
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 3 (1998) Paper no. 10, pages 1–75.

Journal URL
http://www.math.washington.edu/˜ejpecp/

Paper URL
http://www.math.washington.edu/˜ejpecp/EjpVol3/paper10.abs.html

ALMOST ALL WORDS ARE SEEN
IN CRITICAL SITE PERCOLATION
ON THE TRIANGULAR LATTICE

H. Kesten

Harry Kesten, Department of Mathematics, White Hall, Cornell University, Ithaca
NY 14853, USA, kesten@math.cornell.edu

V. Sidoravicius

Vladas Sidoravicius, IMPA, Estr. Dona Castorina 110, Rio de Janeiro, Brazil,
vladas@impa.br

Y. Zhang

Yu Zhang, Department of Mathematics, University of Colorado, Colorado Springs
CO 80933, USA, yzhang@vision.uccs.edu

Abstract We consider critical site percolation on the triangular lattice, that is,
we choose X(v) = 0 or 1 with probability 1/2 each, independently for all vertices
v of the triangular lattice. We say that a word (ξ1, ξ2, . . . ) ∈ {0, 1}N is seen in
the percolation configuration if there exists a selfavoiding path (v1, v2, . . . ) on the
triangular lattice with X(vi) = ξi, i ≥ 1. We prove that with probability 1 ‘almost
all’ words, as well as all periodic words, except the two words (1, 1, 1, . . . ) and
(0, 0, 0, . . . ), are seen. ‘Almost all’ words here means almost all with respect to the
measure µβ under which the ξi are i.i.d. with µβ{ξi = 0} = 1 − µβ{ξi = 1} = β
(for an arbitrary 0 < β < 1).
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1. Introduction.
We take up a problem of Benjamini and Kesten (1995) for site percolation

on a graph G with vertex set V . It is assumed throughout that all vertices are
independently occupied or vacant, each with probability 1/2. The corresponding
measure on occupancy configurations is denoted by P ; E denotes expectation with
respect to P . Set X(v) = 1(0) if v is occupied (vacant, respectively). We say that
a word ξ = (ξ1, ξ2, . . . ), with ξi ∈ {0, 1}, is seen along a path π = (v0, v1, . . . )
on G if π is selfavoiding and X(vi) = ξi, i ≥ 1 (note that the state of v0 does
not figure in this definition). Benjamini and Kesten (1995) studied which words ξ
are seen along some path on G. The classical percolation question is whether the
word (1, 1, . . . ) with all ξi = 1 is seen on G. The question whether so-called AB-
percolation occurs (see Mai and Halley (1980) and Wierman and Appel (1987))
becomes in the present terminology the question whether the word (1, 0, 1, 0, . . . )
is seen. Let

ρ(ξ) = P{ξ is seen along some path}, (1.1)

and let
Ξ = {0, 1}N

be the space of all words. On this space we put the measure

µ =
∞∏
i=1

µi, (1.2)

where for each i, µi({0}) = 1 − µ({1}) = β for some 0 < β < 1. Benjamini and
Kesten (1995) only considered the case β = 1/2, but W. Thurston asked us what
the influence of β is. It turns out that everything in this paper works for 0 < β < 1.
On ‘nice’ graphs, ρ(ξ) can only take the values 0 or 1. Moreover, ξ 7→ ρ(ξ) is a tail
function, that is, it depends only on {ξi}i≥n for any n. It therefore follows from
Kolmogorov’s zero-one law that

µ{ξ : ρ(ξ) = 1} = 0 or 1. (1.3)

In particular this is the case when G is the triangular lattice T in the plane
(see Proposition 3 in Benjamini and Kesten (1995)). If µ{ξ : ρ(ξ) = 1} = 1,
we say that ‘the random word percolates’. Benjamini and Kesten (1995) raised
the question whether for G = T this is the case or not. This special case is of
interest because site percolation on T with each vertex occupied with probability
1/2 is critical (see Kesten (1982), Grimmett (1989)), and it is known (see Harris
(1960), Fisher (1961), Kesten (1982)) that one does not see the word (1, 1, . . . )
(i.e., ρ(1, 1, . . . ) = 0 or ordinary percolation does not occur), but one does see the
word (1, 0, 1, 0, . . . ) (i.e., ρ(1, 0, 1, 0, . . . ) = 1 or AB-percolation does occur)(see
Wierman and Appel (1987)). So now one wants to know whether almost all [µ]
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words are seen or almost no words are seen; these are the only possibilities by (1.3).
Here we prove that almost all words are seen on T and also generalize considerably
the result of Wierman and Appel (1987) that AB-percolation occurs (albeit only
when the occupation probability of each vertex equals 1/2, while AB-percolation
is known to occur for the occupation probability in a small interval around 1/2).
To formulate our result we define the lengths of the runs, rm = rm(ξ), of a word

ξ by the requirement that ξi = 1 for
∑2k

1 rm < i ≤
∑2k+1

1 rm and ξi = 0 for∑2k+1
1 rm < i ≤

∑2k+2
1 rm, k ≥ 0, and r1 ≥ 0, rm > 0 for m > 1. We shall prove

the following result.

Theorem. On T , ρ(ξ) = 1 for almost all [µ] words ξ. Also ρ(ξ) = 1 for all words
ξ with rm(ξ) bounded in m.

It becomes an interesting question to find more explicitly for which words
ξ, ρ(ξ) = 1 and for which words ρ(ξ) = 0 on T . By the theorem ρ(ξ) = 1 for
all words whose letters ξi are eventually periodic with the exception of words
which have ξi = 1 or ξi = 0 from some point on. The latter words are excluded
by boundedness of the rm, and in fact, as we already stated, ρ((1, 1, . . . )) =
ρ((0, 0, . . . )) = 0. There certainly are uncountably many ξ’s for which ρ(ξ) = 0.
Indeed, the almost sure existence of infinitely many occupied and vacant circuits
surrounding 0 on T quickly shows that ρ(ξ) = 0 if ξ has long runs of ones and
zeroes. That is, if rm(ξ) grows fast enough with m, then ρ(ξ) = 0.

The idea of the proof of the Theorem is rather combinatorial and strongly
uses special properties of the triangular lattice. We do not know whether one sees
almost all words in bond percolation on Z2 at the critical point (or more accurately
in the equivalent site percolation on the covering graph of Z2). We almost explicitly
find occupancy configurations inside of which we can see many words. The key idea
is that of a double path. This is a pair of selfavoiding paths (π′, π′′) such that π′(π′′)
is occupied (vacant) and such that their initial points u′ and u′′ are neighbors, as
well as their final points v′ and v′′. The ‘region between the paths’ should also
have a certain minimality property (see (5.4)). One shows fairly simply, by means
of Proposition 2.2 of Kesten (1982), that for any word ξ = (ξ1, ξ2, . . . ) there is
a path (w0, w1, . . . , wν) in the region between π′ and π′′ along which one sees an
initial piece of ξ. This path starts at w0 = u′ and ends at wν which is either v′ or
v′′. Thus one sees at least a piece of ξ of length min(‖v′−u′‖, ‖v′′−u′‖). The same
is true when u′ is replaced by u′′. Unfortunately, with probability 1 there do not
exists infinite double paths in critical percolation on T ; in fact, with probability 1
there are not even infinite occupied or vacant paths. There exist infinitely many
occupied and vacant circuits surrounding the origin and these form obstructions
to double paths. In order to see a word ξ along a path which crosses an occupied
circuit at a vertex v, the word must have a 1 at the position corresponding to
the vertex v. On the other hand, Proposition 2.2 of Kesten (1982) easily shows
that there exist at least some double paths between successive occupied or vacant



ALMOST ALL WORDS ARE SEEN 5

circuits C′ and C′′ (see Section 5 after Corollary 1). Practically all the work is to
show that there exist many suitable double paths between C′ and C′′ when these
circuits are ‘far apart’. These double paths need to have special configurations
near their endpoint. These special configurations will allow one to connect in
many ways a double path between C′ and C′′ and another double path between C′′
and the next circuit C′′′ in such a way that one sees a random word ξ with high
probability along one of the many pairs of connected double paths. There is also
considerable technical work needed to show that in general successive occupied or
vacant circuits are far apart (see Lemmas 5-7).

Acknowledgement. The authors are grateful for support for the writing
of this paper from various sources. H.K. was supported by the NSF through a
grant to Cornell University and by the Mathematical Sciences Research Institute
in Berkeley, CA. V.S. was supported by an NSF-CNPq agreement and by FAPESP.
Y.Z. was supported by the NSF, Grant # DMS 9618128.
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2. Notation and some preliminaries about occupied and vacant cir-
cuits. We write T for the triangular lattice. For the present purposes we shall
assume that T is imbedded in the plane such that its vertex set is Z2, and its
edges are all edges between pairs (i1, j1) and (i2, j2) with either

|i1 − i2|+ |j1 − j2| = 1

or
i2 = i1 + 1, j2 = j1 − 1.

(These are the usual edges on Z2 plus the NW diagonals; see Figure 1).

Figure 1. A piece of the triangular lattice T .

Most terminology about graphs and paths on graphs follows Kesten (1982)
and for seeing words or percolation of words, the terminology is taken from Ben-
jamini and Kesten (1995). We point out that in this paper a path will always
mean a selfavoiding path even if this is not explicitly indicated. ‖x‖ will denote
the Euclidean norm of x.

Let S(m) be the square

S(m) = [−m,m]2, (2.1)

and let Am be the annulus

Am = S(2m) \ S(2m−1). (2.2)

For a subset G of R2 we denote its topological boundary by ∆G. We shall say
that a circuit J on T , or a Jordan curve J in R2 surrounds G, if J ∩G = ∅ and if
there is no continuous path in R2 \ J from G to ∞ (in other words, if J separates
G from ∞).

For any circuit C we denote by
◦
C and Cext the region in the interior and

exterior of R2 \ C , respectively. C will stand for C ∪
◦
C.
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We also need a partial order of circuits. If C ′, C ′′ are circuits on T we say

that C ′′ is larger than C ′ (or C ′ is smaller than C ′′) if
◦
C′ ⊂

◦
C′′, or equivalently,

if C ′ ⊂ C
′′
. In accordance with this ordering, we say that C ′ is the largest, or

outermost occupied circuit in C ′′ if C ′ is occupied, lies inside
◦
C′′ (in particular,

C ′ and C ′′ should be disjoint), and there is no other occupied circuit C ′′′ ⊂
◦
C′′

such that C ′′′ is larger than, but not equal to C ′. If there is any occupied circuit

in
◦
C′′, then there is a largest such circuit, by the argument of Lemma 1 in Kesten

(1980). Similarly if ‘occupied’ is replaced by ‘vacant’.

Remark 1. We shall repeatedly need the following fact. Let C ′ ⊂
◦
C ′′ for two

given circuits C ′, C ′′ such that C ′ is the largest occupied circuit in C ′′. Then C ′

must be occupied, and every vertex v ∈ C ′ must have a neighbor w ∈ C
′′ \ C′

which belongs to C ′′ or is connected by a vacant path to a neighbor of C ′′. (It
is not important for this what the state of the vertices on C ′′ is.) Even though
the statement is similar to Proposition 2.2 in Kesten (1982), it does not seem to
follow from this Proposition. Instead we shall use Corollary 2.2 of Kesten (1982).

Assume that C ′ is occupied, but there is no occupied circuit in
◦
C′′ which is larger

than but not equal to C ′. Change all vertices in
◦
C ′ (if any) to vacant. This can be

done because it influences neither our hypothesis nor conclusion. We also change
all vertices in C ′′ ∪ (C ′′)ext to vacant. Then there will be no occupied circuit in
all of T larger than but not equal to C ′. Now let v ∈ C ′. If we also change v to
vacant, then there does not exist an occupied circuit in T which surrounds v and
therefore, by Corollary 2.2 of Kesten (1982), the vacant cluster of v is unbounded
(in our changed configuration). But this means that in the changed configuration
there is a vacant selfavoiding path on T from v to ∞. Such a path has to stay in
(C ′)ext except for its initial vertex v, because it cannot exit from C ′ at any point
but v (recall that C ′ \ {v} is occupied). This is equivalent to the existence of a
neighbor w of v which belongs to C ′′ or has a vacant connection to a neighbor of
C ′′ in the original configuration, as claimed.

A similar argument applies to show that if C ′ is an occupied circuit in
◦
C′′

then there is no vacant circuit in
◦
C′′ \

◦
C′ if and only if there is an occupied path

from some vertex w ∈ C ′ to a vertex u adjacent to C ′′. For the ‘only if’ direction

in this situation, make all vertices in
◦
C′ ∪C ′′ ∪ (C ′′)ext occupied. Then, if there is

no vacant circuit in
◦
C′′ \

◦
C′, the occupied cluster of C ′ has to be infinite.

We next define C(N)
1 , C(N)

2 , . . . to be the successive disjoint occupied or va-

cant circuits in S(2N), working from the outside in. More precisely, C(N)
1 is the

outermost occupied or vacant circuit, as the case may be, in S(2N ). C(N)
k+1 is the
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outermost occupied or vacant circuit inside C(N)
k and disjoint from C(N)

k . We con-
tinue as long as there are such circuits surrounding the origin, 0. It is more elegant
to let N →∞, to obtain a system of circuits which does not depend on N , and we

shall do this now. Note that in contrast to the C(N)
i , this new system of circuits

will be numbered from the inside out, that is we will have Ci ⊂
◦
Ci+1. We use the

notation κ(C) = 0 and κ(C) = 1 for the events {C is vacant} and {C is occupied},
respectively.

Lemma 1. With probability 1 there exists a sequence of random disjoint circuits
Ck, k ≥ 1, surrounding 0 and so that each of these circuits is occupied or vacant,

Ck ⊂
◦
Ck+1, (2.3)

and

Ck is the largest circuit in
◦
Ck+1 which is entirely occupied or vacant. (2.4)

Moreover, for a fixed circuit C surrounding 0 and ε ∈ {0, 1}, the event⋃
k

{Ck = C, κ(C) = ε} = {C = some Ck, κ(C) = ε} (2.5)

depends only on the vertices in Cext ∪C.

Proof. For some fixed M , let C(M)
1 be the outermost occupied or vacant circuit in

S(2M ). For the sake of argument, let C(M)
1 be occupied. Next let D(M) be the

largest vacant circuit in
◦
C

(M)
1 . We claim that then for all N ≥ M the outermost

vacant circuit in S(2M) from the sequence C(N)
k , k ≥ 1, isD(M); in particular,D(M)

will be one of the C(N)
k . Indeed, this outermost vacant circuit in S(2M) among

the C(N)
k cannot intersect the occupied C(M)

1 and hence must lie entirely inside or

outside it. It cannot lie outside C(M)
1 , because there is neither an occupied nor a

vacant circuit outside C(M)
1 in S(2M ). Thus the outermost vacant circuit in S(2M )

from the sequence C(N)
k must lie inside C(M)

1 and equal D(M). This proves our
claim.

Now supposeD(M) = C(N)
k(N) and let the last circuit which exists in the sequence

C(N) be C(N)
`(N). Then we can find the successive circuits C(N)

i , k(N) ≤ i ≤ `(N), as

the sequence of successive occupied or vacant circuits in D(M). Thus the circuits in

the sequence C(N)
k insideD(M) are the same for all N ≥M . Since, with probability

1, D(M) lies outside any fixed square for all large M , we can take for the circuits Ck
inside a fixed square S simply the circuits from the sequence C(M)

k for any M for
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which D(M) lies outside S. If we index these circuits so that Ck ⊂
◦
Ck+1, then (2.3)

automatically holds and (2.4) follows because Ck and Ck+1 are successive circuits

in the sequence C(M)
k for large M . Finally, the event in (2.5) equals

lim
M→∞

⋃
k

{C(M)
k = C, κ(C) = ε}, (2.6)

and for fixed M the event here depends only on the vertices in Cext ∪ C . Indeed,

the event {C(M)
k = C, κ(C) = ε} is itself a disjoint union of

{C(M)
k = C, C(M)

i = Ci, κ(C) = ε, κ(Ci) = εi} (2.7)

over Ci, εi, 1 ≤ i ≤ k − 1, with C1 ⊂ S(2M ), C ⊂
◦
Ck−1, Ci+1 ⊂

◦
Ci, 1 ≤ i < k.

Moreover, one can show by induction on k that the event in (2.7) depends only on

vertices in Cext ∪C . E.g., the event {C(M)
1 = C1, κ(C1) = 1} occurs if and only if

C1 is occupied and there does not exist an occupied circuit C ′ in S(2M ) which is
larger than, but not equal to C1. Thus the last statement of the lemma also holds.

