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Abstract

We prove the existence of uncountably many nonnegative harmonic functions for
random walks in the euclidean space with non-zero drift, killed when leaving general
convex cones with vertex in 0. We also make the natural conjecture about the Martin
boundary for lattice random walks in general convex cones in two dimensions. Proving
that the set of harmonic functions found is the full Martin boundary for these processes
is an open problem.
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1 Introduction and statement of result

We prove that for random walks of non zero drift on the euclidean space Rd, d ≥ 2,
killed when leaving a convex cone with vertex in 0, there are uncountably many non-
negative harmonic functions. The main assumption is finiteness of the jump generating
function of the step of the random walk in a neighborhood of its preimage of 1. The
proof is constructive and an adaptation of the similar proof in [Ignatiouk-Robert, Loree],
which considers the special case of lattice random walks in the two-dimensional positive
quadrant. We also make a conjecture about the Martin boundary of two-dimensional
random walks, killed when leaving convex cones of R2 and comment on the difficulties
in translating the [Ignatiouk-Robert, Loree] proof to the more general setting we are
considering.

We consider a convex cone in Rd, d ≥ 2 with vertex in 0, denote by K its interior,
which we assume to be nonempty throughout the paper and also a random walk on the
euclidean space Rd with steps Xi, i ∈ N and step distribution γ. We also set Σ = K∩Sd−1.
We will study the random walk when some or all of the following assumptions are fulfilled.

A1 The step distribution has

m := E[X1] 6= 0 and E[|X1|] 6= 0.

A2 The jump generating function ϕ(a) := E[ea·X1 ] fulfills

D = {a ∈ R2|ϕ(a) ≤ 1} ⊂ int({a ∈ R2|ϕ(a) <∞}).
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On harmonic functions of killed random walks

A3 The random walk is lattice-valued, irreducible in Zd and the killed random walk
when leaving K is irreducible in K. Moreover, the angle between every two points
in ∂Σ is strictly smaller than π.

We will denote Ez for the measure describing the distribution of random walks started
at z, i.e. with S(0) = z.
Assumption A2 is the standard assumption made for the study of the Martin boundary of
lattice random walks in the euclidean lattice (see[Ney, Spitzer]). It implies in particular
that X1 has all moments.

Under assumptions A1 and A2 it is well-known, that

D = {a ∈ Rd : ϕ(a) ≤ 1}

is a strictly convex and closed set, the gradient ∇ϕ(a) exists everywhere and does not
vanish on ∂D = {a ∈ Rd|ϕ(a) = 1}. Moreover, the mapping

a→ q(a) =
∇ϕ(a)

|∇ϕ(a)|

is a homeomorphism between ∂D and an open set of Sd−1. D does not need to be
bounded as the case d = 2, γ = 1

3δ(1,−1) + 1
3δ(−1,1) + 1

3δ(−1,−1) shows. If A3 is additionally
fulfilled then D is additionally compact and the image of q(·) is the whole sphere in d

dimensions Sd−1 (see[Ney, Spitzer] and the references therein). The inverse mapping is

Figure 1: A typical D in R2.
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denoted by q → a(q) and, whenever possible, we extend this map to nonzero q ∈ Rd by

setting a(q) := a
(
q
|q|

)
. This definition implies that a(q) is the only point in ∂D where q

is normal to D. See figure 1 for a typical picture of D in the case d = 2 and that A1-A3
hold.

If A3 is not fulfilled, we make the following weaker assumption to avoid trivialities.

A4 Γ = {a ∈ ∂D |q(a) ∈ Σ = K ∩ Sd−1} is nonempty.
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On harmonic functions of killed random walks

Figure 2: A convex cone in R2.
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For the case d = 2 we encode the cone K as follows: take Λ to be a set of two points
in the unit circle S1, Λ = {c1, c2}, so ordered that the angle φ between them is in (0, π).
The rays from (0,0) to infinity going through the S1-sector between the two vectors in Λ

enclose a convex cone. Its interior K depends on the vectors we chose, i.e. K = K(c1, c2).
A4 implies that at least one of the ci is normal to ∂D if not both. We also note the unit
vectors f1 and f2, respectively perpendicular to c1 and c2, pointing inwards. See figure 2
for a typical example. Defining additionally the stopping time

τ = inf{n ≥ 0|S(n) 6∈ K}

we want to prove the following.

