = µ̃(F ).
It only remains to verify our claim concerning (2.39). Note that since the left hand

side of (2.39) is continuous in t and the right hand side is monotone, it suffices to find a
set Sy which works for all rational t, hence for each fixed t. By the occupation density
formula (2.28)∫

S

f(x)

(∫ t

0

ps(y, x) ds

)
m(dx) = Ey

(∫ t

0

f(Xs) ds

)
(2.42)

=

∫
S

f(x) (Ey(Lxt )) m(dx).
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Markovian loop soups

Since this holds for all bounded measurable f , our claim for fixed t is established.

For later use we note that applying the Chapman-Kolmogorov equation (2.30) for
the dm(x) integral in (2.41) shows that

µ

 k∏
j=1

fj(Xtj )

 (2.43)

=

∫ ∞
tk

1

t

∫
Sk
f1(y1)pt2−t1(y1, y2)f2(y2) · · ·

· · · ptk−tk−1
(yk−1, yk)fk(yk)pt1+t−tk(yk, y1) dm(y1) · · · dm(yk) dt.

The next result justifies our calling µ the loop measure even for a process with
discontinuous paths. This result will be proved in full generality in section 5. Define the
loop rotation ρu by

ρuω(s) =

{
ω(s+ u mod ζ(ω)), if 0 ≤ s < ζ(ω)

∆, otherwise.
(2.44)

Here, for two positive numbers a, b we define a mod b = a−mb for the unique positive
integer m such that 0 ≤ a−mb < b . Set (a)b = a mod b

Lemma 2.4. µ is invariant under ρu, for any u > 0.

Proof of Lemma 2.4 Let 0 < t1 ≤ · · · ≤ tk−1 ≤ tk <∞ and let f1, . . . , fk be bounded
Borel measurable functions on S ∪∆ with fj(∆) = 0, j = 1, . . . , k. Fix some t and u.

Since fj(∆) = 0, j = 1, . . . , k,

k∏
j=1

fj(Xtj ◦ ρu ◦ kt) = 1{tk<t}

k∏
j=1

fj(X(tj+u)t). (2.45)

Set sj = tj + u. Since 0 < t1 ≤ · · · ≤ tk−1 ≤ tk < t, it is clear that for some i and some l

0 ≤ sl − it ≤ · · · ≤ sk − it ≤ s1 − (i− 1)t . . . ≤ sl−1 − (i− 1)t < t (2.46)

Therefore, by (2.32)

Qx,xt

 k∏
j=1

fj(Xtj ) ◦ ρu ◦ kt

 (2.47)

= 1{tk<t}

∫
Sk

psl−it(x, yl)fl(yl)ptl+1−tl(yl, yl+1)fl+1(y2) · · ·

· · · ptk−tk−1
(yk−1, yk)fk(yk)pt1+t−tk(yk, y1)f1(y1) · · ·

· · · ptl−1−tl−2
(yl−2, yl−1)fl−1(yl−1)pit−sl−1

(yl−1, x) dm(y1) · · · dm(yk).

Integrating both sides with respect to dm(x) and applying the Chapman-Kolmogorov
equation (2.30) we obtain∫

S

Qx,xt

 k∏
j=1

fj(Xtj ) ◦ ρu ◦ kt

 dm(x) (2.48)

= 1{tk<t}

∫
Sk

fl(yl)ptl+1−tl(yl, yl+1)fl+1(y2) · · ·

· · · ptk−tk−1
(yk−1, yk)fk(yk)pt1+t−tk(yk, y1)f1(y1) · · ·

· · · ptl−1−tl−2
(yl−2, yl−1)fl−1(yl−1)ptl−tl−1

(yl−1, yl) dm(y1) · · · dm(yk).
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Markovian loop soups

where in the last line we used

it− sl−1 + sl − it = sl − sl−1 = tl − tl−1.

Comparing with (2.43) we obtain our Lemma.

3 The loop soup

Let Ω be the path space forX described after (2.5). For any α > 0, let Lα be a Poisson
point process on Ω with intensity measure αµ. Note that Lα is a random variable; each
realization of Lα is countable subset of Ω. To be more specific, let

N(A) := #{Lα ∩A}, A ⊆ Ω. (3.1)

Then for any disjoint measurable subsetsA1, . . . , An of Ω, the random variablesN(A1), . . . , N(An),
are independent, and N(A) is a Poisson random variable with parameter αµ(A), i.e.

P (N(A) = k) =
(αµ(A))k

k!
e−αµ(A). (3.2)

(When µ(A) = ∞, this means that P (N(A) = ∞) = 1.) The Poisson point process Lα is
called the ‘loop soup’ of the Markov process X. The term ‘loop soup’ is used in [20], [19]
and [17, Chapter 9]. In [12] Lα is referred to, less colorfully albeit more descriptively,
as Poissonian ensembles of Markov loops. See also [26] and [21].

We define the ‘loop soup local time’, L̂x, of X, by

L̂x =
∑
ω∈Lα

Lx∞(ω). (3.3)

The next theorem is given for associated Gaussian squares in [13, Theorem 9].

Theorem 3.1. Let X be a transient Borel right process with state space S, as described
in the beginning of this section, and let u(x, y), x, y ∈ S denote its potential density. Let
{L̂x, x ∈ S} be the loop soup local time of X. Then { L̂x, x ∈ S}, is an α-permanental
process with kernel u(x, y).

Proof By the master formula for Poisson processes, [16, (3.6)],

E
(
e
∑n
j=1 zjL̂

xj
)

= exp

(
α

(∫
Ω

(
e
∑n
j=1 zjL

xj
∞ (ω) − 1

)
dµ(ω)

))
, (3.4)

for |z1|, . . . , |zn| sufficiently small. Differentiating each side of (3.4) with respect to
z1, . . . , zn and then setting z1, . . . , zn equal to zero, we get

E

 n∏
j=1

L̂xj

 =

n∑
l=1

∑
∪li=1Bi=[1,n]

αl
l∏
i=1

µ

∏
j∈Bi

Lxj∞

 , (3.5)

where the second sum is over all partitions B1, . . . , Bl of [1, n]. Using (2.9) it is easily
seen that this is

E

 n∏
j=1

L̂xj

 =
∑
π∈Pn

αc(π)
n∏
j=1

u(xj , xπ(j)). (3.6)
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Let θ = {θx, x ∈ S} be an α-permanental process with kernel u(x, y), x, y ∈ S,
as considered in Theorem 3.1. Clearly, by our loop soup construction, θ is infinitely
divisible. In [9, Corollary 3.4], Eisenbaum and Kaspi show that the Lévy measure of
{θx, x ∈ S} is given by the law of {Lx∞, x ∈ S} under the σ-finite measure

α

Ly∞
Qy,y (3.7)

for any y ∈ S. However it follows from Theorem 3.1 that the loop measure αµ is the
Lévy measure of {θx, x ∈ S}. Therefore

{Lx∞, x ∈ S;µ} law= {Lx∞, x ∈ S;
1

Ly∞
Qy,y}, (3.8)

for any y ∈ S. This fact is also an immediate consequence of Lemma 2.2.