�
From now on {Ck} will be the ‘growing’ sequence of circuits constructed in

Lemma 1 and no further reference to the C(N)
k will be made. In the next lemma

we formulate some more distributional properties for the vertices between the
successive circuits Ck.

Lemma 2. The events {κ(Ck) = εk}, k ≥ 1, are independent with

P{κ(Ck) = εk} =
1

2
(2.8)

for all choices of εk ∈ {0, 1}.
Moreover, if {Ci : 0 ≤ i ≤ n} are fixed circuits surrounding the origin such

that Ci ⊂
◦
Ci+1, then conditionally on the event

{Ci = Ci, κ(Ci) = εi, 1 ≤ i ≤ n}, (2.9)

the collections of vertices

{v : v ∈ Cext
i−1 ∩

◦
Ci}, 1 ≤ i ≤ n (with Cext

0 = T ),

are independent, and the distribution of the occupancy of {v : v ∈ Cext
i−1 ∩

◦
C i},

given (2.9), is simply the conditional distribution of {v : v ∈ Cext
i−1 ∩

◦
Ci} given that

there is no occupied or vacant circuit in Cext
i−1 ∩

◦
Ci.

Proof. We only prove the independence of the events {κ(Ck) = εk}. We do this
by interchanging occupied and vacant vertices in a certain region. Condition on
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{Ck+i = Ck+i, κ(Ck+i) = εk+i, 0 ≤ i ≤ r} for any r <∞. This event depends only

on the vertices in Cext
k ∪ Ck. Thus conditionally on this event, the vertices in

◦
Ck

are still independently occupied or vacant with probability 1/2 each. In particular,

there is still symmetry between ‘occupied’ and ‘vacant’ in
◦
Ck. Consequently, the

events {Ck−1 is occupied} and {Ck−1 is vacant} still have the same conditional
probability, which must then be equal to 1/2. This proves the stated independence
and (2.8).

The rest of the lemma follows from Remark 1. We leave the details to the
reader.

�
3. Spacings between circuits. This section discusses how close together the
circuits Ck are. Throughout, ci will denote a strictly positive finite constant. We
begin with a few very simple lemmas of this kind.

Lemma 3. For 0 ≤ ` < k, let σ(`, k) be the maximal number of disjoint occupied
circuits surrounding 0 in S(2k)\S(2`). Then there are constants 0 < ci <∞ such
that for ` < k,

P{σ(`, k) ≤ c1(k − `)} ≤ 2e−c2(k−`) (3.1)

and
P{σ(`, k) ≥ x(k − `)} ≤ c3e−c4x, x ≥ 0. (3.2)

Proof. By the Russo-Seymour-Welsh lemma, the probability that there exists an
occupied circuit in Am is bounded below by a strictly positve constant, c5 say.
Since S(2k) \ S(2`) is the disjoint union of the annuli Ai, ` < i ≤ k, it follows
that σ(`, k) is stochastically larger than a binomial variable with (k − `) trials
and success probability c5. Thus (3.1) with c1 = (1/2)c5 follows from standard
exponential bounds for the binomial distribution.

On the other hand, the argument in Chayes, Chayes and Durrett (1986) shows
that Eσ(`, k) ≤ c6(k − `). Thus by Markov’s inequality

P{σ(`, k) ≥ 2c6(k − `)} ≤ 1

2
.

By the BK inequality (cf. Grimmett (1989), Sect. 2.3) it then follows that

P{σ(`, k) ≥ 2mc6(k − `)} ≤
(1

2

)m
, m ≥ 0.

The inequality (3.2) easily follows from this. �
Define the diameter of a set of vertices D by

diam (D) = sup{‖x− y‖ : x, y ∈ D}.
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We shall use without proof that

diam (Ck) ≤ diam (Ck+1);

this follows from Ck ⊂
◦
Ck+1.

Lemma 4. There exist constants ci such that with probability 1

c7 ≤ lim inf
k→∞

log(diam (Ck))

k
≤ lim sup

k→∞

log(diam (Ck))

k
≤ c8. (3.3)

Also with probability 1 there exists a k0 = k0(ω) <∞ such that for all k ≥ k0 the
following properties hold:

min
x∈Ck

‖x‖ ≥ c9

kc10
max
x∈Ck

‖x‖, (3.4)

and even
min

x∈Ck−1

‖x‖ ≥ c9

kc10
max
x∈Ck

‖x‖. (3.5)

Proof. For the upper bound in (3.3), note that if there exists a vacant circuit in
Am and an occupied circuit in Am+1, both surrounding 0, then at least one of the
vacant circuits among the Ck has to lie in Am ∪ Am+1, by the argument used in
the beginning of Lemma 1. Since

P{there exists a vacant circuit in Am and an occupied circuit in Am+1

both surrounding 0}
≥ c25,

it follows from the independence of the configurations in different Am and the
strong law of large numbers that with probability 1 there are, for ε > 0 and n
large, at least (c25− ε)n/2 vacant circuits in S(2n) among the Ck. This implies the
last inequality in (3.3).

For the lower bound in (3.3) let us count the maximal number of disjoint
occupied circuits in S(2k). Let 1 ≤ m1 < m2 < . . . be the successive values of m
for which Am contains a vacant circuit surrounding 0. Let Di denote the smallest
vacant circuit surrounding 0 in Ami . No occupied circuit can cross a Di. Thus
all occupied circuits which intersect ∪m<miAm must be contained in S(2mi). In
particular, if ν = ν(k) is the unique index for which mν ≤ k < mν+1, then

maximal number of disjoint occupied circuits surrounding 0 in S(2k)

≤
ν∑
i=0

σ̃(mi,mi+1), (3.6)
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where

σ̃(mi,mi+1) = maximal number of disjoint occupied circuits surrounding 0

inside Di+1 and outside Di

(σ(m0,m1) = maximal number of disjoint occupied circuits insideD1.) Obviously,
ν(k) ≤ k so that the right hand side of (3.6) is at most

k∑
i=0

σ̃(mi,mi+1).

Moreover, conditionally on mi = n,Di = D and all vertices inside D, we have
essentially by the same argument as for (3.2) (see also Kesten and Zhang (1997),
Lemma 3), that

P{σ̃(mi,mi+1) ≥ x|mi = n,Di = D, all vertices inside D}
≤ P{mi+1 −mi > p|mi = n,Di = D, all vertices inside D}

+ P{σ̃(n− 1, n+ p) ≥ x|mi = n,Di = D, all vertices inside D}

≤
p∏
j=1

P{there is no vacant circuit in An+j}+ P{σ(n − 1, n+ p) ≥ x}

≤ (1 − c5)p + c3e
−c4x/(p+1) (by (3.2))

≤ c11e
−c12

√
x (by taking p = b

√
xc).

Thus, σ̃(m0,m1), σ̃(m1,m2), . . . are stochastically smaller than a sequence of i.i.d.
random variables σ̃1, σ̃2, . . . with

P{σ̃i ≥ x} ≤ c11e
−c12

√
x.

By applying the strong law of large numbers to the σ̃i we see that with probability
1

lim sup
k→∞

1

k

k∑
i=0

σ̃(mi,mi+1) ≤ lim sup
k→∞

1

k

k∑
i=0

σ̃i < c13 <∞.

Consequently, (3.6) yields that

1

k
{maximal number of disjoint occupied circuits surrounding 0 in S(2k)} ≤ c13

eventually. Adding the same estimate for the vacant circuits we finally see that for
large k there are no more than 2c13k of the {Ci} in S(2k). Thus diam (Cd2c13ke+1) ≥
2k, which implies the first inequality in (3.3).



ALMOST ALL WORDS ARE SEEN 13

Finally we turn to (3.4) and (3.5). Assume that Ck is an occupied circuit which
is not contained in S(2j). For a suitable choice of the constant c14 there exists
with probability 1, for all large j, a vacant circuit C surrounding 0 in some A` with
j − c14 log j < ` ≤ j. Then, by assumption, Ck contains a point outside C. Since
the occupied circuit Ck cannot cross the vacant C it must lie entirely outside C and
therefore outside S(2j−c14 log j). (3.4) is an immediate consequence of this, (3.3)
and the fact that Ck is not contained in S(2j) for any j with 2j < 1

2 maxx∈Ck ‖x‖.
Essentially the same argument proves (3.5), because if Ck and C are as in

the preceding paragraph, then Ck−1 cannot contain any points of
◦
C, because C is

already a circuit which surrounds 0 and lies inside Ck and is disjoint from it. �
Lemma 5. There exist constants c15, c16 such that for any vertex v and n ≥ 1

c15

n2

≤ P{there exists 5 disjoint paths from some neighbors of v

to ∆(v + S(n)), one of which is vacant

and the other four of which are occupied}

≤ c16

n2
. (3.7)

More generally, for 1 ≤ k ≤ n
P{there exists 5 disjoint paths from ∆(v + S(k)) to ∆(v + S(n)),

one of which is vacant and the other four of which are occupied}

≤ c16
k2

n2
. (3.8)

Finally,

P{there exist at least 6 disjoint paths from ∆(v + S(k)) to ∆(v + S(n)),

at least one of which is vacant and at least four of which are occupied}

≤ c16

(
k

n

)2+c2/ log 2

. (3.9)

Proof. We begin with the upper bound in (3.7). Consider a vertex w ∈
◦
S(n) and

assume that the following event occurs:

F (w,n) :={there exist 5 disjoint paths from neighbors of w,

which consist of two occupied paths with endpoints

on the left edge of S(n), another occupied path

with endpoint on the right edge of S(n) and two vacant

paths with endpoints on the upper and lower edge of S(n),

respectively}. (3.10)
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Figure 2. Illustration of F (w,n) and the five paths πi. The solidly
drawn paths are occupied and the dashed paths are vacant.

Let π1, π2 (π3) be the three occupied paths with their endpoint on the left edge
(respectively, right edge) of S(n), and let π4, π5 be the vacant paths with endpoints
on the upper and lower edge, respectively (see Figure 2). Let ui be the endpoint of
πi and index the paths π1, π2 such that u2 lies above u1 on the left edge. Then the
existence of π1, π3, π4, π5 shows that w is pivotal for the existence of an occupied
left-right crossing of S(n). That is, if w is occupied (vacant) then such a crossing
exists (respectively, does not exist). Let us now take w occupied; this can be done
because the state of w does not influence the occurrence of F (w,n). Then π1, w
and π3 together form a left-right crossing, and in fact the existence of the vacant
π4, π5 shows that any such crossing has to pass through w. Let γ = (v1, v2, . . . , vλ)
be the lowest occupied left-right crossing, with the vertices numbered such that

v1(vλ) lies in the left (respectively, right) edge of S(n) and such that vi ∈
◦
S(n) if

1 < i < λ . In particular, w has to be one of the vi. The existence of π2, π4 says
that w is the first of the vi which has a vacant connection to the top edge. This
uniquely locates w in S(n). In other words, F (w,n) can occur for at most one
w ∈ S(n) and consequently

∑
w∈S(n/2)

P{w is occupied and F (w,n)} =
1

2

∑
w∈S(n/2)

P{F (w,n)} ≤ 1. (3.11)

One next has to prove that for any fixed 0 < δ < 1, P{F (w,n)} is of the same
order for all w ∈ S(n(1− δ)). More precisely, there exists a constant 0 < c17 <∞
such that

1

c17
≤ P{F (w′, n)}
P{F (w′′, n)} ≤ c17 for all w′, w′′ ∈ S(n(1− δ)). (3.12)
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(3.12) with δ = 1/2 and (3.11) combined will show that for any w′ ∈ S(n/2),

P{F (w′, n)} ≤ c17
1

number of vertices in S(n/2)

∑
w∈S(n/2)

P{F (w,n)} ≤ c18

n2
.

(3.13)
The proof of (3.12) is quite long and involved and we shall not give it here. It
is very similar to the proof of Lemma 4 in Kesten (1987), which deals with the
probability of four disjoint paths to ∆S(n), two occupied ones and two vacant
ones, with the occupied paths separating the vacant ones. An extra complication
arises in the case of five paths, considered here, because the occupied and vacant
paths cannot separate each other in this case. One needs to modify the definition
of an (η, k) fence in Kesten (1987) to deal with this. In the appendix we shall give
a brief indication how to do this.

Next consider the event

G(w,n) :={there exist 5 disjoint paths from neighbors of w,

which consist of two occupied paths with endpoints

on the left edge of S(n), two more occupied paths

with endpoints on the top and right edge of S(n),

respectively, and one vacant path with endpoint

on the bottom edge of S(n)}. (3.14)

G(w,n) is quite similar to F (w,n); only the path to the top edge is now assumed
occupied instead of vacant. Denote the path to the top edge still by π4, though,
and leave the meaning of the πi with i 6= 4 unchanged. We shall show that in fact
G(w,n) and F (w,n) have the same probability, by changing the path to the top
edge from occupied to vacant, as we now explain. Assume that G(w,n) occurs.
Again the state of w does not influence the occurrence of F (w,n) or G(w,n), so
we take it as occupied. Then w again lies on the lowest occupied left-right crossing
of S(n). Again denote this lowest crossing by γ = (v1, . . . , vλ) with v1(vλ) on the

left (right) edge of S(n). γ is a crosscut of
◦
S(n) and

◦
S(n) \ γ consists of two

components. (A crosscut of an open connected set D is a simple continuous curve
C , such that C minus its endpoints lies in D and the endpoints of C lie on the
boundary of D; see Newman (1951), Section V.11.) We denote the component

of
◦
S(n) \ γ which lies ‘above’ γ (that is the one which has the upper edge of

S(n) as part of its boundary) by U = U(γ) and the one which has the lower
edge in its boundary by L = L(γ). Similarly, w lies on the occupied left-right
crossing π which consists of (the reverse of ) π1, {w} and π3. The corresponding

components of
◦
S(n) \ π are denoted by U(π) and L(π). Because γ is the lowest
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left-right crossing, π cannot contain any points of L(γ), i.e., π ⊂ U (γ) := U(γ)∪γ.
Equivalently, U(π) ⊂ U(γ). Then π2, which is disjoint from π and has its endpoint
on the left edge above that of π1, must lie in U(π) ⊂ U(γ). In particular the path
consisting of the edge from w to the initial point of π2, followed by π2 itself is an
occupied crosscut of U(γ) with one endpoint at w. For any such crosscut δ let
V = V (δ, γ) be the component of U(γ) \ δ which has the left endpoint of γ, v1,
in its boundary, and let W (δ, γ) be the other component of U(γ) \ δ, with vλ in
its boundary. By Proposition 2.3 of Kesten (1982) there then exists an occupied
crosscut of U(γ), δ say, with one endpoint at w, so that V (δ, γ) is minimal among
all such crosscuts.

Finally, define the map Φ on the occupancy configurations in S(n) which have
a lowest occupied crossing γ through w and a further crosscut δ as above. For a
given configuration ω,Φ(ω) is the configuration obtained from ω by changing all
occupied vertices in W (δ, γ) to vacant and vice versa. Since the lowest crossing
γ and after that the minimal crosscut δ are uniquely determined, the map Φ is
well defined. Since it leaves the state of the vertices on γ and on δ unchanged,
one easily sees that the lowest occupied crossing in Φ(ω) is still γ, and also the
occupied crosscut minimizing V (δ, γ) for Φ(ω) is still δ. Thus one can recognize in
the configuration Φ(ω) the states of which vertices have been flipped by Φ, so that
Φ is one-to-one. Moreover, the event G(w,n) is taken onto the event F (w,n) by Φ,
because the occupied path π4 in G(w,n) is turned into a vacant one by applying Φ.
Indeed, π4\{u4}must lie in W (δ, γ), because its endpoint u4 lies on the upper edge
of S(n) which belongs to ∆W (δ, γ) and not to ∆V (δ, γ) whenever the endpoint of
δ lies on the left edge of S(n). Since the probability of the configuration Φ(ω) is
the same as the probability of ω, it follows that

P{G(w,n)} = P{F (w,n)} ≤ c18

n2
, w ∈ S(n/2) (by (3.13)). (3.15)

The last inequality seems almost what we want. What must still be shown
is that the probability in (3.7) (which is independent of v) is at most a constant
(independent of n) times P{G(0, n)}. The difference between G(0, n) and the
event in (3.7) for v = 0 lies in the restrictions on the endpoints of the paths πi
imposed in G(0, n). For G(0, n) to occur these endpoints have to lie on certain
edges of S(n), while there is no such restriction in (3.7). The proof that removing
these restrictions on the endpoints only increases the probability by a bounded
factor is basically the same as the proof of (3.12) and is again based on Kesten
(1987). We skip this proof, but make some remarks about this in the Appendix.
This proves the upper bound in (3.7).