Proposition 1.1. (a) Under assumptions A1, A2 and A4 for every a such that
q(a) ∈ int(Σ) and z ∈ K

ha(z) = exp(a · z)− Ez[exp(a · S(τ)), τ <∞].

are nonnegative and harmonic for the random walk, killed when leaving the cone.
(b) If in (a) d = 2 and a fulfills q(a) = ci, i ∈ {1, 2} the function

ha(z) = z · fi exp(a · z)− Ez[fi · S(τ) exp(a · S(τ)), τ <∞]

is nonnegative and harmonic for the random walk, killed when leaving the cone.
(c) The harmonic functions from (a)-(b) are strictly positive if A3 is additionally fulfilled.

These harmonic functions are just a generalization of the functions found in
[Ignatiouk-Robert, Loree]. Intuitively, a look at figure 2 and at their paper suggests, that
these functions must be the harmonic functions for general cones in the two-dimensional
case.

For the case q(a) 6∈ int(Σ) our proof method doesn’t work in general for d ≥ 3. The
difficulty lies in proving a general version of Corollary 3.4, whose proof here uses the fact
that for d = 2 the event {the random walk doesn’t leave K from a specific supporting
hyperplane of the cone} can be encoded easily through the unique opposite supporting
hyperplane. This simple characterization generalizes to d ≥ 3 only if the cone is defined
as intersection of finitely many halfspaces, which we don’t pursue here since we are
interested in the class of general cones. We remark also the following.

Remark 1.2. In the formulation of Proposition 1.1 the event {τ < ∞} can be left out
when m 6∈ K.
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On harmonic functions of killed random walks

Remark 1.3. For d = 1 the only cone to consider is (0,∞). [Doney] fully characterizes
the Martin boundary in the lattice case. His result can be used direcly in special cases
even in Rd, d ≥ 2, when our assumptions are not fulfilled. For example, it shows that
random walks which are cartesian products of one-dimensional lattice random walks with
drift −∞ and such that ∂D = {0}, killed when leaving K = (0,∞)d have no nontrivial
nonnegative harmonic function.

Finally, one can see how the harmonicity result in [Ignatiouk-Robert, Loree] immedi-
ately follows from our proposition by taking c1 = (0, 1) and c2 = (1, 0) in (b).

Proposition 1.4 ([Ignatiouk-Robert, Loree]-Harmonic functions for the positive quadrant).
Assume A1-A3. For every a ∈ Γ+ := {a ∈ ∂D : q(a) ∈ R2

+, |q(a)| = 1} and z = (x1, x2) ∈
N∗ ×N∗

ha(z) =


x1 exp(a · z)− Ez[S1(τ) exp(a · S(τ)), τ <∞], if q(a) = (0, 1),

x2 exp(a · z)− Ez[S2(τ) exp(a · S(τ)), τ <∞], if q(a) = (1, 0)

exp(a · z)− Ez[exp(a · S(τ)), τ <∞], otherwise

are strictly positive and harmonic for the random walk, killed when leaving the positive
quadrant.

The rest of the paper is organized as follows. The next section states the natural
conjecture about the Martin boundary of random walk, killed when leaving a two-
dimensional convex cone, when A1-A3 are all fulfilled. We also underline where the proof
in [Ignatiouk-Robert, Loree], which considers only the positive quadrant, breaks down
for the general case. In the last section, Proposition 1.1 is proven by adapting the proof
of Proposition 1.4, contained in [Ignatiouk-Robert, Loree], to the general setting we are
considering.

2 A Conjecture: Martin boundary for general convex cones in two
dimensions

For this section only we assume that A1-A3 are fulfilled and that d = 2. In [Ney, Spitzer]
the authors show that every positive harmonic function h for the random walk can be
expressed as

h(z) =

∫
C

ec·zdγ(c).

Here γ is a positive Borel measure on some suitable set C. These types of functions
and the types considered in Remark 3.2 of the next section are not harmonic for killed
random walk on the quadrant. To "make" them harmonic, one has to consider the
correction term. Therefore the form of the functions in Proposition 1.4.