4 The Isomorphism Theorem via loop soup

For our Isomorphism Theorem we will need a special case of the Palm formula for
Poisson processes L with intensity measure n on a measurable space S, see [2, Lemma
2.3]. This says that for any positive function f on S and any measurable functional G of
L

EL

((∑
ω∈L

f(ω)

)
G(L)

)
=

∫
EL (G(ω′ ∪ L)) f(ω′) dn(ω′). (4.1)

Theorem 4.1 (Isomorphism Theorem). For any x, x1, x2, . . . ∈ S and any bounded mea-
surable function F on R∞+ ,

ELαQ
x,x
(
F
(
L̂xj + Lxj

))
=

1

α
ELα

(
L̂x F

(
L̂xj
))

. (4.2)

(Here we use the notation F (f(xj)) := F (f(x1), f(x2), . . .).)

Proof We apply the Palm formula with intensity measure αµ,

f(ω) = Lx(ω) (4.3)

and
G(L) = F

(
L̂xj
)
. (4.4)

Note that ∑
ω∈L

f(ω) = L̂x. (4.5)

Also

L̂xj (ω′ ∪ Lα) =
∑

ω∈ω′∪Lα

Lxj (ω)

= L̂xj (Lα) + Lxj (ω′), (4.6)

so that
G(ω′ ∪ Lα) = F

(
L̂xj (Lα) + Lxj (ω′)

)
. (4.7)

Then by (4.1)

ELα

(
L̂x F

(
L̂xj
))

= αELαµ
(
Lx F

(
L̂xj + Lxj

))
, (4.8)

so that our theorem follows from Lemma 2.2.
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5 Invariance under loop rotation

In sub-Section 2.1, assuming the existence of transition densities, we gave a simple
proof of the fact that the loop measure is invariant under loop rotation. In this section
we give a proof of this fact without assuming the existence of transition densities. This
proof is considerably more complicated.

Because the lifetime ζ is rotation invariant (ζ(ρvω) = ζ(ω) so long as ζ(ω) <∞), the
rotation invariance of the loop measure µ is equivalent to that of the measure ν defined
by ν(F ) := µ(ζF ). By (2.27) and (2.22) we have

ν(F ) =

∫
S

Qx,x (F ) dm(x) =

∫
S

P x
(∫ ∞

0

F ◦ kt dtLxt
)
dm(x). (5.1)

The measure ν is more convenient for the calculations that follow, because of the
following formula, where Γx,y is defined in (2.37):

Lemma 5.1. For a.e. 0 < t1 < t2 < · · · < tk,

ν(Xt1 ∈ dy1, . . . , Xtk ∈ dyk, ζ ∈ dt) (5.2)

= m(dy1)

k∏
j=2

Ptj−tj−1
(yj−1, dyj) Γyk,y1(dt− tk + t1)

as measures on the product space Sk × (tk,∞). Furthermore, with t1 = 0, (5.2) holds
for all 0 < t2 < t3 < · · · < tk.

Proof of Lemma 5.1: Using (5.1) we see that

ν

 k∏
j=1

fj(Xtj )e
−βζ

 =

∫
S

P x

 k∏
j=1

fj(Xtj )

∫ ∞
tk

e−βt dtL
x
t

 dm(x). (5.3)

Using the Markov property and (2.4) we see that

P x

 k∏
j=1

fj(Xtj )

∫ ∞
tk

e−βt dtL
x
t

 (5.4)

= P x

 k∏
j=1

fj(Xtj )e
−βtk

(∫ ∞
0

e−βt dtL
x
t

)
◦ θtk


= P x

 k∏
j=1

fj(Xtj )e
−βtkEXtk

(∫ ∞
0

e−βt dtL
x
t

)
= P x

 k∏
j=1

fj(Xtj )e
−βtk uβ (Xtk , x)


=

∫
Sk
P βt1(x, dy1)f1(y1)

 k∏
j=2

P βtj−tj−1
(yj−1, dyj)fj(yj)

 uβ (yk, x) .

Here P βt (x, dy) = e−βtPt(x, dy). Using (2.38) and then the Markov property as in the
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previous display

∫ ∞
t1

e−βtΓyk,y1(dt) (5.5)

= Eyk
(∫ ∞

t1

e−βt dtL
y1
t

)
= e−βt1 Eyk

((∫ ∞
0

e−βt dtL
y1
t

)
◦ θt1

)
= e−βt1 Eyk

(
uβ (Xt1 , y1)

)
=

∫
S

P βt1(yk, dz)u
β (z, y1) .

We claim that for a.e. t1, as measures in y1,

∫
x∈S

uβ (yk, x)P βt1(x, dy1) dm(x) =

∫
z∈S

P βt1(yk, dz)u
β (z, y1) dm(y1). (5.6)

To see this, it suffices to integrate both sides with respect to e−αt1 dt1, use (2.3) with α
replaced by α+β, and the fact that S has a countable base. (It is important to note that
we allow yk = y1).

Combining (5.3)-(5.6) we obtain for a.e. t1

ν

 k∏
j=1

fj(Xtj )e
−βζ

 (5.7)

=

∫
f1(y1)

k∏
j=2

P βtj−tj−1
(yj−1, dyj)fj(yj)

∫ ∞
t1

e−βtΓyk,y1(dt) dm(y1).

This agrees with what we obtain from the right hand side of (5.2):

∫
Sk×(tk,∞)

m(dy1)

k∏
j=2

Ptj−tj−1
(yj−1, dyj) Γyk,y1(dt− tk + t1) (5.8) k∏

j=1

fj(yj)e
−βt


=

∫
Sk
m(dy1)f1(y1)

k∏
j=2

Ptj−tj−1(yj−1, dyj)fj(yj)∫ ∞
tk

e−βtΓyk,y1(dt− tk + t1)

=

∫
Sk
m(dy1)f1(y1)

k∏
j=2

Ptj−tj−1(yj−1, dyj)fj(yj)

e−β(tk−t1)

∫ ∞
t1

e−βtΓyk,y1(dt).