For the lower bound in (3.7) we note that by (3.15) and (3.12)

P{G(0, n)} = P{F (0, n)} ≥ 1

c17n2

∑
w∈S(n(1−δ))

P{F (w,n)}. (3.16)
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Furthermore, the interpretation of F (w,n) as the event that the first vi on γ with
a vacant connection to the top edge of S(n) is w, shows that the sum in the right
hand side here equals

P{first vertex vi ∈ γ with a vacant connection

to the top edge of S(n) lies in S(n(1− δ))}. (3.17)

Thus the lower bound in (3.7) for v = 0, and hence for any v, will follow once
we prove that for some small fixed 0 < δ < 1, the probability (3.17) is at least
c19 > 0. This follows by combining fairly standard arguments, but since it is not
entirely trivial we give most of the proof anyway. First we want to show that for
some δ > 0, the probability of the event

{the lowest occupied left-right crossing γ of S(n) exists,

lies in [−n, n]× [−(1− 5δ)n, (1 − 5δ)n],

and does neither return to the vertical line {x = −(1− 5δ)n}
after it first reaches the vertical line {x = (1 − 5δ)n},
nor returns to the vertical line {x = (1 − 3δ)n} after it

first reaches the vertical line {x = (1− δ)n}
(starting from the left edge of S(n))} (3.18)

is bounded away from 0 (as n →∞). To see this we take δ < 1/8 without loss of
generality, and assume that the following two paths exist (see Figure 3):
(i) a vacant left-right crossing π′6 in [−n, n]× [−n(1− 5δ),−n(1− 6δ));
(ii) a vacant connection π′7 from π′6 to the bottom edge of S(n).
One easily sees that in this case, the lowest occupied left-right crossing of S(n) (if
it exists) must lie above π′6 and hence in [−n, n]× [−(1−5δ)n, n]. The probability
that such π′6, π

′
7 exist is at least c20 (by the Russo-Seymour-Welsh lemma and the

Harris-FKG inequality). If such π′6, π
′
7 exist, then we take π6 to be the lowest

vacant left-right crossing of [−n, n]× [−n(1−5δ),−n(1−6δ)). The existence of π′7
then guarantees that also π6 has a vacant connection to the bottom edge of S(n).
Thus we have a probability of at least c21 = c21(δ) > 0 that the lowest vacant
left-right crossing of [−n, n] × [−n(1 − 5δ),−n(1 − 6δ)) exists and has a vacant
connection to the bottom edge of S(n). We shall now condition on this last event
and even on the specific value of π6. Then we still know nothing about the vertices
‘above π6’ and they are independently occupied or vacant with probability 1/2.

Here and in the rest of this lemma, ‘above π6’ means in the component of
◦
S(n)\π6

which has the upper edge of S(n) in its boundary. Define

a(π6) = P{there exists an occupied left-right crossing of

[−n, n]× [−(1− 5δ)n, (1 − 5δ)n] above π6|π6}.
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Then it is easy to see that there is some constant c22 > 0 (independent of π6 and
of 0 < δ < 1/8) such that

c22 ≤ P{there exists an occupied left-right crossing of

[−n, n]× [−(1− 6δ)n, (1− 6δ)n]} ≤ a(π6) ≤ 1− c22.
(3.19)

We also need the following probabilities:

b(π6, δ) := P{there exists an occupied left-right crossing of

[−n, (1− δ)n] × [−(1− 5δ)n, (1 − 5δ)n] above π6|π6}.

and

c(π6, δ) := P{there exists an occupied left-right crossing of

[−(1− 5δ)n, (1 − 5δ)n]× [−(1− 5δ)n, (1 − 5δ)n] or of

[(1 − 3δ)n, (1 − δ)n]× [−(1− 5δ)n, (1− 5δ)n] above π6|π6}.

We claim that uniformly in π6,

lim
δ↓0

∣∣∣b(π6, δ)

a(π6)
− 1
∣∣∣ = 0, (3.20)

and
c(π6, δ) ≤ 1− c23. (3.21)

π
π

π

,

ππ

u

v

v
v

γ

vV

6
7

1

k l

9 8 10

λ

,

Figure 3. Illustration of π6−π10 and γ. Again solidly drawn (dashed)
paths are occupied (vacant). The boundary of V is boldly drawn.
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Before proving (3.20) and (3.21) we point out that they imply that the proba-
bility of the event in (3.18) is bounded away from 0. Indeed, given π6 and that π6

has a vacant connection to the bottom edge of S(n), the conditional probability
that there exists a lowest occupied crossing γ of S(n) in [−n, n]× [−(1−5δ)n, (1−
5δ)n] is a(π6). If γ returns to the vertical line {x = −(1− 5δ)n} after first hitting
the line {x = (1−5δ)n} (starting from the left edge of S(n)), then γ must contain
an occupied left-right crossing γ1 of [−n, (1− 5δ)n]× [−(1− 5δ)n, (1− 5δ)n] above
π6, and in addition two occupied left-right crossings of [−(1 − 5δ)n, (1 − 5δ)n] ×
[−(1− 5δ)n, (1− 5δ)n] which are disjoint from γ1. Indeed, the piece of γ from the
left edge of S(n) to the first visit to the vertical line {x = (1−5δ)n} contains such
a crossing γ1, then the return from {x = (1 − 5δ)n} to {x = −(1 − 5δ)n} con-
tains another occupied crossing of [−(1−5δ)n, (1−5δ)n]× [−(1−5δ)n, (1−5δ)n],
and finally there is a third crossing between the return to {x = −(1 − 5δ)}n
and the final point on the right edge of S(n). Similarly, if γ returns to the line
{x = (1−3δ)n} after reaching the line {x = (1−δ)n}, then there are two occupied
left-right crossings of [(1 − 3δ)n, (1 − δ)n] × [(1 − 5δ)n, (1 − 5δ)n], disjoint from
γ1. Hence, by the BK inequality, the conditional probability that γ exists but
returns to {x = −(1− 5δ)n} after first visiting {x = (1− 5δ)n} or that γ returns
to {x = (1 − 3δ)n} after first visiting {x = (1− δ)n} is for small δ at most

b(π6, δ)c
2(π6, δ) ≤ (1− c23)2b(π6, δ) (by (3.21))

≤ (1 − c23)a(π6) (by (3.20) for δ small enough).

Finally the conditional probability of the event (3.18), given π6, is at least

a(π6)− b(π6, δ)c
2(π6, δ) ≥ c23a(π6) ≥ c23c22.

Since π6 exists with probability at least c21 we find that for small δ

P{(3.18) occurs} ≥ c21c22c23.

We still have to prove (3.20) and (3.21). For (3.20) we note first that by
definition, b(π6, δ) ≥ a(π6). On the other hand, it is also clear that

b(π6, δ) ≤ P{there exists an occupied left-right crossing of

[−n, (1− δ)n]× [−n, n]}. (3.22)

To see that the last probability on the right here is not much larger than P{there
exists an occupied left-right crossing of S(n)} when δ is small, we can use the
argument in the beginning of Lemma 2 of Kesten (1987). If there is a crossing
as in the right hand side of (3.22), then the lowest such crossing can with high
probability be extended on the right to give a left-right crossing of S(n). This
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is ilustrated in Figure 7 of Kesten (1987) and we leave the details to the reader.
Then we have for any fixed η > 0 and 0 < δ < δ0 for some δ0 = δ0(η) > 0, that

b(π6, δ) ≤ (1 + η)P{there exists an occupied left-right crossing of S(n)}
≤ (1 + η)2P{there exists an occupied left-right crossing of

[−n, n]× [−(1− 6δ)n, (1 − 6δ)n]}
≤ (1 + η)2a(π6); (3.23)

the second inequality here holds by a similar argument as for the first inequality,
this time applied to the existence of vacant top-bottom crossings. Thus (3.20)
holds.

The inequality (3.21) is completely standard. It follows from the fact that for
fixed 0 < δ1 < δ2,

P{there exists a vacant top-bottom crossing of [δ1n, δ2n]× [−n, n]}
≥ c24 = c24(δ1, δ2) > 0

(by the Russo-Seymour-Welsh lemma; compare Kesten (1982), Theorem 6.1).
Again we leave the details to the reader.

The inequalities (3.20) and (3.21) finally complete the proof of that (3.18) has
a probability bounded away from 0. We still have to deduce (3.17) from this lower
bound for the probability of (3.18). Fortunately this is fairly easy. Assume that the
event (3.18) occurs . We now condition on the lowest occupied left-right crossing γ,
say we condition on γ = (v1, v2, . . . , vλ). Again, under this condition the vertices
in S(n) above γ are still independently occupied or vacant with probability 1/2.
Therefore (even conditionally on γ) there is a probability at least c25 > 0 that the
following paths occur (see Figure 3):
(iii) an occupied connection π8 from a vertex vk ∈ γ to a vertex u in the top edge
of S(n) in the vertical strip [(1− 5δ)n, (1 − 4δ)n)× [−n, n];
(iv) an occupied connection π9 from π8 to the left edge of S(n); π9 lies above γ
and is disjoint from γ;
(v) a vacant connection π10 from a neighbor of a vertex v` ∈ γ to the top edge of
S(n) in the vertical strip [(1− 4δ)n, (1 − 3δ)n].
Now S(n) \ γ consists of the two components with the bottom edge and the top
edge of S(n) in their boundary, respectively. Let U = U(γ) be the component with
the top edge in its boundary. π8 is a crosscut of U . We consider the component
V of U \ π8 whose boundary consists of the following pieces: the piece of γ from
v1 on the left edge of S(n) to vk, π8, the piece of the top edge of S(n) from u
to the upper left corner of S(n), and finally the piece of the left edge of S(n)
from the top left corner back to v1. Now there cannot be a vacant connection
from a vertex adjacent to γ and located in V to the top edge of S(n), because
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any such connection would have to cross π8 ∪ π9 which is impossible. Therefore,
any vacant connection from a vertex adjacent to γ to the top edge of S(n) has
to start at a vertex adjacent to one of {vk, vk+1, . . . , vλ}. However, π8 lies in the
vertical strip [(1− 5δ)n, (1 − 4δ)n)× [−n, n], so that also vk lies in this strip and
hence comes at or after γ’s first intersection with the vertical line {x = (1−5δ)n}.
But then, on the event (3.18), vk, vk+1, . . . , vλ lie to the right of the vertical line
{x = −(1 − 5δ)n}. Thus the first vertex on γ with a vacant connection to the
top edge (if any) lies in [−(1 − 5δ)n, n] × [−(1 − 5δ), (1 − 5δ)n] (for the vertical
restriction we used the vertical restriction of γ on (3.18)). The path π10 guarantees
that there is at least one vacant connection from γ to the top edge. The restrictions
on the location of π10 imply that v` ∈ [(1 − 4δ)n, (1 − 3δ)n]. Unfortunately v` is
not necessarily the first point on γ with a vacant connection to the top edge of
S(n). If this first vertex on γ is vf , then we know from the preceding argument
that k ≤ f ≤ ` and that vf ∈ [−(1 − 5δ)n, n] × [−(1 − 5δ)n, (1 − 5δ)n], but
a priori, vf could still lie arbritarily close to the right edge of S(n). However, if
vf ∈ [(1−δ)n, n]×[−(1−5δ)n, (1−5δ)n], then γ first reaches the line {x = (1−δ)n}
(at or before vf ) and then returns to the line {x = (1− 3δ)n} (because v` lies on
or to the left of this line). This cannot occur on (3.18). Therefore

P{γ and vf exist and vf ∈ [−(1− δ)n, (1 − δ)n]× [−(1− 5δ)n, (1 − 5δ)n]}
≥ P{(3.18) occurs}c25.

This finally proves that (3.17) is bounded below by some c19 as desired.
Now that (3.7) has been established, (3.8) can be deduced by the method of

Lemma 6 in Kesten (1987). This method allows one to show that the probability
appearing in (3.7) equals at least c26P{G(v, k/2)}× (the probability in (3.8)).
Thus if we combine the upper bound of (3.7) with the lower bound

P{G(v, k/2)} ≥ c27

k2

(use (3.16) and the fact that (3.17) is bounded below), we obtain (3.8).
Finally, (3.9) follows immediately from (3.8) and Reimer’s inequality (Reimer

(1996)), or even by Theorem 4.2 of van den Berg and Fiebig (1987). Indeed,
Reimer’s inequality shows that the left hand side of (3.9) is at most equal to the
left hand side of (3.8) times

P{there exists an occupied or vacant path from ∆(v + S(k)) to ∆(v + S(n))}.
(3.24)

But if k ≤ 2p < 2k, n/2 < 2q ≤ n, then

P{there exists a vacant path from ∆(v + S(k)) to ∆(v + S(n))}
≤ P{there is no occupied circuit in Am for any Am ⊂ S(n) \ S(k)}

≤ P{σ(p, q) = 0} ≤ 2e−c2(q−p) (see Lemma 3) ≤ 2

(
4k

n

)c2/ log 2

.
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Adding to this the same estimate for occupied paths we obtain that (3.24) is
bounded by 4(4k/n)c2/ log 2, so that (3.9) indeed follows from (3.8). �
Lemma 6. For 0 < c < 1 and j ≥ 1 define

T (r, s) = T (r, s; c, j) = [r2c(j+1), (r + 3)2c(j+1)]× [s2c(j+1), (s+ 3)2c(j+1)] (3.25)

and

N(j, c) = number of squares T (r, s) which intersect S(2j+1) and which, for some k,

intersect two successive circuits Ck and Ck+1 with diam (Ck) ≥ 2j .

Then, for fixed c ∈ (0, 1), with probability 1,

N(j, c) ≤ j2 for all large j. (3.26)

Furthermore, if

N (3)(j, c) = number of squares T (r, s) which intersect S(2j+1) and which, for some k,

intersect three successive circuits Ck − Ck+2 with diam (Ck) ≥ 2j−(log j)2

,

then, with probability 1,

N (3)(j, c) = 0 for all large j. (3.27)

Finally, with probability 1,

(number of vertices of Ck which are adjacent to Ck+1) ≤ k2 eventually. (3.28)

Proof. A trivial extension of the argument used for (2.8) shows that,

P{for some k, T (r, s) intersects Ck and Ck+1 with diam (Ck) ≥ 2j}
= 8P{for some k, T (r, s) intersects Ck and Ck+1 and both these circuits

are occupied and Ck+2 is vacant and diam (Ck) ≥ 2j}. (3.29)

Now assume that T (r, s) intersects S(2j+1). If T (r, s) intersects the two oc-
cupied circuits Ck, Ck+1, and Ck+2 is vacant, and diam (Ck) ≥ 2j , then there are 5
disjoint paths starting on or adjacent to ∆T (r, s) and reaching points at distance
2j−1 − 6 · 2c(j+1) ≥ 2j−2 from T (r, s). Four of these are occupied and consist of
disjoint arcs of Ck and Ck+1. In addition,by definition, Ck+1 is the largest circuit

in
◦
Ck+2. By Remark 1 and the fact that Ck+1 is assumed occupied and Ck+2 is
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assumed vacant, there is for any vertex w ∈ T (r, s)∩Ck+1 a vacant connection from
a neighbor u of w to Ck+2. This vacant connection together with Ck+2 contains a
vacant path of diameter ≥ 1

2 diam (Ck+2) ≥ 2j−1. This is the fifth path starting
from a vertex on or adjacent to ∆T (r, s); it is disjoint from the other four because
it is vacant.

It follows from the preceding argument and (3.8) that for fixed r, s and
large j, the probability of the event in the left hand side of (3.29) is at most
c282−2(1−c)(j+1). The possible number of choices for r, s is at most 10 ·22(1−c)(j+1),
because we only consider T (r, s) which intersect S(2j+1). Therefore the expected
number of pairs r, s for which the event in the left hand side of (3.29) occurs is at
most c29. By Markov’s inequality the probability that there are more than j2 such
pairs r, s is then at most c29/j

2. The Borel-Cantelli lemma now proves (3.26).
The proof of (3.27) is similar. If Ck, Ck+1 and Ck+2 are occupied and intersect

T (r, s) and Ck+3 is vacant, then there are seven disjoint paths starting on or
adjacent to ∆T (r, s) and reaching points at distance 2j−2 from ∆T (r, s). Now use
(3.9) instead of (3.8).

We shall not prove (3.28). Its proof is essentially the same as that of (3.26),
but simpler. One now uses (3.7) directly, instead of (3.8). �

The next lemma is a simple deterministic result. For two sets of vertices π′, π′′

we define
d(π′, π′′) = inf{‖x− y‖ : x ∈ π′, y ∈ π′′}.