The main contribution of [Ignatiouk-Robert, Loree] is to show that these functions
are the whole Martin boundary for the case of the positive quadrant (see Theorem 1
there).

Judging from the analogy between Proposition 1.1 and 1.4, we conjecture the follow-
ing (stated analoguously to Theorem 1 in [Ignatiouk-Robert, Loree]).

Conjecture For the cone encoded by c1 and c2 as in section 1 and under the assumptions
A1 - A4 made there, we have that :

1. A sequence of points zn in K with limn→ |zn| = +∞ converge to a point of the Martin
boundary for the killed random walk when leaving the cone, if and only if zn

|zn| → q

for some q ∈ Γ.

2. The full Martin Compactification of K ∩Z2 is homeomorphic to the closure of the set
{w = z

1+|z| |z ∈ K ∩Z
2} in R2.
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On harmonic functions of killed random walks

In short, Proposition 1.1 (a)-(b) fully characterizes the Martin boundary of random walks
on the two dimensional euclidean lattice, killed when leaving convex cones.

If one tries to carry over the methods of [Ignatiouk-Robert, Loree] to this general
case, one sees that the communication condition contained there and the large deviations
result can be modified to work for the more general setting as well. We will not give
details how this is done, but we mention shortly that both can be proven if one augments
assumption A3 by the following.

"Strong local" irreducibility: There exists some uniform R > 0 such that for every
z ∈ K, e ∈ Z2, |e| = 1 such that z + e ∈ K we have: there exists a path of measure
non zero within K ∩BR(z) from z to z + e.

This assumption is neccessary, if one wants to work with the communication condition
as [Ignatiouk-Robert, Loree] do and is fulfilled in the positive quadrant setting due to
irreducibility. The obstacle for generalizing the proof in the case of the positive quadrant
is the lack of Markov-additivity for local processes for the general case. We recall that a
Markov Chain Zn = (A(n),M(n)) on a countable space Zd ×E is called Markov-additive
if for its transition matrix p it holds:

p((x, y), (x′, y′)) = p((0, y), (x′ − x, y′)) for all x, x′ ∈ Zd, y, y′ ∈ E

[Ignatiouk-Robert, Loree] make extensive use of this property when showing the above
conjecture for the case of the positive quadrant. The idea for the general case of convex
cones would be to look at local processes "deep" inside the cone, where the random walk
is Markov-additive in two directions. But approaching the boundary of the cone, this
property disappears in general in both directions. For the positive quadrant this happens
only for one direction and this is crucial for the proof in [Ignatiouk-Robert, Loree].
Without Markov-additivity it seems impossible to come to a usable Ratio Limit theorem
as is done in [Ignatiouk-Robert, Loree]. On the other hand, the proof of Proposition 1.1
does not use Markov-additivity. This suggests the existence of more general methods
than those of [Ignatiouk-Robert, Loree] for proving the conjecture made in this section
or a similar conjecture in higher dimensions.

3 Proof of Proposition 1.1.

We assume throughout that when considering random walks in general dimensions
d ≥ 2 A1,A2 and A4 are fulfilled and when d = 2 instead of A4 the stronger assumption
A3 is fulfilled. Before starting with a series of Lemmas, which will lead to the proof of
Proposition 1.1 we introduce the family of twisted random walks Sa with (substochastic)
transition matrix

pa(z, z′) = γ(z′ − z)ea·(z
′−z) , a ∈ D

and τa the respective exit time from K. Note that these are equivalent measures to γ.
In particular, Sa is irreducible (in K) if and only if S is and the stopped random walk
Sa(· ∧ τ) is irreducible (in K) if and only if S(· ∧ τ) is.

We start the proof of Proposition 1.1 by proving the following simple Lemma.

Lemma 3.1. For every a ∈ D, z ∈ K : Ez[e
a·(S(τ)−z), τ <∞] = Pz(τa <∞). In particular,

z → 1− Ez[ea·(S(τ)−z), τ <∞] is a nonnegative function.