This completes the proof of our Lemma when t1 > 0.
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When t1 = 0, it follows from (5.3)-(5.4), and then (2.4) and (2.38) that

ν

 k∏
j=1

fj(Xtj )e
−βζ

 (5.9)

=

∫
S

f1(x)

k∏
j=2

P βtj−tj−1
(yj−1, dyj)fj(yj) u

β (yk, x) dm(x)

=

∫
S

f1(x)

k∏
j=2

P βtj−tj−1
(yj−1, dyj)fj(yj)

∫ ∞
0

e−βtΓyk,x(dt) dm(x).

This agrees with (5.7) for t1 = 0, and the rest of the proof follows as in (5.8).

As a byproduct of our proof we now show that

sup
t1≥0

ν
(
f1(Xt1)e−βζ

)
<∞, (5.10)

for any continuous compactly supported f1. To see this, note that by (5.3)-(5.4)

ν
(
f1(Xt1)e−βζ

)
=

∫
S

∫
S

P βt1(x, dy1)f1(y1)uβ (y1, x) dm(x). (5.11)

By (5.6), for a.e. t1 this equals∫
S

(∫
S

P βt1(y1, dz)u
β (z, y1)

)
f1(y1) dm(y1). (5.12)

But as noted in the paragraph containing (2.2), uβ (z, y1) is bounded, uniformly in z for
y1 in the compact support of f1(y1). Hence (5.12) is bounded by

C

∫
S

(∫
S

P βt1(y1, dz)

)
f1(y1) dm(y1) ≤ C

∫
S

f1(y1) dm(y1). (5.13)

Thus we have shown that for some dense D ⊆ R1
+

sup
t1∈D

ν
(
f1(Xt1)e−βζ

)
≤ C

∫
S

f1(y1) dm(y1), (5.14)

and the right hand side is finite by (2.5). (5.10) then follows using right continuity.
We will also need the following.

Lemma 5.2.
Ps(x, dy) ds = m(dy)Γx,y(ds). (5.15)

Proof of Lemma 5.2: We have∫
Γx,y([0, t]) f(y)m(dy) (5.16)

=

∫
Ex (Lyt ) f(y)m(dy) =

∫
Ex (Ly∞ − Ly∞ ◦ θt) f(y)m(dy)

=

∫
(u(x, y)− Ex (u(Xt, y))) f(y)m(dy)

=

∫ ∫ t

0

Ps(x, dy) f(y) ds.
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Let us define the process X to be the periodic extension of X; that is,

Xt =

{
Xt−qζ , if qζ ≤ t < (q + 1)ζ, q = 0, 1, 2, . . .

Xt, if ζ =∞ (5.17)

It will be convenient to write

Iα(f) :=

∫ ∞
0

e−αtf(Xt) dt, Iα(f) :=

∫ ∞
0

e−αtf(Xt) dt. (5.18)

The key observation is that

Iα(f) =
Iα(f)

1− e−αζ
, (5.19)

for all α > 0. This follows from

Iα(f) : =

∫ ∞
0

e−αtf(Xt) dt

=

∞∑
q=0

∫ (q+1)ζ

qζ

e−αtf(Xt) dt

=

∞∑
q=0

e−αqζ
∫ ζ

0

e−αtf(Xt) dt =
Iα(f)

1− e−αζ
.

Hence for any continuous compactly supported f∫ ∞
0

e−αtν
((

1− e−αζ
)
f(Xt)e

−βζ) dt (5.20)

= ν
((

1− e−αζ
)
Iα(f)e−βζ

)
= ν

(
Iα(f)e−βζ

)
=

∫ ∞
0

e−αtν
(
f(Xt)e

−βζ) dt <∞
by (5.10). It follows that for any α

ν
((

1− e−αζ
)
f(Xt)e

−βζ) <∞, for a.e. t. (5.21)

The rotation invariance of µ or ν is equivalent to the statement that

ν

 k∏
j=1

fj(Xtj+r)1{tk<ζ}

 = ν

 k∏
j=1

fj(Xtj )1{tk<ζ}

 (5.22)

for all 0 < t1 < · · · < tk and r > 0 and all fj ≥ 0 continuous with compact support.
This will follow once we show that the joint distribution of (X, ζ) is invariant under time
shifts. That is, ((Xt+v)t≥0, ζ) has the same distribution (under ν) as ((Xt)t≥0, ζ) for all
v > 0.

To prove this we will first show that for all k and all α1, . . . , αk,

∫
[0,∞)k

e−
∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj ) g(ζ)

 k∏
j=1

dtj (5.23)

=

∫
[0,∞)k

e−
∑k
j=1 αjtj Fk(t1, . . . , tk)

k∏
j=1

dtj
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for all g of the form g(ζ) = (1− e−αζ)e−βζ , and where

Fk(t1, . . . , tk) =
∑
σ∈Pk

1{0≤tσ(1)≤···≤tσ(k)} (5.24)

ν

fσ(1)(X0)

k∏
j=2

fσ(j)(Xtσ(j)−tσ(1)) g(ζ)

 .

By (5.20) the left hand side of (5.23) is finite for all α1 ≥ α, while the right hand side is
finite since

ν (fj(X0)) =

∫
S

Qx,x (fj(X0)) dm(x) =

∫
S

u(x, x)fj(x) dm(x) <∞. (5.25)

By uniqueness of Laplace transforms, it then follows that

ν

 k∏
j=1

fj(Xtj ) g(ζ)

 = Fk(t1, . . . , tk) (5.26)

for Lebesgue a.e. k-tuple (t1, . . . , tk), and in particular, for any r > 0,

∫
[r,∞)k

e−
∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj ) g(ζ)

 k∏
j=1

dtj (5.27)

=

∫
[r,∞)k

e−
∑k
j=1 αjtj Fk(t1, . . . , tk)

k∏
j=1

dtj .

It follows that for any r > 0,

∫
[0,∞)k

e−
∑k
j=1 αj(tj+r) ν

 k∏
j=1

fj(Xtj+r) g(ζ)

 k∏
j=1

dtj (5.28)

=

∫
[0,∞)k

e−
∑k
j=1 αj(tj+r) Fk(t1 + r, . . . , tk + r)

k∏
j=1

dtj .