Lemma 7. Let Ck+1 and Ck+2 be two successive circuits. Assume

2j ≤ diam (Ck+1) < 2j+1.

Let V
(k+1)
1 , V

(k+1)
2 , . . . , V

(k+1)
M be M arbitrary subsets of Ck+1 for which

d(V (k+1)
p , V (k+1)

q ) := min{‖x−y‖ : x ∈ V (k+1)
p , y ∈ V (k+1)

q } ≥ 8·2cj , p 6= q. (3.30)

If N(j, c) ≤ j2, then at least M − j2 of the sets V (k+1)
m satisfy

d(V (k+1)
m , Ck+2) > 2cj . (3.31)

In particular, if M > j2, and N(j, c) ≤ j2, then there is at least one set V
(k+1)
m

which satisfies (3.31)

Proof. Assume that for some m0 the set V
(k+1)
m0 contains a vertex x ∈ Ck+1 for

which there exist a y ∈ Ck+2 with ‖x − y‖ ≤ 2cj. Since diam (Ck+1) < 2j+1, we
have Ck+1 ⊂ S(2j+1). Thus x belongs to some square [(r + 1)2cj , (r + 2)2cj ] ×
[(s+ 1)2cj, (s+ 2)2cj ] and this square must intersect S(2j+1). It then follows from

‖x− y‖ ≤ 2cj that y ∈ T (r, s; c, j)) (see (3.25) for T (r, s)). Thus for each V
(k+1)
m0
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which contains an x as just mentioned, there is a T (r, s) which intersects S(2j+1)

as well as Ck+1, Ck+2, and which contains a point of V
(k+1)
m0 . Different sets V

(k+1)
m

lead to different T (r, s), because two different V
(k+1)
m cannot intersect the same

T (r, s) by (3.30).
By definition, N(j, c) ≤ j2 means that there are at most j2 squares T (r, s)

of the form (3.25) which intersect S(2j+1), Ck+1 and Ck+2. By the preceding

paragraph this implies that there are at most N(j, c) ≤ j2 sets V
(k+1)
m with

d(V
(k+1)
m , Ck+2) ≤ 2cj . The remaining M − N ≥ M − j2 sets V

(k+1)
m satisfy

d(V
(k+1)
m , Ck+2) > 2cj . �

4. Almost all circuits are ‘good’.
Let C be a circuit surrounding 0. For certain constants 0 < c30, c31, c33 <

1, c32 > 0, still to be determined, we consider vacant connected (on T ) sets D
with some or all of the following properties:

D ⊂
◦
C and D contains exactly one vertex adjacent to C ; (4.1)

diam(D) ≥ (diam(C))c30 ; (4.2)

the vacant cluster of D in
◦
C contains at least [diam (C)]c31

selfavoiding paths θm which are adjacent to C, have

length (θm) ≥ c32 log log(diam(C)) and satisfy

d(θp, θq) ≥ [diam (C)]c33c30 for p 6= q;

moreover, there exists a vertex z ∈ D and for each of the θm

a vacant path from z to θm and such that only its

endpoint on θm is adjacent to C. (4.3)

We call an occupied circuit C good (or more explicitly (c30 − c33)-good) if it has
the following property:

Any vacant connected (on T ) set D with the

properties (4.1) and (4.2) also satisfies (4.3). (4.4)

We note that ‘θ adjacent to C ’ means that for each vertex u of θ, there exists a
vertex v in C which is adjacent to u. This is not a symmetric relation; θ adjacent
to C does not imply that C is adjacent to θ.

A good vacant circuit C is defined by interchanging ‘occupied’ and ‘vacant’ in
this definition.

Here is our principal estimate.



ALMOST ALL WORDS ARE SEEN 25

Proposition 1. For any 0 < c33 < 1, and 0 < c30 < 1, but c30 sufficiently close
to 1, we have

P{there exists an occupied circuit Ck with 2j ≤ diam (Ck) < 2j+1

and which is not good}
≤ c34 exp(−c35j). (4.5)

Here c34, c35 depend on c30 − c33 only.

Proof. We shall break down the proof into five steps. ci will denote a strictly
positive finite constant throughout this proof. All these constants with i ≥ 37 will
be independent of c30, so that c30 still can be adjusted at the end of the proof. The
proof works for any choice of c32 > 0. Throughout this proof we tacitly assume
that j is large; our estimates may fail for a finite number of j’s.

In the first step we show how to replace the random Ck by a fixed circuit C
from a specified class. The second step is largely topological and serves to find

a certain circuit J ⊂
◦
C adjacent to C . Step (iii) in conjunction with Step (ii)

bounds the number of circuits J which have to be considered. Steps (iv) and (v)
together estimate the probability that (4.3) fails for D equal to some vacant path
with one endpoint on a specific circuit J as constructed in Step (ii).

Step (i) Any circuit C which surrounds 0 and has 2j ≤ diam (C) < 2j+1

must be contained in S(2j+1), but must also contain points outside S(2j−2). Now
let Cτ be the last circuit in our sequence C1, C2, . . . , which is contained in S(2j+1).
Then the probability in (4.5) is (for any choice of u ≥ 0) at most∑

0≤p<u
P{p < τ, Cτ−p is occupied, has diameter ≥ 2j , but is not good}

+ P{u < τ, Cτ−u is not contained in S(2j−2)}.
(4.6)

The second term in (4.6) can be estimated by the argument of Lemma 3. If Cτ−u
is not contained in S(2j−2), then at least one of the following three events must
occur (for any choice of 1 ≤ q ≤ j − 2):

there exists no vacant circuit in S(2j−2) \ S(2j−2−q),

there exists no occupied circuit in S(2j−2) \ S(2j−2−q),

or

Cτ−u lies outside S(2j−2−q), so that Cτ , Cτ−1, . . . , Cτ−u ⊂ S(2j+1) \ S(2j−2−q).
(4.7)
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If (4.7) holds, then σ(j − 2− q, j + 1) ≥ (u + 1)/2 or there are at least (u+ 1)/2
disjoint vacant circuits in S(2j+1) \ S(2j−2−q). Therefore, with c5 as in the proof
of Lemma 3,

P{Cτ−u 6⊂ S(2j−2)} ≤ 2(1− c5)q + 2P{σ(j − 2− q, j + 1) ≥ (u+ 1)/2}
≤ 2(1− c5)q + 2c3e

−c4(u+1)/(2q+6) (by (3.2)).

By choosing q = j− 2 and u = j2 we find that the second term in (4.6) is at most

(2c3 + 1)e−c36j . (4.8)

Each term in the sum in (4.6) will be decomposed into two pieces. We fix

` =
⌊
c30j − 2 log j/ log 2

⌋
− 4, (4.9)

and divide S(2j+1) into the at most

22(j+2−`) ≤ c37j
422(1−c30)j (4.10)

squares

S(r, s) := [r2`, (r + 1)2`]× [s2`, (s+ 1)2`], −2j+1−` ≤ r, s < 2j+1−`. (4.11)

For each of these squares we take

S̃(r, s) = [(r − 1)2`, (r + 2)2`]× [(s− 1)2`, (s+ 2)2`]; (4.12)

its topological boundary is denoted by ∆S̃(r, s). Note that by our imbedding of
T , this boundary is a circuit on the triangular lattice. Now if Cτ−r = C for some
fixed circuit C surrounding the origin and of diameter ≥ 2j , and if C intersects a

given S(r, s), then C must also contain points outside S̃(r, s) (because its diameter

exceeds that of S̃(r, s)). Thus in this case, C must contain a crossing of the annulus

S̃(r, s) \ S(r, s). Here, and in the sequel we define for m′ < m, a crossing of the
annulus S(m)\S(m′) to be a path in this annulus from its outer boundary ∆S(m)
to a point adjacent to its inner boundary ∆S(m′).

We shall first split off the probability of the event that there are ‘too many’
such crossings. Specifically, we shall prove that for some ci

P{there exist more than c38j
422(1−c30)j disjoint occupied crossings

of some S̃(r, s) \ S(r, s), −2j+1−` ≤ r, s < 2j+1−`}
≤ c39 exp[−c40j

422(1−c30)j]. (4.13)
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To see (4.13), note that again by the Russo-Seymour-Welsh lemma, for any fixed
r, s,

P{there exists an occupied crossing of S̃(r, s) \ S(r, s)} ≤ (1 − c41).

By the BK-inequality we therefore also have, still for fixed r, s,

P{there exist q disjoint occupied crossings of S̃(r, s) \S(r, s)} ≤ (1− c41)q , q ≥ 0.
(4.14)

Thus the number of crossings of each of our annuli is bounded by a geometric

variable. Moreover, the number of crossings of two annuli S̃(r′, s′) \ S(r′, s′) and

S̃(r′′, s′′)\S(r′′, s′′) are independent as soon as |r′′−r′|∨|s′′−s′| ≥ 3. The estimate
(4.13) now follows by standard methods for exponential bounds. Combining (4.6)
with the estimates (4.8) and (4.13) we find that the probability in (4.5) is at most

(2c3 + 1)e−c36j + j2c39 exp[−c40j
422(1−c30)j ]

+
∑

0≤p<j2

∑
C

P{p < τ, Cτ−p is occupied and equals C and Cτ−p is not good}

= (2c3 + 1)e−c36j + j2c39 exp[−c40j
422(1−c30)j]

+
∑

0≤p<j2

∑
C

P{C is not good|p < τ, Cτ−p is occupied and equals C}

× P{p < τ, Cτ−p is occupied and equals C}, (4.15)

where the sum over C runs over the circuits contained in S(2j+1), with diameter

≥ 2j and with at most c38j
422(1−c30)j disjoint crossings of all S̃(r, s) \ S(r, s)

together.

Step (ii) In this step we make a number of topological preparations. Basically
we need a circuit J on T which is ‘just inside’ C and we need some relation between
crossings of squares by C and J . The statements here are fairly intuitive but the
arguments are finicky; one has to make sure that they don’t rely on pictures.

We need some definitions. These follow Kesten (1982). If W is a set of vertices
of T , then its boundary is

∂W := {v : v /∈W but v is adjacent to W};

the exterior boundary is denoted by ∂ext and defined as

∂extW ={v ∈ ∂W : ∃ a path π on T from v to ∞
such that the only point of π in W ∪ ∂W is v}.
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The following separation property is basic for us:

If W is a nonempty, finite connected set of vertices of T ,
then there exists a circuit J on T which passes

exactly through all vertices of ∂extW and surrounds W. (4.16)

Basically this is what the proof of Proposition 2.1 in the Appendix of Kesten (1982)
shows. There are two differences. Firstly, Kesten (1982) works on a graph Mpl

and secondly, Kesten (1982) only proves that J ⊂ ∂extW , but not the converse.
However, the only property of Mpl which is used in Kesten (1982) is that it is
planar and has triangular faces. Thus the proof there applies to T without changes
and we only need to show that

∂extW ⊂ J. (4.17)

Assume that this fails and that there exists a vertex u ∈ ∂extW \ J . Let u be
adjacent to w ∈ W and let π be a path on T from u to ∞ such that π ∩ (W ∪
∂W ) = u. Let π̃ be the path consisting of the edge from w to u followed by π.
Then π̃ is a path from W to ∞ which does not intersect J (because u /∈ J and
J ⊂ ∂extW ⊂ ∂W and hence (π \ {u}) ∩ J = ∅). But then J does not surround
W , contrary to what we know about J already. Hence there is no u ∈ ∂extW \ J
and (4.17) holds. This also proves (4.16).

It is standard in topological considerations of this type to interchange exterior
and interior by letting a finite point play the role of ∞. We shall do this here for

the situation where W = C , a fixed circuit on T . We let a point z ∈
◦
C which is

not adjacent to C play the role of ∞. We define

∂zintC ={v ∈ ∂C : ∃ a path π on T from v to z

such that the only point of π in C ∪ ∂C is v}. (4.18)

It is easy to see that if z ∈
◦
C, then ∂zintC ⊂

◦
C. The proof in Kesten (1982) of

(4.16) above now yields

there exists a circuit Jz on T such that Jz ⊂
◦
C ∩ ∂C

and such that the vertices on Jz are exactly the vertices of ∂zintC ;

moreover any continuous path on R2 from C to z must intersect Jz.
(4.19)

We now want to show that if C has at most c38j
422(1−c30)j crossings of all

S̃(r, s) \ S(r, s) together, then we only need to consider (in a sense to be made
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precise) c38j
422(1−c30)j crossings by the circuit Jz of all S̃(r, s) \ S(r, s). For the

time being fix (r, s) and abbreviate S(r, s) and S̃(r, s) to S and S̃, respectively.
We assume that C has the properties listed at the end of Step (i) and that

z ∈
◦
C \ S̃, and z is not adjacent to C. (4.20)

For the time being we further suppress the superscript z in the notation and write
∂intC for ∂zintC and J for Jz.

Let w be a vertex of C which lies in S or is adjacent to S. Since diam (C) >

2·diam (S̃), C cannot be contained in S̃. We can then move counterclockwise and

clockwise from w along C until we reach ∆S̃ for the first time in u′ and u′′ say.
Write E = E(w) for the piece of C from u′ to u′′ through w. Then the first piece of

E from u′ to the first vertex of E adjacent to ∆S is a crossing of S̃\S. Conversely,

for any piece of C which forms a crossing from a point u′ on ∆S̃ to a point u′′′

adjacent to ∆S, there is only one piece E of C , as above, which contains the
crossing from u′ to u′′′, to wit E(u′′′) (this is found by simply continuing from u′′′

along C until we reach ∆S̃ again at some point u′′). Thus the number of different
pieces E(w) which can be found is at most equal to the number of crossings by C

of S̃ \S (even though there may be many more points w of C in or adjacent to S).
We want to establish a similar statement for J . We will be considering vertices

v of J in S. Let v ∈ J . We follow J counterclockwise and clockwise from v until
we first reach vertices in the exterior of S̃, say the vertices x′ and x′′, respectively.

Such points must exist, because we cannot have J ⊂ S̃ if J separates z from C –

and hence from ∞ – and z ∈
◦
C \ S̃ (see (4.20)). Denote the piece of J from x′

to x′′ through v by F = F (v). Note that v is adjacent to some vertex w of C ,
because J ⊂ ∂C . F (v) is an obvious analogue of E(w). We are going to show that

the number of different F (v) with v ∈ J ∩ S which

can arise is at most equal to the number of different E(w).
(4.21)

It suffices for this to show that if v′ and v′′ are two distinct vertices of J in S
which are adjacent to w′ and w′′ and if E(w′) = E(w′′), then also F (v′) = F (v′′).
To prove this, fix v′, v′′ ∈ J ∩ S and let w′, w′′ ∈ C be adjacent to v′ and v′′,
respectively and assume E(w′) = E(w′′). Then, by our construction of the E’s,

there is a piece of C from w′ to w′′ which is entirely contained in the interior of S̃.
Denote this piece of C by B. Further let π′ be a path on T from v′ ∈ J ⊂ ∂intC to
z such that the only point of π′ in C ∪ ∂C is v′. Write π̃′ for the path consisting
of the edge {w′, v′} followed by π′. Choose π′′ and π̃′′ in a similar way for v′′ (see
Figure 4 ). Let y be the first point of π′′ which is also on π′. We can then replace
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the part of π′′ from y to z by the piece of π′ from y to z, so that we may assume
without loss of generality that π′ and π′′ coincide from y to z (of course y = z is
possible). Finally, let JB ⊂ ∂extB be the circuit on T which surrounds B as in
(4.16) with W replaced by B. Now v′ ∈ ∂intC also belongs to ∂extB because v′ is
adjacent to B and B ⊂ C (hence B ∪ ∂B ⊂ C ∪ ∂C); moreover, a path on T from
v′ to z can be extended to a path on T to∞ without hitting B∪∂B, because B ⊂
interior of S̃, hence B ∪ ∂B ⊂ S̃, and z /∈ S̃. Thus v′ ∈ JB and the same holds for
v′′. Hence there are two arcs of JB from v′ to v′′. We next consider the path σ
on T from w′ to w′′ which consists of the piece of π̃′ from w′ to y followed by the
reverse of the part of π̃′′ from y to w′′. It is immediate that this path intersects C
only at its endpoints. This path has no double points, unless w′ = w′′, in which

case w′ is the unique double point on this path. Moreover, since z ∈
◦
C, also y ∈

◦
C

and σ\{w′, w′′} ⊂
◦
C. Thus σ is a crosscut of

◦
C and divides it into two components

(see Figure 5). Let G be the component of
◦
C \ σ which has boundary consisting

of σ and B. The other component has boundary consisting of σ and C \ B (see
Newman (1951), Theorem V.11.8). The part C \ B of this boundary lies in the
exterior of ∆G = (σ concatenated with B), since we can connect a point of C \B
to ∞ without hitting C ∪

◦
C ⊃ G ∪∆G.