Proof. For every n ∈ N, A ⊂ Kc measurable one sees easily

Pz(Sa(n) ∈ A, τa = n) = Pz(Sa(i) ∈ K, i ≤ n− 1, Sa(n) ∈ A)

= E[ea·(S(n)−z), S(n) ∈ A, τ = n]
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On harmonic functions of killed random walks

and with this

Pz(τa <∞) =
∑
n≥0

∫
Kc

Pz(τa = n, Sa(n) ∈ dz′)

=
∑
n≥0

∫
Kc

ea·(S(n)−z)Pz(S(n) ∈ dz′, τ = n)

= Ez[e
a·(S(τ)−z), τ <∞].

We note the following simple Remark.

Remark 3.2. For every q ∈ Sd−1 ∩ Im(q), d ≥ 2 and q̃ ∈ Sd−1 perpendicular to q we have
that

fq(z) = q̃ · zea(q)·z

is harmonic for the original random walk S(n).
Indeed we use that a(q) ∈ ∂D in the following calculation.

Ez[fq(S(1))] = Ez[q̃ · S(1)ea(q)·S(1)]

= Ez[q̃ · (S(1)− z)ea(q)·(S(1)−z)+a(q)·z + q̃ · zea(q)·(S(1)−z)+a(q)·z]

= ea(q)·z q̃ · (∇ϕ(a)|a=a(q) + z) = fq(z),

since ∇ϕ(a)|a=a(q) = q for q ∈ Sd−1 ∩ Im(q).

Returning to our main task, we define the following for the case d = 2:

Hi = {z ∈ R2|z · fi > 0}

and
τi = inf{n ≥ 0|S(n) 6∈ Hi}.

Then of course τ = τ1 ∧ τ2 since K = H1 ∩H2. With this, we note the following remark
for the case d = 2.

Remark 3.3. In the case d = 2, for z ∈ K and a ∈ D

Ez[e
a·S(τ), τ = τ2 < τ1]

= Ez[e
a·(S(τ)−z)), τ = τ2 < τ1]ea·z ≤ ea·z,

since the expectation in the second line is just Pz(τa = τa2 < τa1) ≤ 1 with the same
reasoning as in Lemma 3.1.

From this last remark the following is immediate.

Corollary 3.4. In the case d = 2 for z ∈ K and i, j ∈ {1, 2} so that ci ∈ Im(q) and i 6= j

z → Ez[|fi · S(τ)|ea(ci)S(τ), τ = τj < τi]

is finite.

Proof. Take w.l.o.g. i = 1 and j = 2. Then in the event that τ = τ2 < τ1 we have
f1 · S(τ) > 0 and f2 · S(τ) ≤ 0. Also (look again at figure 1) for small enough δ > 0 there
always exists some suitable ε > 0 so that a(c1) + δf1 − εf2 lies in D. This yields

Ez[|f1 · S(τ)e(a(c1)·S(τ), τ = τ2 < τ1] ≤ 1

δ
Ez[e

(a(c1)+δf1)·S(τ), τ = τ2 < τ1]

≤ 1

δ
Ez[e

(a(c1)+δf1−εf2)S(τ), τ = τ2 < τ1]

since −εf2S(τ2) ≥ 0. Now the result follows from Remark 3.3.
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Before going on with the next step in the proof of Proposition 1.1, we need an auxiliary
lemma, which is part of the folklore now in probability. The proof for the case x = 0 can
be found in [Feller] and for x > 0 we give an easy version here due to lack of a definite
reference.

Lemma 3.5. For a random walk with jump X1 of mean zero, E[|X1|] > 0 and E[X2
1 ] <∞

and T0 = inf{n ≥ 1|S(n) ≤ 0} we have Ex[|S(T0)|] <∞ for x > 0.

Proof. The problem is the same as proving that for the positive ladder heights {χ(n)
+ }n

of the random walk {−S(n)|n ≥ 1} and σx = inf{k > 0|Tk :=
∑k
i=1 χ

(i)
+ > x} we have

E[T (σx)] <∞. Since we are in the driftless case for the original random walk, we know
that the ladder heights are proper and that E[σx] <∞. The assumption E[X2

1 ] <∞ and
results in [Chow] imply that here Wald’s identity can be applied on {T (n)|n ≥ 1} to give

E[T (σx)] = E[χ
(1)
+ ]E[σx] <∞.

Returning to our main task we prove the following.