But it is easily seen that Fk(t1 + r, . . . , tk + r) = Fk(t1, . . . , tk) so that, canceling the

common constant factor e−
∑k
j=1 αjr, we obtain

∫
[0,∞)k

e−
∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj+r) g(ζ)

 k∏
j=1

dtj (5.29)

=

∫
[0,∞)k

e−
∑k
j=1 αjtj Fk(t1, . . . , tk)

k∏
j=1

dtj ,

and thus comparing with (5.23) we have that for each r > 0

∫
[0,∞)k

e−
∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj+r) g(ζ)

 k∏
j=1

dtj (5.30)

=

∫
[0,∞)k

e−
∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj ) g(ζ)

 k∏
j=1

dtj .
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It follows that

ν

 k∏
j=1

fj(Xtj+r) g(ζ)

 = ν

 k∏
j=1

fj(Xtj ) g(ζ)

 , for a.e. t1, . . . , tk. (5.31)

This holds for any k, in particular for k = 1, so that using (5.21) we have

ν
(
f1(Xt1+r) g(ζ)

)
= ν

(
f1(Xt1) g(ζ)

)
<∞, for a.e. t1. (5.32)

Thus by Fubini we can find a set T ⊆ R+ with T c of Lebesgue measure 0 such that for
all t1 ∈ T we have (5.32), and (5.31) holds for a.e. t2, . . . , tk. Using the boundedness
and continuity of the fj and the right continuity of X̄t it follows from the Dominated
Convergence Theorem that (5.31) holds for all (t1, t2, . . . , tk) ∈ T×Rk−1

+ . Let now f1,n be
a sequence of continuous functions with compact support with the property that f1,n ↑ 1.
By the above, (5.31) with f1 replaced by f1,n holds for all (t1, t2, . . . , tk) ∈ Tn×Rk−1

+ for an
appropriate Tn ⊆ R+ with T cn of Lebesgue measure 0. In particular T∗ = ∩nTn 6= ∅, and
we can apply the Monotone Convergence Theorem with t1 ∈ T∗ to conclude, spelling
out g(ζ), that

ν

(1− e−αζ)
k∏
j=2

fj(Xtj+r)e
−βζ

 = ν

(1− e−αζ)
k∏
j=2

fj(Xtj )e
−βζ

 (5.33)

for all t2, . . . , tk. Applying once again the Monotone Convergence Theorem for α → ∞
we obtain

ν

 k∏
j=2

fj(Xtj+r)e
−βζ

 = ν

 k∏
j=2

fj(Xtj )e
−βζ

 (5.34)

for all t2, . . . , tk. Fix a compact K ⊆ S. If we replace f2 by a sequence f2,n ↑ 1K and then
set t2 = 0, we can conclude from (5.34) and (5.25) that the finite measures 1K(X0) · ν
and 1K(X0) · ρr ∗ν agree on the σ-algebra generated by X̄t, t ≥ 0 and ζ. Since this
holds for any compact K ⊆ S, so do ν and ρr ∗ν. Here and below we use the notation
f∗ν(A) = ν(f−1(A)).

It remains to prove (5.23). Using (5.19)

∫
e−

∑k
j=1 αjtj ν

 k∏
j=1

fj(Xtj ) g(ζ)

 k∏
j=1

dtj (5.35)

= ν

 k∏
j=1

Iαj (fj) g(ζ)


= ν

∫ e−
∑k
j=1 αjtj

k∏
j=1

fj(Xtj )

1− e−αjζ
k∏
j=1

dtj g(ζ)

 =
∑
σ∈Pk

Jk(σ),

where

Jk(σ) := ν

∫
0<t1<···<tk

e−
∑k
j=1 ασ(j)tj

k∏
j=1

fσ(j)(Xtj )

1− e−ασ(j)ζ
k∏
j=1

dtj g(ζ)

 ,
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and using (5.2)

Jk(σ) =

∫
0<t1<···<tk<t

g(t)

∫
Sk

e−ασ(1)t1

1− e−ασ(1)t
m(dy1)fσ(1)(y1) (5.36)

k∏
j=2

e−ασ(j)tj

1− e−ασ(j)t
Ptj−tj−1

(yj−1, dyj)fσ(j)(yj)

Γyk,y1(dt− tk + t1) dt1 · · · dtk.

We now make the change of variables r = t1, sj = tj − tj−1 (j = 2, . . . , k), s1 = t− tk + t1
(with accompanying limits of integration 0 < r < s1, sj > 0) and then integrate out

r. Writing ŝj := s2 + · · · + sj and s̄ :=
∑k
j=1 sj , the expression in (5.36) is thereby

transformed to

Jk(σ) =

∫
s1>0,...,sk>0

g(s̄)

∫
Sk

(∫ s1

0

e−(α1+···αk)r dr

)
m(dy1)fσ(1)(y1)

1

1− e−ασ(1)s̄
k∏
j=2

e−ασ(j)ŝj

1− e−ασ(j)s̄
Psj (yj−1, dyj)fσ(j)(yj) Γyk,y1(ds1) ds2 · · · dsk

=

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄)

∫
Sk
m(dy1)fσ(1)(y1)

(1− e−(α1+···αk)s1)

1− e−ασ(1)s̄

k∏
j=2

e−ασ(j)ŝj

1− e−ασ(j)s̄
Psj (yj−1, dyj) fσ(j)(yj)Γyk,y1(ds1) ds2 · · · dsk. (5.37)

Using (5.15), we can write (5.37) as

Jk(σ) =

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄) (1− e−(α1+···αk)s1)

k∏
j=1

e−ασ(j)ŝj

1− e−ασ(j)s̄
∫
Sk

k∏
j=1

m(dyj)fσ(j)(yj)Γyj−1,yj (dsj), (5.38)

where y0 = yk and ŝ1 := 0.
We now turn to the right hand side of (5.23) and try to rewrite it in terms which

are similar to our last expression for the Jk(σ)’s. Using
∑k
j=1 αjtj =

∑k
j=1 ασ(j)tσ(j) we

have

R(α1, . . . , αk) :=

∫
e−

∑k
j=1 αjtj Fk(t1, . . . , tk)

k∏
j=1

dtj (5.39)

=
∑
σ∈Pk

∫
{0≤tσ(1)≤···≤tσ(k)}

e−
∑k
j=1 ασ(j)tσ(j)