C

JB

B

zy

v

w

∼π,
,

,

∼π"

"

"

v

w

Figure 4. The circuits C (solidly drawn) and JB (dashed). Also shown
are the arc B of C (boldly drawn) and the paths π̃′, π̃′′.
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y

w’ w’’

σ

C

B

G

Figure 5. σ (the dashed path) is a crosscut of
◦
C. C is the solidly drawn

circuit.

We further claim that the interior of one of the arcs of JB between v′ and v′′

is contained in G. Indeed, the only points of σ in ∂C are the two points v′ and v′′.
Thus also σ ∩ JB = {v′, v′′} (recall JB ⊂ ∂B ⊂ C ∪ ∂C). Moreover, B is disjoint
from JB. Thus JB ∩ (σ ∪B) = {v′, v′′}. It follows that each of the two arcs of JB
from v′ to v′′ (minus their endpoints) lie in the interior or exterior of the Jordan
curve made up from B and σ. If both these arcs would lie in the exterior, then JB
could not separate B from ∞, because there would be a path ϕ from any point
of B to y inside G (except for the endpoints of ϕ). ϕ would be disjoint from JB.
Moreover, ϕ can be continued by the common piece of π′ and π′′ from y to z; this
is still disjoint from JB, because it is disjoint from (C ∪ ∂C) ⊃ ∂extB. Therefore,

JB would not separate B from z. But B ⊂ interior of S̃ and hence

JB ⊂ ∂B ⊂ S̃ (4.22)

and z /∈ S̃ (see (4.20)). Therefore z also lies in the exterior of JB. But then JB
would also not separate B from∞, contrary to the choice of JB. This proves that
at least one of the arcs of JB from v′ to v′′ lies in G. We shall denote such an arc
by τ . (In fact, τ is unique, because the other arc of JB from v′ to v′′ has to lie
outside G, but we shall not need this.)

We next show that τ is actually also one of the arcs of J from v′ to v′′. To
begin with let u be a vertex on τ \ {v′, v′′} and let ψ be a path on T from u to z
which intersects B ∪ ∂B only in u; such a path exists, because u ∈ JB = ∂extB.
We have to consider two cases. First consider the case when z ∈ G. In this case
we may assume that

ψ ⊂ G ∪ π′ ∪ π′′. (4.23)

Indeed, ψ starts at u ∈ G. If it hits ∂G this must be in a point of π′∪π′′ \{v′, v′′},
since ψ was chosen disjoint from B, and because it is a path on T , it does not
intersect the edges {w′, v′} and {w′′, v′′} (whose endpoints lie in B ∪ ∂B and not
on ψ). But then we can replace the piece of ψ between its first intersection with
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π′ ∪ π′′ and z by a piece of π′ ∪ π′′, to get (4.23). Note that the change in ψ will
preserve the property

ψ ∩ (B ∪ ∂B) = {u}, (4.24)

because (π′ ∪π′′)∩ (B ∪∂B) ⊂ (π′ ∪π′′)∩ (C ∪∂C) = {v′, v′′}, by choice of π′, π′′.
The second case is when z /∈ G. Then ψ begins in G, but ends at z /∈ G and must
therefore hit the (topological) boundary of G somewhere. As in the first case this
intersection point must lie on π′ ∪ π′′ \ {v′, v′′}. We may replace the piece of ψ
after the intersection with π′∪π′′ by a piece of π′ or of π′′. Again this will preserve
property (4.24). Thus, (4.23) holds in both cases. We now show that this implies

ψ ∩ (C ∪ ∂C) = {u}. (4.25)

Indeed, we proved before that C \B is in the exterior of σ ∪B, so that no vertex
on C \B can be equal to or adjacent to a vertex in G = the interior of σ ∪B. In
particular, (4.23) then tells us that ψ contains no vertices on or adjacent to C \B.
Together with (4.24) this gives (4.25).

The result (4.25) together with the fact that u ∈ τ ⊂ JB is adjacent to B ⊂ C
implies that

u ∈ ∂intC. (4.26)

Thus all vertices on τ are vertices of J . This almost shows that τ is an arc of J .
What we still have to rule out is that vertices occur in different order on τ than on
J . To show that this is not the case we prove that if J = (x0, x1, . . . , xν−1, xν =
x0), then the only neighbors of xi on J are xi−1 and xi+1 (with x−1 = xν−1, xν+1 =
x1). If this were not the case, there would exist an edge e between some xi and
xj for which there exists vertices y′ and y′′ on each of the two arcs of J between

xi and xj . e would be a crosscut of
◦
J or of Jext. Both of these possibilities lead

to a contradiction. Assume first that e is a crosscut of
◦
J . Then

◦
J \ e consists of

two components, one of which contains z (because of the fact that J separates z

from C and J ⊂
◦
C implies z ∈

◦
J ; moreover, e contains only the vertices xi and

xj , so that z /∈ e). Let z lie in the component bounded by e and the arc of J from
xi to xj through y′. Then any path on T from y′′ to z would have to intersect e
or J ⊂ ∂C in a point other than y′′. A path on T can intersect e only in xi or
xj . Thus there would not exist a path on T from y′′ to z which only intersects
C∪∂C in y′′. This contradicts the fact that y′′ ∈ ∂zintC . If, on the other hand, e is
a crosscut of Jext, then it divides Jext into two components, one of which contains
all of C . Let this again be the component bounded by e and the arc of J from
xi to xj through y′. Then any path on T from y′′ to C must intersect e or J in
a point different from y′′, contrary to the fact that y′′ is adjacent to C . Thus no
neighbors xi, xj as above can exist and the only neighbors of xi are xi−1, xi+1, as
claimed. But then, if τ runs successively through the vertices

xi0 = v′, xi1 , . . . , xiρ = v′′
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of J , we must have i`+1 = i`+1 (mod ν) or i`+1 = i`−1 (mod ν) for 0 ≤ ` ≤ ρ−1,
so that τ is indeed an arc of J .

This finally proves (4.21). Indeed, since τ ⊂ JB is adjacent to B, and B ⊂
interior of S̃, we have τ ⊂ S̃. Thus, there is an arc of J from v′ to v′′ which stays

in S̃. Hence, when forming F (v′) we must pass through v′′ so that F (v′) = F (v′′).

Step (iii) The result (4.21) has been proven for a single square S̃(r, s) and a

single z /∈ S̃(r, s), or rather a single Jz, only. We already know that there are at
most c37j

422(1−c30)j different pairs (r, s) (see (4.10)). In this step we show how to
control the number of different circuits Jz which can arise.

If Cτ−p = C and Cτ−p is occupied but not good, then there exists a vacant set
D which satisfies (4.1) and (4.2), but not (4.3). It is easily seen that there then
exists a selfavoiding vacant path, ζ = (v1, . . . , vq) ⊂ D, such that

v1 is the unique vertex of ζ adjacent to C and ζ ⊂
◦
C; (4.27)

diam(ζ) ≥ 1

2
(diam(C))c30 (4.28)

and such that (4.3) with D replaced by ζ fails. The vertex v1 must lie in some

S(r, s). Since diam(ζ) > diam(S̃(r, s)), ζ must contain points outside S̃(r, s). We

shall replace ζ by its initial piece from v1 to the first exit from S̃. Then (4.27)
holds as well as

v1 ∈ S(r, s), vq /∈ S̃(r, s), but vi ∈ S̃(r, s) for 1 ≤ i ≤ q − 1. (4.29)

We further introduce the square

Ŝ = Ŝ(r, s) = [(r − 1)2` − 1, (r + 2)2` + 1]× [(s− 1)2` − 1, (s+ 2)2` + 1]

which just surrounds S̃. Its topological boundary is denoted by ∆Ŝ = ∆Ŝ(r, s).

Since vq is adjacent to vq−1 ∈ S̃(r, s) ⊂ interior of Ŝ(r, s), we must have

vq ∈ ∆Ŝ. (4.30)

Again we fix (r, s) so that this holds, but suppress (r, s) in the notation in this
step.

We claim that (4.27) implies that

v1 ∈ Jvq . (4.31)

To see this, note that v1 is adjacent to some vertex w ∈ C and (the reverse of)
the path ζ followed by the edge {v1, w} is a path from vq to C , which starts at
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vq ∈
◦
C. It therefore must intersect ∂

vq
intC = Jvq (see (4.19)). But the only possible

intersection point is v1, because that is the only point on ζ ∩ ∂C . Hence (4.31)
holds. Thus if we want to bound the number of possible choices for Jz, then we

only need to consider Jz with z ∈ ∂Ŝ for some Ŝ(r, s) and such that Jz contains
a point of S(r, s).

Now consider two vertices z′ and z′′ on ∂Ŝ with corresponding paths ζ ′, ζ ′′

to vertices v′1 ∈ Jz
′ ∩ S, v′′1 ∈ Jz

′′ ∩ S, respectively. We may assume that these
paths satisfy (4.27) and (4.29)-(4.31) with the prime or double prime added at the
appropriate places. In particular,

ζ ′ \ {v′1} and ζ ′′ \ {v′′1} are disjoint from C ∪ ∂C. (4.32)

If there exists a path on T from ζ ′ to ζ ′′ which is disjoint from C ∪ ∂C , then the
definition (4.18) shows that ∂z

′

intC = ∂z
′′

intC . In particular, this is the case if C ∪∂C
does not intersect a piece of ∂U which connects ζ ′ to ζ ′′, where

U = U(r, s) := [r2` − 2`−1, (r + 1)2` + 2`−1]× [s2` − 2`−1, (s+ 1)2` + 2`−1].

S

,

V

U

S

R

γ

γ

δ

δ

’’

,

,’

Figure 6. The successive squares from the inside out are S, V, U, Ŝ. δ′′

is the boldly drawn arc on ∆Ŝ and δ′ is just outside S. Also shown are

γ′ and γ′′. R is the upper left hand corner of Ŝ\S between γ′ and γ′′. C
must contain a crossing like one of the dashed ones to separate γ′ from
γ′′.

Note that ∆U is the boundary of a square intermediate between S and S̃, and ζ ′

and ζ ′′ both intersect ∆U . In fact there exists a piece, γ′ say of ζ ′ of the form
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(v′t′ , . . . , v
′
q′ ) which connects a vertex in ∆S to ∆Ŝ and which lies in Ŝ \ S. We

will have

v′t′ ∈ ∆[r2` − 1, (r + 1)2` + 1]× [s2` − 1, (s+ 1)2` + 1]. (4.33)

Also ζ ′′ contains a similar piece γ′′. If γ′ and γ′′ intersect, then ζ ′ and ζ ′′ are
clearly connected outside C∪∂C (see (4.32) and note that v′1 6= v′t′ because v′1 ∈ S
and v′t′ lies outside S by (4.33); similarly v′′1 6= v′′t′′). If γ′ and γ′′ are disjoint, then
γ′, γ′′ partition the interior of

Ŝ \ [r2` − 1, (r + 1)2` + 1]× [s2` − 1, (s+ 1)2` + 1]

into two components (see Newman (1951), exercise V.11.3). Let R be one of these
components. Its boundary consists of γ′, γ′′ and an arc δ′ of ∆[r2`− 1, (r+ 1)2` +

1]× [s2`−1, (s+1)2`+1] between v′t′ and v′′t′′ and an arc δ′′ of ∆Ŝ between v′q′ and

v′′q′′ (see Figure 6). As observed above, if C∪∂C does not intersect (R∪∆R)∩∆U ,

then Jz
′

= Jz
′′
. However, the only way C ∪ ∂C can intersect (R ∪∆R) ∩∆U is

when C contains a piece in R which connects δ′ ⊂ ∆[r2`−1, (r+ 1)2` + 1]× [s2`−
1, (s + 1)2` + 1] with a point adjacent to ∆U , or C contains a piece in R which

connects δ′′ ⊂ ∆Ŝ with a point adjacent to ∆U (recall that C contains points

outside Ŝ, because diam(C) > 2·diam(Ŝ) and C ∪ ∂C cannot intersect the pieces

γ′, γ′′ of ∆R by (4.27)). Thus for any Jz
′
, Jz

′′
which are different, C has to have

a crossing of V \ S or a crossing of Ŝ \ U in the corresponding region R, where

V = V (r, s) := [r2`−2`−1+1, (r+1)2`+2`−1−1]×[s2`−2`−1+1, (s+1)2`+2`−1−1].

Now choose a maximal collection z1, . . . , zn ⊂ ∂Ŝ for which the Jzi are distinct.

Index the zi so that we meet z1, z2, . . . , zn in this order as we traverse ∂Ŝ clockwise,
starting from z1. Let ζi be a path from zi to some vertex in Jzi ∩ S, satisfying
(4.27) and (4.29)-(4.31). Then C must have a crossing of the above form between
any two successive ζi. Therefore,

the maximal number of distinct Jz

≤ the maximal number of disjoint crossings by C of V \ S or of Ŝ \ U.
(4.34)

We just proved that (for fixed (r, s)) the total number of circuits Jz and arcs
F (v) of Jz which can arise as we vary the endpoint v of a path ζ which satisfies
(4.27) and (4.29)-(4.31), is at most

[maximal number of disjoint occupied crossings of V (r, s) \ S(r, s)

or of Ŝ(r, s) \ U(r, s)]

× [maximal number of disjoint occupied crossings of S̃(r, s) \ S(r, s)].
(4.35)
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Finally we take the union over −2j+1−` ≤ r, s < 2j+1−`. We find that the total
number of choices for Jz, F (v) is the sum of (4.35) over (r, s).

Step (iv) We now pick up the estimates from Step (i) again. Essentially
the same argument as for (4.14) shows that the random variable in (4.35) has all
moments. Therefore, by Chebyshev’s inequality we have

P{[sum of (4.35) over − 2j+1−` ≤ r, s < 2j+1−`] > c42j
422(1−c30)j}

≤ c43j
−42−2(1−c30)j . (4.36)

Thus after an adjustment of c36, c38 the estimate (4.15) remains valid even if we
restrict C further so that it contains at most c42j

422(1−c30)j pairs of crossings, the

first one of V (r, s)\S(r, s) or of Ŝ(r, s)\U(r, s) for a certain (r, s), and the second

one of S̃(r, s) \S(r, s) for the same (r, s). (Note that this makes c36 dependent on
c30.)

The last sum in (4.15) is therefore bounded by

j2 sup
p,C

P{C is not good|p < τ, Cτ−p is occupied and equals C},

where the sup is over 0 ≤ p < j2 and C satisfying the restrictions at the end of
Step (i) and the ones just mentioned. For the remainder of this proof C will be a
fixed circuit satisfying these conditions. For brevity we define the event

E(p,C) = {p < τ, Cτ−p is occupied and equals C}.

It is important to realize that for a given circuit C , the event E(p,C) depends
only on the vertices in Cext∪C . (Note that the condition {p < τ, Cτ−p = C}merely
says that C is one of our Ck and there are exactly p of the circuits Ck outside C
but inside S(2j+1); this only involves vertices on or outside C .) Given E(p,C),

the further conditions for Cτ−p to be not good, depend only on the vertices in
◦
C .

Therefore, for calculating

P{C is not good|E(p,C)}, (4.37)

even with the conditioning on E(p,C), we may assume that all vertices in the
interior of C are still independently occupied or vacant with probability 1/2. Now
we saw that if E(p,C) occurs, but C is not good, then there exists a pair (r, s), one
of the possible arcs F (v), and a vacant path ζ = (v1, . . . , vq) which satisfy (4.27)
and (4.29)-(4.31), but such that (4.3) with D replaced by ζ fails. If C is fixed,
we shall estimate the probability in (4.37) by first picking a pair (r, s) so that C
contains a point in or adjacent to S(r, s), and then one of the possible interior
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boundaries J = Jz and finally one of the possible arcs F (v) of Jz in Ŝ(r, s). Once
(r, s), J and F = F (v) have been chosen we estimate

supP{∃ a vacant path ζ = (v1, . . . , vq) which satisfies (4.27), (4.29), (4.30)

and vq ∈
◦
J, v1 ∈ F, but for which (4.3) fails}. (4.38)

Here the sup is over all choices of C as above, over (r, s), and over the possible
choices of J and F (for the chosen C and (r, s)). For the class of circuits C which
we allow, the total number of choices for (r, s), J , and F is at most c42j

422(1−c30)j ,
so that the last sum in (4.15) is bounded by

c42j
622(1−c30)j × the sup in (4.38). (4.39)

We are going to imitate the proof of Lemma 8.2 in Kesten (1982) to estimate
(4.38). For the remainder of this step C, (r, s) and F remain fixed. This of course

also tells us which part of Ŝ belongs to
◦
C. By our construction in Step (i), F

is a crosscut of the interior of Ŝ which contains some vertex in S. Let F =
(w1, w2, . . . , wν), with w1, wν ∈ ∆Ŝ, where the vertices are indexed in such a way
that we move along J in the counterclockwise direction as we run successively
through w1, w2, . . . , wν. We number the remaining vertices of J , still as we meet
them by continuing in the counterclockwise direction along J , wν+1, wν+2, . . . , wρ.
wρ is adjacent to w1.