Lemma 3.6. For d = 2, z ∈ K , i = 1, 2

z → Ez[|fi · S(τ)|ea(ci)·S(τ), τ <∞]

is a finite well-defined function if ci ∈ Im(q).

Proof. Take i = 1 w.l.o.g. Then

Ez[|f1 · S(τ)|ea(c1)·S(τ), τ <∞] = Ez[|f1 · S(τ)|ea(c1)·S(τ), τ = τ2 < τ1]

+ Ez[|f1 · S(τ)|ea(c1)·S(τ), τ = τ1 <∞]

Note that the first term in the sum above is finite due to Corollary 3.4. The second one is
smaller than

Ez[|f1 · S(τ)|ea(c1)·S(τ), τ1 <∞] = −Ez[f1 · S(τ1)ea(c1)·S(τ1), τ1 <∞]

Now we have that

E0[f1 · S(1)ea(c1)·S(1)] = f1 · E0[S(1)ea(c1)·S(1)]

= f1 · ∇ϕ(a)|a=a(c1) = f1 · c1 = 0,

which means in short
E0[f1 · Sa(1)] = 0

Now the real-valued random walk f1 · Sa(n) fulfills

E0[|f1 · Sa(1)|2] <∞.

With this and
Ez[|f1 · S(τ1)|ea(c1)·S(τ1), τ1 <∞] = Ef1·z[|f1 · Sa(τa1)|]

we can use lemma 3.5 and finish the proof.

We also prove the following lemma.

Lemma 3.7. For a ∈ Γ and q(a) ∈ int(Γ)

z → 1− Ez[ea·(S(τ)−z), τ <∞]

is strictly positive in K if A3 holds. If d = 2, A3 holds and a = a(ci) for ci ∈ Im(q) then it
is zero.
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Proof. Consider first d = 2, i ∈ {1, 2} fixed and a = a(ci). We have due to Lemma 3.1

Ez[e
a·(S(τ)−z), τ <∞] = Pz(τa <∞) = 1

since also E0[fi · Sa(1)] = 0 i.e. the respective one dimensional random walk is recurrent
with the same calculation as in the previous Lemma.

Let now d ≥ 2 and a ∈ int(Γ). It holds

m(a) =

∫
zea·zγ(z) = ∇ϕ(a) = |∇ϕ(a)|q(a).

This means that m(a) ∈ K. The Strong Law of Large Numbers implies

Sa(n)

n
→ m(a), for n→∞ (3.1)

regardless of the starting point z. Note that there exists some N > 0 and ε > 0, so that
{z ∈ Rd| | zn − m(a)| < ε for some n ≥ N} is contained in K, since dist(m(a), ∂K) > 0.
Together with (3.1) this implies the existence of some random Nz,ε > N such that for
n ≥ Nz,ε we have Sa(n) ∈ K, if Sa(0) = z. Define for each point b ∈ ∂Σ the vector f(b)

to be a unit normal vector to ∂K, perpendicular to b and pointing in the interior of K.
Without loss of generality we will assume that ∂Σ is smooth (otherwise just restrict the
cone accordingly, so that the ball of radius ε around m(a) is still contained in the interior
of the restricted smooth open cone). We have from the discussion above: if Sa(0) = 0

min
n∈N

min
b∈∂Σ

f(b) · Sa(n) > −∞ almost surely.

For some fixed and suitable ẑ ∈ K we get therefore with help of Lemma 3.1

1− Eẑ[ea·(S(τ)−ẑ), τ <∞] = Pẑ(τa =∞)

= P0(min
n∈N

min
b∈∂Σ

f(b) · Sa(n) > − min
b∈∂Σ

f(b) · ẑ) > 0.

Now we use A3 to get through the Markov property for general z ∈ K

1− Ez[ea·(S(τ)−z), τ <∞] = Pz(τa =∞)

≥ Pz(Sa(t) = ẑ, τa > t)Pẑ(τa =∞) > 0,

if t is chosen such that the first probability is not zero.

Just before proving Proposition 1.1, we prove the following.

Lemma 3.8. If d = 2, for z ∈ K and i ∈ {1, 2} so that ci ∈ Im(q)

z → fi · zea(ci)·z − Ez[fi · S(τ)ea(ci)·S(τ)]

is well-defined and nonnegative in K.