ν

fσ(1)(X0)

k∏
j=2

fσ(j)(Xtσ(j)−tσ(1)) g(ζ)

 k∏
j=1

dtj

=
∑
σ∈Pk

∫
{0≤t1≤···≤tk}

e−
∑k
j=1 ασ(j)tj

ν

fσ(1)(X0)

k∏
j=2

fσ(j)(Xtj−t1) g(ζ)

 k∏
j=1

dtj .
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Let us now fix σ ∈ Pk and consider the corresponding term in (5.39)

∫
0<t1<···<tk

k∏
j=1

e−ασ(j)tjdtj ν

fσ(1)(X0)

k∏
j=2

fσ(j)(Xtj−t1) g(ζ)

 . (5.40)

Changing variables (r1 = t1, rj = tj − t1 for j = 2, . . . , k) and integrating out r1, this can
be rewritten as k∑

j=1

αj

−1 ∫
0<r2<···<rk

k∏
j=2

e−ασ(j)rjdrj ν

fσ(1)(X0)

k∏
j=2

fσ(j)(Xrj ) g(ζ)

 . (5.41)

Summing first over all permutations σ ∈ Pk with σ(1) = i and then over i we obtain

R(α1, . . . , αk) =

 k∑
j=1

αj

−1
k∑
i=1

ν

fi(X0)
∏
j 6=i

Iαj (fj) · g(ζ)

 . (5.42)

Using (5.19) we can express this as

R(α1, . . . , αk) =

 k∑
j=1

αj

−1
k∑
i=1

ν

fi(X0)
∏
j 6=i

Iαj (fj)

1− e−αjζ
· g(ζ)

 . (5.43)

Using Lemma 5.1 we then see that

R(α1, . . . , αk) =
∑
σ′∈Pk

Kk(σ′) (5.44)

where

Kk(σ′) :=

 k∑
j=1

αj

−1 ∫
0<t2<···<tk<t

g(t)

∫
Sk
m(dy1)fσ′(1)(y1)

k∏
j=2

Ptj−tj−1(yj−1, dyj)fσ′(j)(yj)

e−ασ′(j)tj

1− e−ασ′(j)t
Γyk,y1(dt− tk) dt2 · · · dtk, (5.45)

with the convention that t1 = 0. Once more making the change of variables s1 = t− tk,
s2 = t2, sj = tj − tj−1 for j = 3, . . . , k, (5.45) becomes

Kk(σ′) =

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄)

∫
Sk
m(dy1)fσ′(1)(y1) (5.46)

k∏
j=2

Psj (yj−1, dyj)fσ′(j)(yj)
e−ασ′(j)ŝj

1− e−ασ′(j)s̄
Γyk,y1(ds1) ds2 · · · dsk.
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Using (5.15) again, we can write (5.46) as

Kk(σ′) =

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄)

∫
Sk
m(dy1)fσ′(1)(y1) (5.47)

 k∏
j=2

m(dyj)Γyj−1,yj (dsj)
e−ασ′(j)ŝj

1− e−ασ′(j)s̄

 fσ′(j)(yj)

Γyk,y1(ds1) ds2 · · · dsk

=

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄)

∫
Sk

(1− e−ασ′(1)s̄)
k∏
j=1

m(dyj)

Γyj−1,yj (dsj)fσ′(j)(yj)
e−ασ′(j)ŝj

1− e−ασ′(j)s̄
, (5.48)

where y0 = yk, and ŝ1 = 0. We reorganize this as

Kk(σ′) =

 k∑
j=1

αj

−1 ∫
s1>0,...,sk>0

g(s̄)(1− e−ασ′(1)s̄)

k∏
j=1

e−ασ′(j)ŝj

1− e−ασ′(j)s̄
∫
Sk

k∏
j=1

m(dyj)fσ′(j)(yj)Γyj−1,yj (dsj). (5.49)

In view of (5.35) and (5.44), to prove (5.23) we need to show that∑
σ∈Pk

Jk(σ) =
∑
σ∈Pk

Kk(σ), (5.50)

and to this end it suffices to show that for each σ∗ ∈ Pk∑
σ∼σ∗

Jk(σ) =
∑
σ∼σ∗

Kk(σ), (5.51)

where σ ∼ σ∗ means that σ is a ‘rotation’ of σ∗. In other words, for some 1 ≤ l ≤ k we
have

(σ(1), σ(2), . . . , σ(k)) = (σ∗(l), σ∗(l + 1), . . . , σ∗(k), σ∗(1), . . . , σ∗(l − 1)).

Comparing (5.38) and (5.49) with σ′ = σ we see that the only difference is the
presence of e−(α1+···αk)s1 in (5.38) while in (5.49), with σ′ = σ, this is replaced by
e−ασ(1)s̄. Thus to prove (5.51) it suffices to show that∫

s1>0,...,sk>0

g(s̄)e−(α1+···αk)s1 (5.52)

k∏
j=1

e−ασ(j)ŝj

1− e−ασ(j)s̄
∫
Sk

k∏
j=1

m(dyj)fσ(j)(yj)Γyj−1,yj (dsj)

=

∫
s1>0,...,sk>0

g(s̄)e−ασ′(1)s̄

k∏
j=1

e−ασ′(j)ŝj

1− e−ασ′(j)s̄
∫
Sk

k∏
j=1

m(dyj)fσ′(j)(yj)Γyj−1,yj (dsj)

whenever (σ′(1), σ′(2), . . . , σ′(k)) = (σ(k), σ(1), . . . , σ(k − 1)).
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Note that

Mσ′(ds1, . . . , dsk) :=

∫
Sk

k∏
j=1

m(dyj)fσ′(j)(yj)Γyj−1,yj (dsj) (5.53)

=

∫
Sk
fσ′(1)(y1)Γyk,y1(ds1)fσ′(2)(y2)Γy1,y2(ds2) · · ·

· · · fσ′(k)(yk)Γyk−1,yk(dsk)

k∏
j=1

m(dyj)

=

∫
Sk
fσ(k)(y1)Γyk,y1(ds1)fσ(1)(y2)Γy1,y2(ds2) · · ·

· · · fσ(k−1)(yk)Γyk−1,yk(dsk)

k∏
j=1

m(dyj),

and relabeling the yj ’s this is

=

∫
Sk
fσ(k)(yk)Γyk−1,yk(ds1)fσ(1)(y1)Γyk,y1(ds2) · · · (5.54)

· · · fσ(k−1)(yk−1)Γyk−2,yk−1
(dsk)

k∏
j=1

m(dyj)

=

∫
Sk

k∏
j=1

m(dyj)fσ(j)(yj)Γyj−1,yj (dsj+1) = Mσ(ds2, . . . , dsk, ds1),

where sk+1 = s1. Furthermore, (recall that ŝ1 = 0),

ασ′(1)s̄+

k∑
j=2

ασ′(j)ŝj (5.55)

= ασ(k)s̄+

k∑
j=2

ασ(j−1)

(
j∑
l=2

sl

)

= ασ(k)s̄+

k−1∑
i=1

ασ(i)

(
i+1∑
l=2

sl

)

= ασ(k)(s1 + · · ·+ sk) +

k−1∑
i=1

ασ(i)

(
i∑
l=1

sl+1

)
=

k∑
i=1

ασ(i)

(
i∑
l=1

sl+1

)
.