Let I be the component of
◦
J ∩ (interior of Ŝ) which has F as part of its

boundary. There is only one such component. This is relatively easy to see in
our situation, because F is a piecewise linear path, built up from edges of T ,

and F is a crosscut of (interior of Ŝ). The topological boundary of I consists of

F and alternating pieces of ∆Ŝ and J (see Figure 7). We need a more precise
statement, though, which describes the relative order of some of the pieces of ∆I.
First let us prove a general result. Let J be a Jordan curve and let it be oriented

counterclockwise (i. e., with
◦
J ‘on the left’). Let K1,K2, . . . ,KN be a number

of crosscuts of
◦
J with disjoint interiors, i. e., for which

◦
J ∩Ki ∩ Kj = ∅ when

i 6= j. Let I be one of the components of
◦
J \ ∩Ni=1Ki. We claim that then ∆I

consists of a number of disjoint arcs αi from J and some of the crosscuts Ki, and
we can traverse ∆I in one direction so that we traverse all the αi in ∆I in the
same order and in the same direction as they are traversed when J is traversed in
the counterclockwise direction. This claim is easily proven by induction on N . It
is trivially true when N = 0. Now assume it is already proven when N = n and

let Kn+1 be a crosscut of
◦
J such that Kn+1 ∩

◦
J is disjoint from ∪ni=1Ki. Finally,

let In be one of the components of
◦
J \ ∪ni=1Ki. If Kn+1 is disjoint from In, then
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this component and its boundary is unchanged by the addition of Kn+1, so our
claim is valid for this component. If Kn+1 intersects In, then it is easily seen that
Kn+1 is a crosscut of In with its endpoints, a1 and a2 say on two of the arcs αi, αj
(i = j is possible). Then Kn+1 divides In into two new components. Call them I ′n
and I ′′n . The boundary of each of I ′n, I

′′
n consists of Kn+1 plus one of the arcs of

∆In from a1, a2. Since our claim was known to be true for ∆In it is also true for
each of the arcs of ∆In from a2 to a1 followed by Kn+1, that is for the boundaries
of I ′n and I ′′n . This proves our claim for N = n+ 1.

We now apply the claim of the last statement to I, the component of
◦
J∩

(interior of Ŝ) defined above. For the Ki we take all segments of ∆Ŝ whose interior

lies in
◦
J . I is one of the components of

◦
J minus these segments. The claim from

the preceding paragraph then tells us that ∆I consists of arcs of J and segments

of ∆Ŝ, and that we can traverse ∆I in such a way that all the arcs of J in ∆I are
traversed in the same direction and order as when J is traversed counterclockwise.
In fact this will necessarily be when we traverse ∆I counterclockwise, because
when traversing the arc F which belongs to J and to ∆I, any vector pointing into
◦
J also points into I.

Next, we shall introduce a partial order of the paths ζ which we are consid-
ering. Call a path ζ = (v1, . . . , vq) permissible, if it satisfies (4.27), (4.29), (4.30)
and

vq ∈
◦
J, v1 ∈ F ∩ S. (4.40)

A permissible path minus its endpoints lies in I; in fact it is a crosscut of I (note

that ζ \ {v1} ⊂
◦
J , by virtue of (4.27) and the fact that vq ∈

◦
J ; thus, as we move

from v1 ∈ F along ζ we enter a component of
◦
J∩ (interior of Ŝ) with F in its

boundary, and this must be I). We shall also need to consider a slightly larger
class of paths which includes the permissible paths. This is the collection of paths
γ = (y1, . . . , yq) with the following three properties:

y1 ∈ (J ∩ interior of Ŝ) and y1 is the only vertex of γ adjacent to C, (4.41)

γ \ {y1, yq} ⊂
◦
I ⊂

◦
J, (4.42)

yq ∈ ∆Ŝ ∩
◦
J, and y1 not adjacent to yq . (4.43)
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Figure 7. Illustration of the regions I, L(γ) (hatched) and R(γ) (dot-
ted) for a path γ as in (4.41)-(4.43). γ is the boldly drawn curve and I
consists of R(γ) ∪ L(γ) ∪ γ (minus the endpoints of γ).

Basically only the requirement (4.40) for permissible paths has been weakened to

y1 ∈ J ∩ ( interior of Ŝ). We shall write wt for this initial point y1. Such a path
γ is still a crosscut of I so that I \ γ consists of two components which we denote
as L(γ) and R(γ). L(γ) will be the component of I \ γ whose boundary contains
the endpoint w1 of F , and R(γ) will be the other component. This implies that
the whole arc of ∆I in the counterclockwise direction starting from w1 till it first
reaches a point of γ, belongs to ∆L(γ), and except for wt no point of this arc
belongs to ∆R(γ). Call this arc A(γ). For a permissible path γ, A(γ) is the arc of
F from w1 to wt = y1 ∈ F . This means that this arc of F belongs to ∆L(γ) and

yq /∈ A(γ). (4.44)

By the property of ∆I proven above, we have that all vertices wi of ∆I with i < t
must be passed before we get to wt as we move counterclockwise from w1. Thus
(4.44) implies

all wi which belong to ∆I and which have i < t,

lie in A(γ) and belong to ∆L(γ) \∆R(γ);

in particular wi ∈ ∆R(γ) implies i ≥ t. (4.45)

(This deduction of (4.45) from (4.44) does not use that γ is permissible, but only
the properties (4.41)-(4.43).) We shall soon see that all the paths in which we are
interested have the properties (4.44) and (4.45).



40

It may help the reader to form a mental picture by considering the case when

F is a left-right crossing of Ŝ with w1 and wν on the left and right edge of ∆Ŝ,

respectively. Then according to our numbering of the vertices of F ,
◦
J contains the

points just above F . If ζ has its last point vq on the top edge of ∆Ŝ, then L(ζ)

and R(ζ) are on the left and right of ζ, repectively. ζ(1) can be thought of as the
‘leftmost’ vacant permissible path. Of course, the general picture may be much
more complicated.

We now define a partial ordering of permissible paths. (Note that we only
order permissible paths, not the more general paths γ of the preceding paragraph.)
If ζ ′ and ζ ′′ are two permissible paths, then we say that

ζ ′ precedes ζ ′′ if L(ζ ′) ⊂ L(ζ ′′). (4.46)

It follows from the argument of Lemma 1 in Kesten (1980) or Proposition 2.3 in
Kesten (1982) that if ζ ′, ζ ′′ are permissible, then there exists a permissible ζ ′′′

which precedes both of them. If ζ ′, ζ ′′ are both vacant, then we can take ζ ′′′ also
vacant. In what follows we assume that there exists at least one vacant permissible
path. From the preceding remarks it then follows that there also exists a first path
(in the above order) among all the vacant permissible paths. This path will be
denoted by

ζ(1) = (v(1)
1 , . . . , v

(1)

q(1) ).

It is an important fact that for a fixed permissible path γ (with initial point
on F equal to wt), the event {ζ(1) = γ} depends only on the vertices in L(γ) ∪
γ ∪{w1, . . . , wt}∪ (∆L(γ)∩

◦
J). Indeed this event occurs if and only if γ is vacant,

but any permissible γ′ 6= γ with L(γ′) ⊂ L(γ) contains some occupied vertex;

any such γ′ lies in L(γ) ∪ γ ∪ {w1, . . . , wt} ∪ (∆L(γ) ∩
◦
J). This is so because γ′

minus its endpoints lies in L(γ); moreover, the initial point of γ′ has to lie in
F ∩∆L(γ) = {w1, . . . , wt} (see (4.40), (4.44), (4.45)), and the endpoint v′q′ of γ′

lies in
◦
J , hence not on J itself.

We now wish to estimate first

P{ζ(1) exists but does not satisfy (4.3)|E(p,C)} (4.47)

(of course we mean here again that (4.3) with ζ(1) substituted for D fails). It is
convenient for this to introduce the following definitions. Let γ = (y1, . . . , yq) be a
path which has the properties (4.41)-(4.43). Suppose that y1 = wt ∈ J∩ (interior

of Ŝ) and that G is some subset of R2. Then we say that a vertex wm ∈ J∩
(interior of Ŝ) has a vacant connection in the set G to γ if m = t or if there exists
a path δ = (z1, . . . , zu) with

δ ⊂ G, (4.48)
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z1 = wm, zu ∈ γ, zu 6= wt, (4.49)

δ \ {z1, zu} ⊂ R(γ), (4.50)

and
z1, . . . , zu−1 are vacant (4.51)

(see Figure 8). Note that we do not require zu to be vacant here (although it will
be vacant in our applications); also we always count wt (the initial point of γ)
as having a vacant connection to γ. However, if wm 6= wt, then (4.51) requires

that wm = z1 be vacant. Note further that z1 = wm ∈ J∩ (interior of Ŝ) and
δ \ {z1, zu} ⊂ I by (4.50). Thus each neighborhood of wm contains points of δ
in R(γ) ⊂ I. Of course each neighborhood of wm ∈ J also contains points of
Jext ⊃ Iext. Thus wm ∈ ∆I. By (4.50) we then have

wm ∈ ∆I ∩∆R(γ).

Now assume that γ satisfies also the conditions (4.44) and hence (4.45), in
addition to (4.41)-(4.43). Then we must have t ≤ m ≤ ρ. If δ is a vacant connection
from wm to γ and m > t, define γ∗(δ) as the path which consists of δ, followed by
the piece of γ from zu (= the endpoint of δ), to yq (= the endpoint of γ). It follows
from (4.49), (4.50), (4.42) and (4.43) that γ∗(δ) is again a crosscut of I and that its
initial point z1 = wm is the only point of γ∗(δ) which is adjacent to C . (Note that

z2, . . . , zu−1 ∈ I ⊂
◦
J by (4.50), zu 6= wt by (4.49), so that also zu ∈ γ \ {y1} ⊂

◦
J .)

Therefore, if z1 = wm is not adjacent to yq , then γ∗(δ) again satisfies (4.41)-(4.43)
with y1 replaced by z1. We want to show that γ∗(δ) also satisfies (4.44) and (4.45).
To this end we note that as we move around ∆I counterclockwise from w1, we
first traverse the arc A(γ) till we get to wt. As we continue traversing ∆I we go
through an arc of ∆I, A′ say, from wt to yq . This arc must be the part of ∆I which
belongs to ∆R(γ). Finally we will go from yq back to w1 along another arc A′′ of
∆I which belongs to ∆L(γ) again (because it ends in w1). Since wm ∈ ∆I∩∆R(γ)
we must have wm ∈ A′ and the counterclockwise arc of ∆I from wt to wm is part

of A′ and does not contain yq. (Note that wm ∈ J, yq ∈
◦
J , so wm 6= yq .) Thus

A(γ∗(δ)), which is the counterclockwise arc of ∆I from w1 to wm, consists of A(γ)
plus the counterclockwise subarc of A′ from wt to wm, and does not contain yq .
This is precisely the desired analogue of (4.44) for γ∗, namely

yq /∈ A(γ∗).

As we already pointed out, (4.45) for γ∗ then follows.
We now define for i+ d2c32 log je ≤ ρ the event

Y (wi, γ, h) ={wi has a vacant connection to γ in wt + S(2h),

and wi+1, wi+2, . . . , wi+d2c32 log je are vacant}. (4.52)
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Note that in (4.52) we look for a connection from wi to γ in the square wt+S(2h),
centered at the initial point wt of γ. Such a connection can exist only if wi ∈
wt + S(2h). We further define for D ≥ 1

Z(γ, h,D) =maximal number of indices mi ∈ [t, ρ− d2c32 log je]
for which ‖wmi − wmk‖ > D for i 6= k and for which

wmi ∈ (interior of Ŝ) and Y (wmi , γ, h) occurs. (4.53)

When γ is vacant and
Z(γ, h,D) ≥ exp[c31j]

for
D = 2c33c30(j+1), (4.54)

then (4.3) with D replaced by γ and z by yq certainly holds. Indeed, for each of
the m’s for which Y (wm, γ, h) occurs, wm has a vacant connection, δ say, to γ and
is therefore connected to yq by the vacant path γ∗(δ). The only vertex adjacent
to C on this path is wm. The path (wm, wm+1, . . . , wm+d2c32 log je) is therefore one
of the possible paths θ required in (4.3). The probability in (4.47) can therefore
be bounded by∑

γ

P{Z(γ, h,D) < exp[c31j]|E(p,C), ζ(1) = γ}P{ζ(1) = γ|E(p,C)}, (4.55)

with D as in (4.54) and the sum over γ running over all permissible paths. We note
that for a fixed path γ, Z(γ, h,D) depends only on the vertices in R(γ) ∪ {wm :

t < m ≤ ρ} ⊂
◦
J ∪ J ⊂

◦
C, because any vacant connection has to lie in R(γ)

except for its endpoints (by virtue of (4.50)), and no requirements are made on
wt = y1 or zu in (4.51). Moreover, the initial point wm of any such vacant
connection has to satisfy t ≤ m ≤ ρ, as we saw above. On the other hand, as we
observed before, E(p,C) depends only on the vertices in Cext∪C , while {ζ(1) = γ}
depends only on the vertices in L(γ) ∪ γ ∪ {w1, . . . , wt} ∪ (∆L(γ) ∩

◦
J). Since

Cext∪C ∪L(γ)∪γ∪{w1, . . . , wt}∪ (∆L(γ)∩
◦
J) and R(γ)∪{wm : t < m ≤ ρ} are

disjoint, the conditioning in the first factor in (4.55) has no influence. For similar
reasons, the conditioning has no influence on the second factor (recall that C is
fixed). Therefore (4.55) equals∑

γ

P{Z(γ, h,D) < exp[c31j]}P{ζ(1) = γ}

≤ P{ζ(1) exists} sup
γ
P{Z(γ, h,D) < exp[c31j]},

(4.56)
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where γ still ranges over the permissible paths. In particular, these have initial

vertex y1 ∈ S, and therefore the distance of y1 to ∆Ŝ exceeds 2`. To estimate
(4.56) we introduce further

Λ(α, h,D) = sup
γ
E exp[−αZ(γ, h,D)], (4.57)

where we now let γ range over all paths satisfying (4.41)-(4.45) and

distance of y1 to ∆Ŝ > 2h. (4.58)

We shall choose α ≥ 0 and h later, but from now on we restrict h to satisfy

4 ≤ h ≤ `, and 2h ≥ 8D ∨ 32c32 log j. (4.59)

We then obviously have for any α ≥ 0 that (4.56), and hence (4.47) is bounded by

P{ζ(1) exists} exp[α exp{c31j}]Λ(α, h,D). (4.60)

The remainder of this step is devoted to proving that there exists some constant
c44 ∈ (0, 1], independent of α, h,D such that under (4.59)

Λ(α, h,D) ≤ (1− c44)Λ(α, h− 4,D) + c44Λ2(α, h− 4,D). (4.61)

We shall prove (4.61) by proving that for fixed γ, under (4.58), (4.59), Z(γ, h,D)
is stochastically larger than

Z(γ, h− 4,D) + ξZ̃(h− 4,D), (4.62)

where Z(γ, h− 4,D), Z̃(h− 4,D) and ξ are independent with

P{ξ = 1} = 1− P{ξ = 0} ≥ c44 > 0 (4.63)

for a constant c44 ∈ (0, 1] which is independent of γ, h,D, and where Z̃ has a
distribution of the form

P{Z̃(h − 4,D) ∈ B} =
∑
γ

q(γ)P{Z(γ, h− 4,D) ∈ B} (B a Borel set). (4.64)

Here q(γ) ≥ 0,
∑

γ q(γ) = 1, and γ runs over all paths of with the properties

(4.41)-(4.45) and whose initial point y1 satisfies

distance of y1 to ∆Ŝ > 2h−4. (4.65)
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In other words, the distribution of Z̃ is a mixture of distributions of Z(γ, h−4,D)
over γ which satisfy (4.41)-(4.45) and (4.65). In particular

E exp[−αZ̃(h− 4,D)] ≤ Λ(α, h− 4,D), α ≥ 0,

and the bound (4.62) implies (under (4.58))

E exp[−αZ(γ, h,D)]

≤ E exp[−αZ(γ, h− 4,D)]{1 − c44 + c44E exp[−αZ̃(h − 4,D)]}
≤ (1 − c44)Λ(α, h − 4,D) + c44Λ2(α, h− 4,D).