Proof. Due to Remark 3.2 we have that fi · S(n)ea(ci)·S(n) is a martingale and by optional
stopping theorem for every z ∈ K we have

Ez[fi · S(τ)ea(ci)·S(τ), τ ≤ n]

= Ez[fi · S(τ ∧ n)ea(ci)·S(τ∧n)]− Ez[fi · S(n)ea(ci)·S(τ), τ > n]

= fci(z)− Ez[fi · S(n)ea(ci)·S(τ), τ > n] ≤ fci(z)

with the notation of Remark 3.2. Now Lemma 3.6 justifies dominated convergence and
the result follows.
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Proof of Proposition 1.1. (a) Take first a ∈ int(Γ). By Lemma 3.1 ha is nonnegative in K.
Set

f(z) = Ez[e
a·S(τ), τ <∞].

For z 6∈ K one has f(z) = ea·z which implies ha(z) = 0 and with it Ez[ha(S(1)), τ > 1] = 0.
For z ∈ K we have

Ez[f(S(1))] = Ez

[
ES(1)[e

a·S(τ), τ <∞]
]

= Ez[e
a·S(1), τ = 1] + Ez

[
Ez[e

a·S(τ), τ <∞|F1], τ > 1
]

= f(z),

(3.2)

as one can easily see. This implies for ha(z) = ea·z − f(z) the equality Ez[ha(S(1))] =

Ez[ha(S(1)), τ > 1] = ha(z). Here we have implicitly used that Ez[ea·S(1)] = ea·z since
a ∈ ∂D. With this, the case a ∈ int(Γ) is solved.
(b) Take w.l.o.g. a = a(c1). We know from Lemma 3.8 that ha is well-defined and
nonnegative in K. Take first z 6∈ K. Then, it is clear that ha(z) = 0 as is Ez[ha(S(1)), τ >

1]. Take now z ∈ K. We have first Ez[ha(S(1)), τ = 1] = 0 and therefore

Ez[ha(S(1)), τ > 1] = Ez[ha(S(1))]

= f1 · zea·z − Ez
[
ES(1)[f1 · S(τ)ef1·S(τ), τ <∞]

]
= ha(z)

since the second term in the sum after the second equality is equal to

Ez[f1 · S(τ)ea·S(τ), τ <∞]

by the similar reasoning as in (3.2). With this, harmonicity of ha is proved.
(c) We only have to consider the case of (b), since Lemma 3.7 deals with the other case.
We have

ha(z)e−a·z = f1 · z − Ez[f1 · S(τ)ea·(S(τ)−z), τ = τ1 <∞]

− Ez[f1 · S(τ)ea·(S(τ)−z), τ = τ2 < τ1 <∞] = f1 · z −A−B

where of course f1 · z −A ≥ f1 · z > 0 since z ∈ K. For B and δ > 0 we have

B ≤ 1

δ
Ez[e

a·(S(τ)−z)+δf1·S(τ), τ = τ2 < τ1]

≤ 1

δ
Ez[e

a·(S(τ)−z)+δf1·S(τ)−εf2·S(τ2), τ = τ2 < τ1]

where δ, ε > 0 are chosen such that c̃ := a+ δf1 − εf2 ∈ D (note that this is possible, see
figure 1 to get a grasp of this) and therefore due to Lemma 3.1

B ≤ 1

δ
Ez[e

c̃·(S(τ)−z), τ <∞]e(εf2−δf1)·z ≤ 1

δ
e(εf2−δf1)·z

Note now that there exists some z ∈ K such that (εf2 − δf1) · z < 0. Fix such a z and
set zn = nz and the respective B and A evaluated at zn with Bn and An. It follows that
there certainly exists ẑ ∈ K such that ha(ẑ) > 0. Now for arbitrary z in the cone use A3
to find some n ∈ N such that the probability the random walk reaches z from ẑ within
the cone in n steps is positive to see that

ha(z) ≥ ha(ẑ)Pẑ(Random Walk reaches z in n steps within the cone) > 0,

by harmonicity and nonnegativity of ha. This yields the positivity result for all z ∈ K.
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