But also, using
∑k
j=1 αj =

∑k
j=1 ασ(j),

(α1 + · · ·αk)s1 +

k∑
j=2

ασ(j)ŝj =

k∑
j=1

ασ(j)

(
j∑
l=1

sl

)
(5.56)
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where sk+1 = s1. Combining (5.53)-(5.56), we see that (5.52) is the claim that∫
s1>0,...,sk>0

g(s̄) exp

− k∑
j=1

ασ(j)

(
j∑
l=1

sl

) (5.57)

k∏
j=1

1

1− e−ασ(j)s̄
Mσ(ds1, . . . , dsk)

=

∫
s1>0,...,sk>0

g(s̄) exp

− k∑
j=1

ασ(j)

(
j∑
l=1

sl+1

)
k∏
j=1

1

1− e−ασ′(j)s̄
Mσ(ds2, . . . , dsk, ds1)

where sk+1 = s1, and this claim follows immediately from the relabeling (s1, . . . , sk) →
(s2, . . . , sk, s1). This establishes (5.52) and hence (5.50).

6 The restriction property

Let B ⊆ S be open and set

TBc = inf{t ≥ 0 | Xt ∈ Bc}. (6.1)

Let

X̃t(ω) =

{
Xt(ω) if t < TBc

∆ otherwise.
(6.2)

Clearly, t 7→ X̃t is right continuous. With

P̃tf(x) = Ex(f(Xt)1{t<TBc}), (6.3)

and

θ̃t(ω) =

{
θt(ω) if t < TBc(ω)

∆ otherwise,
(6.4)

we show in [23, Section 4.5] that X̃ = (Ω, Gt,G, X̃t, θ̃t, P̃
x) is a Borel right process with

state space B and potential densities

ũ(x, y) = u(x, y)− Ex (u (XTBc , y)) , x, y ∈ B, (6.5)

with respect to the measure m(dx) restricted to B. Here we have used the convention
that u(∆, y) = 0 and that Xt(ω) = ∆ when t = +∞. It follows as before that uniformly
in x, ũ(x, y) is locally bounded and continuous in y.

Let {Lxt , (x, t) ∈ S × R+} be the family of local times for X used in the construction
of µ. Set L̃xt = Lxt∧TBc for x ∈ B. It is easy to see that L̃xt is a CAF for X̃ and

Ẽx
(
L̃y∞

)
= Ex

(
LyTBc

)
= Ex (Ly∞)− Ex (Ly∞ ◦ θTBc )

= u(x, y)− Ex (u (XTBc , y)) = ũ(x, y).

It follows that {L̃xt , (x, t) ∈ B × R+} are local times for X̃. We can then define the loop
measure µ̃ for X̃ by the formula∫

F dµ̃ =

∫
B

P̃ x
(∫ ∞

0

1

t
F ◦ kt dtL̃xt

)
dm(x). (6.6)
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(In our definition (2.6) of µ we assumed that X had continuous potential densities. We
do not know if ũ(x, y) is continuous in x. However, the continuity of u(x, y) was only
used to guarantee a nice family of local times for X, and by the above this is inherited
by {L̃xt , (x, t) ∈ B ×R+}).

Theorem 6.1 (The Restriction Property).

µ(F ;TBc =∞) = µ̃(F ). (6.7)

Note that Bc = S −B does not contain ∆.
Proof of Theorem 6.1: It suffices to prove this for F of the form

∏k
j=1 fj(Xtj ) with

t1 < · · · < tk. Since fk(∆) = 0, and 1{TBc=∞} ◦ kt = 1{t≤TBc} we have

1{TBc=∞} ◦ kt
k∏
j=1

fj(Xtj ) ◦ kt = 1{tk<t≤TBc}

k∏
j=1

fj(Xtj ). (6.8)

Hence

µ

 k∏
j=1

fj(Xtj );TBc =∞

 (6.9)

=

∫
S

P x

∫ TBc

tk

1

t

k∏
j=1

fj(Xtj ) dL
x
t

 dm(x)

=

∫
B

P x

 k∏
j=1

fj(Xtj )1{tk<TBc}

∫ ∞
tk

1

t
dL̃xt

 dm(x)

=

∫
B

P x

 k∏
j=1

fj(Xtj )1{tk<TBc}

(∫ ∞
tk

1

t
dtL̃

x
t−tk

)
◦ θtk

 dm(x)

=

∫
B

P x

 k∏
j=1

fj(Xtj )1{tk<TBc}E
Xtk

(∫ ∞
tk

1

t
dtL̃

x
t−tk

) dm(x).

But this is clearly

∫
B

P̃ x

 k∏
j=1

fj(X̃tj ) Ẽ
X̃tk

(∫ ∞
tk

1

t
dtL̃

x
t−tk

) dm(x) (6.10)

which is precisely what we obtain from µ̃
(∏k

j=1 fj(Xtj )
)

by proceeding as in (6.9).

7 Transformations of the loop measure

7.1 Mappings of the state space

Let S̄ be another locally compact topological space with a countable base, and let
f : S 7→ S̄ be a topological isomorphism. Then

P̄t(x, g) = Pt(f
−1(x), g ◦ f). (7.1)

forms a Borel transition semigroup on S̄. Let Ω̄ be the set of right continuous paths ω
in S̄∆ = S̄ ∪∆ with ∆ /∈ S̄, and such that ω(t) = ∆ for all t ≥ ζ = inf{t > 0 |ω(t) = ∆}.
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Markovian loop soups

Then with X̄t(ω) = ω(t) it follows from [24, Section 13] that X̄ = (Ω̄, F̄t, X̄t, θt, P̄
x) is a

Borel right process. Furthermore,

Ū(x, g) =

∫ ∞
0

P̄t(x, g) dt =

∫ ∞
0

Pt(f
−1(x), g ◦ f) dt (7.2)

=

∫
S

u(f−1(x), y)g ◦ f(y) dm(y)

=

∫
S̄

u(f−1(x), f−1(z))g(z) df∗m(z).