Thus it will indeed suffice for (4.61) to show Z(γ, h,D) stochastically larger
than (4.62). The proof of this stochastic domination is essentially given in Lemma
8.2 of Kesten (1982) so we will skip some details. Let γ = (y1, . . . , yq) be fixed so
that (4.41)-(4.45) hold and assume that (4.58) and (4.59) hold. Let y1 = wt. We
now also need a partial order of the paths δ = (z1, . . . , zu) with z1 = wm ∈ J∩
(interior of Ŝ) and which satisfy (4.48)-(4.50) with

G = wt + S(5 · 2h−3) \ S(4 · 2h−3). (4.66)

G is an annulus centered at wt. Note that z1 ∈ G forces z1 ∈ (interior of Ŝ) by
(4.58) and (4.59) (recall that wt = y1). Furthermore, ‖z1 − y1‖ = ‖z1 − wt‖ >
4 · 2h−3 > 2, so that z1 is not adjacent to y1. Also z1 is not adjacent to yq because
‖z1 − yq‖ ≥ ‖y1 − yq‖ − ‖z1 − y1‖ > 2h − 5 · 2h−3 ≥ 2 (see (4.58)). Therefore
the case that δ consists of a single edge in ∆R(γ) is excluded. These paths δ are
therefore crosscuts of R(γ) and consequently R(γ) \ δ consists of two components
which we denote by U(δ) = U(δ, γ) and V (δ) = V (δ, γ) (these U, V are unrelated
to the U, V of Step (iii) which will not be used anymore). U(δ) is the component
of R(γ) \ δ whose boundary consists of δ, the piece of γ from zu to y1 = wt plus
that arc of ∆I from wt to wm = z1 which is contained in ∆R(γ); see Figure 8.
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Figure 8. Illustration of γ (boldly drawn), δ (solidly drawn) and the
components U(δ) (the hatched region) and V (δ) (the dotted region). F
is the dashed part of J .

The last arc is a subarc of the arc A′ introduced in the paragraph following (4.51).
As we traverse ∆I, vertices of J are met in the same order as on J , so that this
boundary arc of U(δ) contains only vertices wi ∈ J with t ≤ i ≤ m (note that
A′ does not contain w1, so this subarc of A′ cannot be the one which contains wi
with m ≤ i ≤ ρ and 1 ≤ i ≤ m). V (δ) is the other component of R(γ) \ δ; its
boundary consists of δ followed by the part of γ from zu to yq, and the part of A′

which is not in ∆U(δ), i.e., the (reverse of) the subarc from wm to yq . We say
that δ′ precedes δ′′ (with respect to γ) if U(δ′, γ) ⊂ U(δ′′, γ). Again, if δ′, δ′′ lie in
a set G, then there exists a path δ′′′ ⊂ G which precedes δ′ and δ′′. Also if δ′ and
δ′′ are vacant, with the possible exception of their endpoint on γ, then δ′′′ minus
its endpoint on γ can also be taken vacant. Assume now that

there exists a path δ satisfying (4.48)-(4.51) with G given by (4.66). (4.67)

In this case there is a minimal δ with respect to γ (in the above order) with the

properties (4.48)-(4.51). Let this minimal path be δ̃ = (z̃1, . . . , z̃u). Let z̃u = yv .

Then consider the path γ̃ := γ∗(δ̃). As we saw before, γ̃ also has the properties
(4.41)-(4.45) with the obvious replacements (e.g., y1 is replaced by the first vertex
of γ̃, that is, by z̃1).

Now write again wm for z̃1, and consider a vertex wi for which Y (wi, γ̃, h−4)
occurs. This means that wi has a vacant connection to γ̃ in wm+S(2h−4) and that
all the vertices wi, wi+1, . . . , wi+d2c32 log je are vacant. Note that this can happen
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only for

wi ∈
(
wm + S(2h−4)

)
⊂ [wt + S(5 · 2h−3) \ S(4 · 2h−3)] + S(2h−4)

(because wm ∈ G) ⊂ wt + S(6 · 2h−3) ⊂ wt + S(2h) ⊂ (interior of Ŝ),

so that automatically wi ∈ (interior of Ŝ). In addition, it must be the case that
m ≤ i ≤ ρ, as in the lines following (4.51), because γ̃ satisfies (4.44), (4.45). For the

sake of argument, let wi have the vacant connection δ̂ to γ̃ in wm+S(2h−4). Then

one can see that δ̂, possibly followed by a piece of δ̃, forms a vacant connection
from wi to γ (see Kesten (1982), equation (8.73) and its proof). Since this vacant

connection is made up from δ̂ and possibly a piece of δ̃, it lies in(
wm + S(2h−4)

)
∪G ⊂ [wt + S(5 · 2h−3) \ S(4 · 2h−3)] + S(2h−4)

(because wm ∈ G) ⊂ wt + S(2h).

Thus wi has a vacant connection to γ in wt +S(2h). If further wp is vacant for all
i ≤ p ≤ i+ d2c32 log je then Y (wi, γ, h) occurs. In other words, Y (wi, γ, h) occurs
if (4.67) holds and Y (wi, γ̃, h− 4) occurs.

It is further immediate from the definitions that for any wi, the occurrence of
Y (wi, γ, h − 4) implies the occurrence of Y (wi, γ, h). This is true whether (4.67)
holds or not.

Now by definition of Z, there exist Z(γ, h−4,D) indicesmi ∈ [t, ρ−d2c32 log je]
with wmi ∈ (interior of Ŝ) and which satisfy

‖wmi −wmk‖ > D for i 6= k (4.68)

and
Y (wmi , γ, h− 4) occurs. (4.69)

Similarly, if (4.67) holds, then there are Z(γ̃, h− 4,D) indices ni ≥ m with wni ∈
(interior of Ŝ) which satisfy

‖wni −wnk‖ > D for i 6= k (4.70)

and
Y (wni , γ̃, h− 4) occurs, and hence Y (wni , γ, h), occurs. (4.71)

Also Y (wmi , γ, h−4) can occur only when wmi−wt ∈ S(2h−4), while Y (wni , γ̃, h−
4) can occur only when wni − wm ∈ S(2h−4). But wm = z1 ∈ G, so that

wm −wt ∈ S(5 · 2h−3) \ S(4 · 2h−3),
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and in particular ‖wm − wt‖ > 4 · 2h−3. Thus for any mi, nk which satisfy (4.69)
and (4.71), respectively, we must have

‖wmi − wnk‖ ≥ ‖wm − wt‖ − ‖wmi − wt‖ − ‖wnk −wm‖
> 4 · 2h−3 − 2

√
22h−4 > 2h−3 ≥ D (see (4.59)).

(4.72)

Thus each of the vertices wmi which satisfies (4.69) automatically has distance
more than D to each of the vertices ni which satisfy (4.71). It follows that we can
combine the vertices satisfying (4.68), (4.69) with those satisfying (4.70), (4.71)
and that under (4.58), (4.59) and (4.67),

Z(γ, h,D) ≥ Z(γ, h− 4,D) +Z(γ̃, h− 4,D).

If we set

ξ = I[γ̃ exists] = I[(4.67) occurs],

and

Z̃(h− 4,D) = Z(γ̃, h− 4,D),

then this says that the stochastic lower bound (4.62) for Z(γ, h,D) is valid when
ξ = 1. When ξ = 0, then (4.62) merely says Z(γ, h,D) ≥ Z(γ, h − 4,D), and as
we saw, this always holds.

It remains to verify that Z(γ, h − 4,D), Z̃(h − 4,D) and ξ are independent
and that their joint distribution has the properties (4.63)-(4.65). For fixed γ,
Z(γ, h−4,D) depends only on connections inside

(
wt+S(2h−4)

)
∩(R(γ)∪∆R(γ))

and vertices wp ∈ J with t ≤ i < p ≤ i + d2c32 log je for some wi for which
Y (wi, γ, h − 4) can occur. Such wi have to lie in wt + S(2h−4) and i ≥ t must
hold (see the lines following (4.55)). Thus, Z(γ, h−4,D) depends only on vertices
within distance

√
2 · 2h−4 + d2c32 log je < 2h−2 from wt. ξ only depends on the

vertices in the annulus G of (4.66), because δ̃ has to satisfy (4.48). Since the
distance from G to wt is at least 4 · 2h−3 > 2h−3 + d2c32 log je for the h-values
under consideration (see (4.59)), Z(γ, h − 4,D) and ξ are indeed independent.

For the same reason, the location of the path δ̃ when it exists, is independent of
Z(γ, h− 4,D). Moreover,

P{ξ = 1} ≥ P{∃ vacant circuit in the annulus G of (4.66)} (4.73)

for the same reasons as for equation (7.72) in Kesten (1982); see also Lemma 3
in Kesten (1980)). Since the right hand side here is bounded away from 0, (4.63)
holds for c44 > 0 given by the right hand side of (4.73).
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Finally we need to consider the conditional distribution of distribution of Z̃.

The conditional distribution when ξ = 0 is irrelevant, because in this case Z̃ does
not figure in (4.62). To finish our proof it suffices to show that

P{Z̃(h − 4,D) ∈ B|vertices within distance 2h−2 of wt, ξ = 1, δ̃ = δ}
= P{Z(γ∗(δ), h− 4,D) ∈ B}. (4.74)

Indeed, (4.74) implies that

P{Z̃(h− 4,D) ∈ B|Z(h− 4, γ,D), ξ = 1}

=
∑
δ

P{δ̃ = δ|ξ = 1}P{Z(γ∗(δ), h− 4,D) ∈ B}, (4.75)

so that (4.64) holds with

q(γ) =
∑

δ:γ∗(δ)=γ

P{δ̃ = δ|ξ = 1}.

This distribution also satisfies (4.65), because if (4.58) holds, then the distance of

any point in the annulus G of (4.66) to ∆Ŝ is at least equal the the distance of

wt = y1 to ∆Ŝ minus 5 · 2h−3 > 2h−3. In particular this holds for the initial point

of all possible δ̃.
Finally, to prove (4.74), we first check more precisely on which vertices the

event {ξ = 1, δ̃ = δ} depends. For fixed γ and δ, this only depends on the vertices

in G∩
(
U(δ, γ)∪ δ ∪{wt, . . . , wm}∪(interior of the piece of γ from wt = y1 to z)

)
,

where wm is the initial point of δ on J and z its final point on γ. Indeed, we only
need to check vertices in this set to check the minimality of δ, as follows from the
desription of ∆U(δ) in the lines following (4.66). We claim that

U(δ, γ) ∪ (interior of the piece of γ from wt = y1 to z) ⊂ L(γ∗(δ)). (4.76)

In fact, we claim that for any δ which satisfies (4.48)-(4.50), it holds that

L(γ) ∪ U(δ, γ) ∪ (interior of the piece of γ from wt = y1 to zu)

= L(γ∗(δ)). (4.77)

(4.76) follows once we have (4.77) by replacing δ by δ. (4.77) is the analogue
of equation (8.70) in Kesten (1982). It follows by observing that R(γ∗(δ)) and
V (δ, γ) have the same boundary and therefore are the same. Hence also

L(γ∗(δ)) = I \ (R(γ∗(δ)) ∪ γ∗(δ)) = I \ (V (δ, γ) ∪ γ∗(δ))

=
(
L(γ) ∪R(γ) ∪ (γ \ {y1, yq})

)
\ (V (δ, γ) ∪ γ∗(δ))

= L(γ) ∪ U(δ, γ) ∪ (interior of the piece of γ from wt = y1 to zu).
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Alternatively, we can check directly that the two sides of (4.77) have the same
boundary. Thus (4.77) holds, as claimed.

Just before (4.73) we described on which vertices Z(γ, h − 4,D) depends.
All these vertices have to lie within distance 2h−2 of wt. For the same reasons,
Z(γ∗(δ), h − 4,D) depends only on the vertices in R(γ∗(δ)) ∪ {wi : m < i ≤ ρ}
which are within distance 2h−2 of the initial point wm of δ (that is, once δ is fixed).
But

‖wm − wt‖ > 4 · 2h−3,

and no vertex wi ∈ J can lie in L(γ∗(δ) ∪ R(γ∗(δ) ⊂ I ⊂
◦
J . Therefore(

R(γ∗(δ)) ∪ {wi : m < i ≤ ρ}
)
∩ {vertices within distance 2h−2 of wm}

is disjoint from

L(γ∗(δ)) ∪ δ ∪ {wt+1, . . . , wm} ∪ {vertices within distance 2h−2 of wt}.

Thus even under the conditioning in the left hand side of (4.74), the vertices in
R(γ∗(δ)) ∪ {wi : m < i ≤ ρ} at distance ≤ 2h−2 from wm are still independently
occupied or vacant with probability 1/2. Therefore, the conditional distribution
of Z(γ̃, h − 4,D), given the conditions in the left hand side of (4.74) is just the
unconditional distribution of Z(γ∗(δ), h − 4,D). This is precisely what (4.74)
states.

Step (v) In this last step we assemble the pieces proven in Steps (i)-(iv) to
complete the proof of Proposition 1. First we must generalize the estimate (4.60)
for (4.47), in order to obtain an estimate for (4.38). Recall that ζ(1) was the first
vacant permissible path (in the ordering introduced in (4.46)). More generally, we
now introduce the successive disjoint permissible vacant paths ζ(i): ζ(1) is the first
such path, and ζ(i) is the first vacant permissible path which comes after ζ(i−1)

and is disjoint from ζ(i). At the first i for which there is no such path we say that
ζ(i) and ζ(i′) with i′ > i do not exist. Now it is not hard to see that if ζ ′ and ζ ′′

are two permissible paths which are either disjoint or have only their endpoint on
J in common, then one must precede the other. In fact, we already stated that
Lemma 1 of Kesten (1980) or Proposition 2.3 in Kesten (1982) shows that there
exists a path ζ ′′′ which precedes both ζ ′ and ζ ′′. The construction of ζ ′′′ (or a
direct study of the boundaries of L(ζ ′) and L(ζ ′′)) shows that ζ ′′′ can be taken as
one of ζ ′ or ζ ′′ when these paths are disjoint or intersect only on J . It follows that
if ζ is any vacant permissible path, then it must intersect one of the ζ(i) in a point
not on J , because otherwise ζ would be comparable to all of them, and appear as
one of the ζ(i) itself. But if ζ intersects ζ(i) in a point not on J , then the vacant

cluster of ζ in
◦
C is the same as the vacant cluster of ζ(i) in

◦
C, and if (4.3) fails for
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ζ, then it fails for ζ(i). Consequently, (for fixed C, J, F ) the probability in (4.38)
is bounded by ∑

i≥1

P{ζ(i) exists, but (4.3) fails for ζ(i)|E(p,C)}. (4.78)

Instead of only (4.47) we should therefore estimate this sum. Now the argument
leading to (4.56) remains valid without change when we replace ζ(1) by ζ(i). Indeed,
the only property of ζ(1) which is used is that the event {ζ(1) = γ} depends only

on the vertices in L(γ)∪ γ ∪ {w1, . . . , wt} ∪ (∆L(γ)∩
◦
J). However, this is equally

true with ζ(i) instead of ζ(1). Therefore (see (4.60)), the sum in (4.78) is at most∑
i≥1

P{ζ(i) exists} exp[α exp{c31j}]Λ(α, h,D).

But (see (4.14))

P{ζ(i) exists}
≤ P{there exist at least i disjoint crossings of S̃ \ S}
≤ (1− c41)i.

Combining this with our preceding estimate we find that (4.38) is bounded by

[c41]−1 exp[α exp{c31j}]Λ(α, h,D).

Finally this yields the bound

c42j
6

c41
22(1−c30)j exp[α exp{c31j}]Λ(α, h,D) (4.79)

for the sum in (4.15) (recall (4.39)).
We shall now use the recurrence relation (4.61) to get an explicit estimate for

Λ(α, h,D). To this end we rewrite (4.61) as

Λ(α, h,D) ≤ f(Λ(α, h − 4,D)), (4.80)

where
f(s) = (1− c44)s+ c44s

2, 0 ≤ s ≤ 1.