Thus X̄ has continuous potential densities ū(x, y) = u(f−1(x), f−1(y)) with respect to
the measure f∗m.

If we let f̄ : Ω 7→ Ω̄ be defined as f̄(ω)(t) = f(ω(t)), it follows that

P̄ x (F ) = P f
−1(x)

(
F ◦ f̄

)
. (7.3)

Note further that L̄yt = L
f−1(y)
t ◦ f̄−1 is a CAF for X̄ with

P̄ x
(
L̄y∞
)

= P f
−1(x)

(
Lf
−1(y)
∞

)
= u(f−1(x), f−1(y)) = ū(x, y), (7.4)

so that {L̄yt , (y, t) ∈ S′ ×R+} are local times for X̄. Let µ̄ be the loop measure for X̄.

Theorem 7.1.
f̄∗µ (F ) = µ̄ (F ) . (7.5)

Proof of Theorem 7.1:

µ̄ (F ) =

∫
S′
P̄ x
(∫ ∞

0

1

t
F ◦ kt dtL̄xt

)
df∗m(x) (7.6)

=

∫
S′
P f
−1(x)

(∫ ∞
0

1

t
F ◦ kt ◦ f̄ dtLf

−1(x)
t

)
df∗m(x)

=

∫
S

P x
(∫ ∞

0

1

t
F ◦ kt ◦ f̄ dtLxt

)
dm(x)

= µ
(
F ◦ f̄

)
= f̄∗µ (F ) .

7.2 Unit Weights

We say that a random variable T ≥ 0 is a unit weight if∫ ζ

0

T ◦ ρu du = 1. (7.7)

Of course, since ζ is invariant under loop rotation, 1/ζ is an example of a unit weight.
(7.20) will provide another example, which is be used in the proof of Theorem 7.3 to
determine how the loop measure transforms under a time change.

Let Iρ(X) be the collection of measurable functions on Ω which are invariant under
loop rotation.

Lemma 7.2. If T is a unit weight then for all F ∈ Iρ(X)

µ(F ) =

∫
S

Qx,x (T F ) dm(x). (7.8)
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Proof: By invariance of µ we have that for each u > 0 and F ∈ Iρ(X)

µ(T ◦ ρu F ) = µ(T F ). (7.9)

Since ζ is invariant under loop rotation, this implies that for any u > 0

µ(T ◦ ρu 1{u<ζ} F ) = µ(T 1{u<ζ} F ). (7.10)

Hence ∫ ∞
0

µ(T ◦ ρu 1{u<ζ} F ) du =

∫ ∞
0

µ(T 1{u<ζ} F ) du. (7.11)

This shows that

µ

(∫ ζ

0

T ◦ ρu duF

)
= µ

(
T F

∫ ∞
0

1{u<ζ} du

)
= µ (T F ζ) . (7.12)

Using (7.7) and (2.27) our Lemma follows.

7.3 Time change by the inverse of a CAF

Consider

At =

∫
S

Lxt dνA(x) (7.13)

where νA is a Borel measure on S. We suppose that P x(At =∞, t < ζ) = 0 for all x ∈ S
and t > 0. (This is the case, for instance, if νA(K) < ∞ for each compact K ⊂ S.) By
the argument at the beginning of the proof of Lemma 2.1, (7.13) defines a CAF of X.
Let SA denote the fine support of A; that is, the set of x ∈ S such that P x(R = 0) = 1

where R = inf{t > 0 |At > 0}, see [24, Section 64]. Because m is a reference measure
and v(x) := Ex(exp(−R)) is a 1-excessive function, SA = {x ∈ S : v(x) = 1} is a Borel
subset of S; see [1, Prop. V(1.4)].

Let τt be the right continuous inverse ofAt, and let Yt = Xτt . Then Y =(Ω,Gt, Yt, θ̂t, P x)

is a Borel right process with state space SA and lifetime Aζ , see [24, Theorem 65.9] for
details, noting that [24, (60.4)] applied to exp(−At) allows us to assume that A is a per-
fect CAF. Here θ̂t(ω) = θτt(ω)(ω). Using the change of variables formula, [5, Chapter 6,
(55.1)], we see that

Ex
(∫ ∞

0

f (Yt) dt

)
= Ex

(∫ ∞
0

f (Xτt) dt

)
(7.14)

= Ex

(∫ Aζ

0

f (Xτt) dt

)

= Ex
(∫ ∞

0

f (Xs) dAs

)
=

∫
u(x, y)f(y) νA(dy),

so that Yt has continuous potential densities u(x, y) with respect to the measure νA(dy)

on SA. (In the last step we used the fact that for any measurable function hs, we
have

∫∞
0
hs dAs =

∫ (∫∞
0
hs dL

y
s

)
νA(dy). It suffices to verify this for functions of the

form hs = 1[0,t](s), in which case it is obvious). Furthermore, since SA is the fine
support of A, Lxτt is continuous in t for each x ∈ SA, see [11, p. 1659], and of course
Ey
(
Lxτ∞

)
= u(y, x). It follows that {Lxτt , (x, t) ∈ SA ×R+} is the family of local times for

Y . See [24, Theorem 65.6] for additivity.
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It will be convenient to use the canonical notation X ′=(Ω,F ′t, X ′t, θt, P ′x) for Y . Thus
X ′t(ω) = ω(t), which is the same as Xt(ω), but we use the notation X ′t to emphasize that
it is associated with the measures P ′x which we now define. If we set g(ω)(t) = ω(τt(ω))

we have Yt = Xt ◦ g and put
P ′x (F ) = P x (F ◦ g) . (7.15)

Using [24, (62.20)], compare (2.23), we see that if t1 < · · · < tn,

g∗Q
x,x

 n∏
j=1

fj
(
Xtj

) = Qx,x

 n∏
j=1

fj

(
Xτtj

) (7.16)

= P x

 n∏
j=1

fj

(
Xτtj

)
u(Xτtn

, x)


= P ′x

 n∏
j=1

fj

(
X ′tj

)
u(X ′tn , x)

 .

Let Q′x,x be the measure in (2.22) associated with X ′. Using (2.23) and the fact that X ′

also has potential densities u(x, y) we have that if x ∈ SA

P ′x

 n∏
j=1

fj

(
X ′tj

)
u(X ′tn , x)

 = Q′x,x

 n∏
j=1

fj

(
X ′tj

) .

Hence for all measurable F

g∗Q
x,x (F ) = Q′x,x (F ) , ∀x ∈ SA. (7.17)

Before considering general νA’s, we first study the special case where the measure
νA is equivalent to m. Thus νA(dx) = h(x)m(dx) where h is a measurable function on S
with 0 < h(x) <∞ for all x. It follows from (2.28) that

At =

∫ t

0

h (Xs) ds, (7.18)

and thus SA = S. Let µ, µ′ be the loop measures for X,X ′ respectively.

Theorem 7.3. If νA(dx) = h(x)m(dx) where h is a measurable function on S with
0 < h(x) <∞ for all x, then

g∗µ (F ) = µ′ (F ) , ∀F ∈ Iρ (X ′) . (7.19)

Proof of Theorem 7.3: Define the unit weight

T (ω) =
h(ω(0))

Aζ(ω)
. (7.20)

By (7.8) we have µ (F ) =
∫
S
Qx,x (T F ) m(dx) for all F ∈ Iρ (X). It is easy to see that

F ∈ Iρ (X ′) implies that F ◦ g ∈ Iρ (X). Noting that Aζ = ζ ◦ g, and using (7.17)

g∗µ (F ) = µ (F ◦ g) (7.21)

=

∫
S

Qx,x (T F ◦ g) m(dx)

=

∫
S

Qx,x
(

1

ζ ◦ g
F ◦ g

)
h(x)m(dx)

=

∫
S

Q′x,x
(

1

ζ
F

)
h(x)m(dx) = µ′ (F ) .
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The last equality used (2.27) and the fact that νA(dx) = h(x)m(dx).

We next show how to combine Theorems 7.1 and 7.3. Let S′ be another locally
compact topological space with a countable base, and let f : S 7→ S′ be a topological
isomorphism. With h as above, let mS′ be the measure on S′ defined by

mS′(dy) := f∗ (h mS) (dy). (7.22)

It follows from the discussion in sub-section 7.1 and the present sub-Section that if we
set X̄ ′t := f (Xτt) = f (Yt) and {P̄ ′x, x ∈ S′} the measures induced by {P x, x ∈ S}, then
X̄ ′ =(Ω̄, F̄t, X̄ ′t, θt, P̄ ′x) is a Borel right process with continuous potential densities

ū′(x, y) = u(f−1(x), f−1(y)) (7.23)

with respect to the measure f∗ (h mS) = mS′ on S′.
Set f ](ω)(t) = f(ω(τt)) and let µ, µ̄′ be the loop measures for X, X̄ ′ respectively.

Combining Theorems 7.1 and 7.3 we obtain

Corollary 7.4.
f ]∗µ (F ) = µ̄′ (F ) , ∀F ∈ Iρ (X ′) . (7.24)

Remark 7.5. LetD,D′ be two simply connected domains in the complex plane and let f
be a conformal map from D onto D′. Let X be Brownian motion in D. Since the potential
density for X with respect to λD, Lebesgue measure on D, is not continuous, (it has
a logarithmic singularity on the diagonal), X does not fit into the framework of this
paper. Nevertheless, we argue by analogy. Let h(x) = |f ′(x)|2. Then X̄ ′ is a Brownian
motion in D′, and f∗ (hλD)(dy) = λD′(dy). It follows formally that (7.24) would yield
[18, Proposition 5.27], the conformal invariance of Brownian loop measures.

We now turn to a general CAF as in (7.13), Our results are not as complete as (7.19),
but see the Remark following the proof of Theorem 7.6.

For any B ⊆ S let LB(X) be the σ-algebra generated by the total local times
{Lx∞, x ∈ B} of X, and let µ′ be the loop measure for X ′.

Theorem 7.6.
g∗µ (F ) = µ′ (F ) , ∀F ∈ LSA (X ′) . (7.25)

Proof of Theorem 7.6: By Lemma 2.2

µ(Lx∞ · F ) = Qx,x(F ), ∀F ∈ LS(X), x ∈ S. (7.26)

Recall that L′x∞ = Lx∞ ◦ g so that

LSA (X ′) = LSA (X) ◦ g. (7.27)

Consider F ∈ LSA (X). Since Aζ ∈ LSA(X) and Aζ > 0, Px a.s. for all x ∈ SA, by
replacing F in (7.26) by F/Aζ and then integrating with respect to dνA(x) we can deduce
immediately that

µ(F ) =

∫
SA

Qx,x
(
F

Aζ

)
νA(dx), ∀F ∈ LSA (X) . (7.28)

Although SA may not be locally compact, X ′ inherits from X all the properties
needed to define µ′ as in (2.6), and it then follows as in (2.22) that

µ′(F ) =

∫
SA

Q′x,x
(

1

ζ
F

)
dνA(x). (7.29)
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By (7.17) this shows that

µ′(F ) =

∫
SA

Qx,x
(

1

ζ ◦ g
F ◦ g

)
dνA(x). (7.30)

Noting that Aζ = ζ ◦ g, (7.28) and (7.27) then imply our Theorem.

Remark 7.7. For x1, . . . , xn ∈ S we define the multiple local time

Lx1,...,xn
t (7.31)

=

n∑
j=1

∫
0≤s1≤...≤sn≤t

dLxjs1 dL
xj+1
s2 · · · dLxnsn−j+1

dLx1
sn−j+2

dLx2
sn−j+3

· · · dLxj−1
sn ,

that is, we measure n-tuples of times in which x1, . . . , xn are visited in cyclic order. If
n = 2 and x1 6= x2, then Lx1,x2

t = Lx1
t L

x2
t , but in general Lx1,...,xn

t is not a product of the
corresponding local times. Let M(X) denote the σ-algebra generated by the multiple
local times. When Supp (νA) = S we can show that (7.25) holds for all F ∈ M(X) =

M(X ′). When S is finite, it is known that M(X) = Iρ (X), [13, p. 24]. For diffusions,
see [21], especially Corollary 2.9, and for more general processes see [3].

We leave to the interested reader the task of combining Theorem 7.6 with spatial
transformations as in Corollary 7.4.
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