The relation (4.80) is of the form of the recurrence relation for the generating
function of a Bienaymé-Galton-Watson branching process in which each individual
has one child with probability 1 − c44 and two children with probability c44. If
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Wn denotes the size of the n-th generation in such a process, and we start with
W0 = 1 individual, then

EsWn = f(n)(s), |s| ≤ 1,

where f(n) denotes the n-th iterate of f . Recall that (4.80) holds if α ≥ 0 and
(4.59) holds. Thus, if

α ≥ 0, 4 ≤ h ≤ `, and 2h−4n ≥ 8D ∨ 32c32 log j, (4.81)

we can iterate (4.80) n times to obtain (for any A > 0)

Λ(α, h,D) ≤ f(n)(Λ(α, h− 4n,D)) ≤ P{Wn ≤ A}+ [Λ(α, h− 4n,D)]A. (4.82)

We shall choose our parameters as follows:

D = 2c33c30(j+1), h = `, n =
⌊
(1− c33)c30j/8

⌋
, A = (1 + c45)n. (4.83)

(4.81) will be satisfied for large j, provided we fix c33 < 1 (see (4.9) for `).
The first term in the right hand side of (4.82) can now be estimated by

standard branching process methods. Indeed, it is known (see Athreya and Ney
(1972), Corollary 1 in Section I.11) that for our branching process, which has
extinction probability 0 and f ′(0) = 1− c44,

f(n)(s) ≤ c46(s)[f ′(0)]n = c46(s)[1 − c44]n, 0 ≤ s < 1.

Here c46(s) depends on s only. Therefore, if we fix s > [1− c44]1/2, then we obtain
for suitable constants c47 <∞, c48 < 1,

P{Wbn/2c ≤ n} ≤ s−nc46(s)[1− c44]bn/2c ≤ c47[c48]n. (4.84)

We improve this further by noting that Wn consists of the offspring of the Wbn/2c
individuals in the bn/2c-th generation. If any one of these individuals has more
than (1 + c45)n children in the n-th generation, then Wn > (1 + c45)n. Therefore,
for any choice of c45 ≥ 0,

P{Wn ≤ (1 + c45)n} ≤ P{Wbn/2c ≤ n}+
[
P{Wn−bn/2c ≤ (1 + c45)n}

]n
. (4.85)

Since the W -process is supercritical and has zero extinction probability, we can
choose c45 > 0 such that

P{Wn−bn/2c ≤ (1 + c45)n} → 0 (n→∞). (4.86)
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Together with (4.84) and (4.85) this gives for large j

P{Wn ≤ A} = P{Wn ≤ (1 + c45)n} ≤ 2c47[c48]n ≤ c49 exp[−c50(1− c33)c30j].
(4.87)

This is an exponential bound (in j) for the first term in the right hand side of
(4.82).

To estimate the second term in the right hand side of (4.82) we note that it
follows from the definition (4.57) that

Λ(α, h− 4n,D) ≤ 1− (1 − e−α) inf
γ
P{Z(γ, h− 4n,D) ≥ 1}, (4.88)

where γ ranges over the paths satisfying (4.41)-(4.45) and

distance of y1 to ∆Ŝ > 2h−4n. (4.89)

For such a γ,

P{Z(γ, h− 4n,D) ≥ 1} ≥ P{Y (wt, γ, h− 4n) occurs}
≥ P{wt+1, . . . , wt+d2c32 log je are vacant}
≥ 2−2c32 log j−1 ≥ j−c51c32 . (4.90)

For the second inequality here we note that if the first vertex of γ, y1 = wt satisfies

(4.89), then automatically t ≤ ρ−d2c32 log je because wρ is adjacent to w1 ∈ ∆Ŝ.
Thus (4.89) implies ‖wt − wρ‖ ≥ 2h−4n − 2 > 2d2c32 log je. From (4.82) and
(4.87)-(4.90), we obtain for 0 ≤ α ≤ 1/2,

Λ(α, h,D) ≤ c49 exp[−c50(1− c33)c30j] +
[
1− α

2jc51c32

]A
≤ c49 exp[−c50(1− c33)c30j] + exp[− (1 + c45)nα

2jc51c32
].

(4.91)

Finally we take

c31 = c31(c30, c33) <
(1 − c33)c30

16
log(1 + c45) (4.92)

and α = α(j, c30, c31) so that

αec31j = (1− c30)j

and c30 ∈ (0, 1) so close to 1 that

1− c30

c30
≤ 1

6
c50(1− c33).

Note that with these choices

(1 + c45)nα

2jc51c32
=

(1 + c45)b(1−c33)c30j/8c(1− c30)

2jc51c32−1
e−c31j ≥ c50(1− c33)c30j

for large j. Substituting these values of the parameters in the bound (4.79) for
the sum in (4.15) finally gives us the exponential bound (4.5). �
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5. Usefulness and existence of double paths.
We first demonstrate that one can use so-called ‘double-paths’ to write (a

piece) of an arbitrary word. We define a double path to be a pair of selfavoiding
paths π′, π′′ such that

π′ is occupied and π′′ is vacant; (5.1)

the initial points of π′ and π′′, u′ and u′′, are neighbors; (5.2)

the final points of π′ and π′′, v′ and v′′, are neighbors; (5.3)

and such that the following minimality property holds. For any occupied self-
avoiding path π̂′ from u′ to v′ and any selfavoiding vacant path π̂′′ from u′′ to
v′′ denote by R(π̂′, π̂′′) the interior of the Jordan curve formed by concatenating
π̂′, {v′, v′′}, (the reverse of) π̂′′, {u′′, u′}. (Note that π̂′ and π̂′′ are automatically
disjoint, since one of them is occupied and the other is vacant.) Let R(π̂′, π̂′′) be
the union of R(π̂′, π̂′′) and its boundary (that is the above Jordan curve). Then
we further require that

R(π′, π′′) is minimal among all such R(π̂′, π̂′′). (5.4)

By means of Proposition 2.2 in Kesten (1982) one can show that this implies the
following property:

every vertex u ∈ π′ \ {u′, v′} has a neighbor w ∈ (R(π′, π′′) ∪ π′′)
such that w is connected to a vertex of π′′ by a vacant path in R(π′, π′′)

and such that the edge {u,w} ⊂ R(π′, π′′);

the same property holds when the single and double prime superscripts are

interchanged (and ‘vacant’ is replaced by ‘occupied’). (5.5)

E.g., to obtain the first part interchange occupied and vacant in Proposition 2.2
of Kesten (1982) and take A1 = {u}, A3 = π′′, A2 = {u′′, u′} followed by the
piece of π′ from u′ to u and A4 = piece of π′ from u to v′ followed by {v′, v′′}.
By the minimality property (5.4) there does not exist an occupied path inside

R(π′, π′′)\({u}∪π′′) from a vertex of
◦
A2 to a vertex of

◦
A4. Note that J \(A1∪A3)

should be J \ (A1 ∪A3) on lines 1 and 2 f.b. of p. 30 in Kesten (1982). We point
out that in the first part of (5.5) w ∈ π′′ is possible; in this case the vacant path
from w to π′′ consists of w only. A similar comment applies to the second part of
(5.5).

We shall repeatedly use the fact that if π̂′, π̂′′ are an occupied and vacant
path, respectively, which start at the adjacent points u′, u′′ and end at the adjacent
points v′, v′′, but for which R(π̂′, π̂′′) is not minimal, then there exist an occupied
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path π′ from u′ to v′ and a vacant path π′′ from u′′ to v′′ such that (π′, π′′) is a
double path with R(π′, π′′) ⊂ R(π̂′, π̂′′). To find such paths, first take π′ as an
occupied path from u′ to v′ in R(π̂′, π̂′′) which minimizes R(π′, π̂′′) over all such
paths. Such a π′ exists by the argument for Proposition 2.3 in Kesten (1982) (see
also Lemma 1 in Kesten (1980)). After that take π′′ as a vacant path from u′′ to
v′′ in R(π′, π̂′′) which minimizes R(π′, π′′) over all such paths. One easily checks
that (5.4) holds for these π′, π′′.

Now let (π′, π′′) be a double path starting at (u′, u′′) and let

Θ = min(‖v′ − u′‖, ‖v′′ − u′′‖)− 1. (5.6)

Finally, let ξ = (ξ1, . . . ) be any infinite word (here each ξi ∈ {0, 1} with 0 (1)
corresponding to vacant (respectively, occupied). The next lemma (which is purely
deterministic) shows how one can ‘see’ an initial segment of the word ξ inside
R(π′, π′′).

Lemma 8. At least the initial segment (ξ1, . . . , ξΘ) of ξ can be seen inside R(π′, π′′)
from u′ as well as from u′′. In fact, there exist paths σ′ = (σ′0 = u′, σ′1, . . . ), σ

′′ =
(σ′′0 = u′′, σ′′1 , . . . ) ⊂ R(π′, π′′), which start at u′ and u′′, respectively, and which
have as endpoint one of {v′, v′′} such that one sees an initial segment of ξ from
u′(u′′) along σ′(σ′′). The length of these paths is at least Θ, so that one can see
at least (ξ1, . . . , ξΘ) from both u′ and u′′. For a fixed occupancy configuration, and
any i, the event {length (σ′ \ {u′}) ≤ i} depends on ξ1, . . . , ξi only and not on
ξj, j > i. If length (σ′) ≥ i, then σ′1, . . . , σ

′
i also depend on ξ1, . . . , ξi only. The

same statement with single and double prime superscripts interchanged is also
valid.

Proof. We only prove that we can find the path σ′ from u′. This means that we
can find a selfavoiding path σ = (σ0 = u′, σ1, . . . , σν ) ⊂ R(π′, π′′) such that σ1

is adjacent to u′, σν ∈ {v′, v′′}, and such that σi is occupied (vacant) if ξi = 1
(respectively ξi = 0). We prove this in the following recursive way. We find a
neighbor σ1 of u′ ∈ R(π′, π′′) such that σ1 is occupied (vacant) if ξ1 = 1 (ξ1 = 0)
and a new double path (π′1, π

′′
1 ) with σ1 the initial point of one of them and with

endpoints (v′, v′′), and such that

R(π′1, π
′′
1 ) ⊂ R(π′, π′′) \ {u′}. (5.7)

We then repeat this step, that is we find a neighbor σ2 of σ1 such that σ2 is
occupied (σ2 is vacant) if ξ2 = 1 (ξ2 = 0) and a further double path etc. This
construction will continue until we first use a vertex σν from {v′, v′′}. It is clear
from the recursive nature of the construction that the event {ν ≤ i} is independent
of ξi+1, . . . . Similarly, if ν ≥ i, then the piece (u′, σ1, . . . , σi) of σ is independent
of ξi+1, . . . .
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Two cases have to be distinguished in our construction, depending on the
value of ξ1.
Case (i) ξ1 = 1. We now take σ1 as the neighbor of u′ on π′. This uniquely
determines σ1. We take π̂′ to be the piece of π′ from σ1 to v′ (this is just π′ minus
its first edge). We also want a vacant path π̂′′. To choose this, we observe that
by (5.5) there must exist a vacant path π2 in R(π′, π′′) from a neigbor u1 of σ1

to π′′. Now form the vacant path π̂′′ from u1 to v′′ which consists of π2 followed
by the piece of π′′ from the endpoint of π2 to v′′. Then (π̂′, π̂′′) is a pair of paths,
occupied and vacant, respectively, from (σ1, u1) to (v′, v′′). By construction π̂′, π̂′′

and {σ1, u1} are contained in R(π′, π′′), so that

R(π̂′, π̂′′) ⊂ R(π′, π′′)

(compare Newman (1951), Theorem 11.1 and its proof). In fact, u′ can be con-
nected to ∞ by a path whose only point in R(π′, π′′) is u, and u /∈ π̂′ ∪ π̂′′. We
therefore even have

R(π̂′, π̂′′) ⊂ R(π′, π′′) \ {u′}.

It is not clear that (π̂′, π̂′′) itself has the minimality property corresponding to
(5.4), but we take for (π′1, π

′′
1 ) the occupied and vacant pair of paths from (σ1, u1)

to (v′, v′′) which makes R(π′1, π
′′
1 ) minimal. This will automatically satisfy

R(π′1, π
′′
1 ) ⊂ R(π̂′, π̂′′) ⊂ R(π′, π′′) \ {u′}.

Thus (5.7) will be satisfied and we are done with our recursive step in Case (i).
Case (ii) ξ1 = 0. This time we take σ1 as a vacant neighbor of u′ on π′′. However,
we do not necessarily take σ1 = u′′, because it is not clear that u′′ has a neighbor on
π̂′ := π′ \ {first edge of π′}. Instead, we find σ1 as follows. Let u1 be the neighbor
of u′ on π′ (this was called σ1 in Case (i)). Now consider the six neighbors of u′

on T (see Figure 9). One of these neighbors is u1, which is occupied. Another one
of these neighbors is u′′, which is vacant. Now {u′, u1} is a side of two triangular
faces of T , one of which belongs to R(π′, π′′). Call the third vertex of this triangle
u2 (the others are u′ and u1). We claim that u2 must be vacant. To see this we
must examine two subcases. We assume that u2 is occupied. In each case we shall
see that this assumption contradicts the minimality property (5.4).
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Figure 9. The six neighbors of u′ (the vertex in the center) and the
arc A2. The dashed path is π′, while π′′ consists of the edge {u′′, u3}
plus the solidly drawn path. A2 is the boldly drawn arc.

Subcase (a) u2 is a vertex on π′. In this case, replace the piece of π′ from u′ to
u2 by the single edge {u′, u2} This removes at least (the interior of) the triangle
(u′, u1, u2) from R(π′, π′′), and yields a strictly smaller R, in contradiction to (5.4).
Subcase (b) u2 is occupied, but is not on π′. In this subcase we can replace the
edge {u′, u1} of π′ by the two edges {u′, u2} and {u2, u1}. This replacement again
removes (the interior of) the triangle (u′, u1, u2) from R(π′, π′′), and leads to a
contradiction as before. This proves that u2 must be vacant as claimed.

We next claim that there must exist a vacant path π2 from u2 to π′′ in
R(π′, π′′). If u2 ∈ π′′, then this path consists of {u2} only, and the existence of
π2 is clear. If u2 /∈ π′′, then u2 must lie in R(π′, π′′), because it is a vertex of
a triangle in R(π′, π′′) which does not lie on ∆R(π′, π′′) (u2 /∈ π′ because u2 is
vacant). Now to find π2, denote the hexagon whose vertices are the neighbors of
u′ by H and move from u2 towards u′′ along the arc of the boundary of H which
does not contain u1. We continue till we first hit a vertex, u3 say, of π′∪π′′. Since
u′′ ∈ π′′, we must have u3 = u′′ or we must reach u3 before u′′. Let A2 be the
arc of H from u2 to u3. Then {u′, u2} and A2, minus the endpoints u′ and u3,
lie in R(π′, π′′), because u2 ∈ R(π′, π′′). This shows that u3 ∈ π′ is impossible.
Indeed, if u3 ∈ π′, then we can replace the piece of π′ from u′ via u1 to u3 by the
single edge from u′ to u3 and so decrease R(π′, π′′). But then u3 ∈ π′′, u3 itself
is vacant, and the path from u1 to u3 consisting of {u1, u2} followed by A2 lies in
R(π′, π′′). If A2 is vacant, then we can take A2 itself for π2. If not, then apply
Proposition 2.2 of Kesten (1982) again. If there does not exist a vacant path π2

as claimed, then there exists an occupied path π3 from a vertex in
◦
A2 to a vertex

in
◦
A4, where

A4 ={v′′, v′}, followed by the (reversed) piece of π′ from v′ to u1

followed by the edge {u1, u2};
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this time take A1 = {u2} and A3 = piece of π′′ from u3 to v′′. But then the

path consisting of the edge from u′ to the initial vertex of π3 on
◦
A2 followed by

π3 itself is an occupied path in R(π′, π′′), which runs from u′ to a point of π′, but
which does not start with the edge {u′, u1}. This again contradicts the minimality
property (5.4). Thus π3 cannot exist, but π2 does exist.

We now take σ1 = u2, π̂
′ = piece of π′ from u1 to v′, and π̂′′ = π2 followed

by the piece of π′′ from the endpoint of π2 on π′′ to v′′. From here on we continue
as in Case (i).

We can continue using the procedure of Case (i) or Case (ii) as long as both
π′, π′′ each have at least two points. Assume then that we arrive at the situation
where one of them has only one point. For the sake of argument let σm be occupied
(ξm = 1) and let the remaining path π′′ = {v′′} be a one point path only; π′ will
be an occupied path from σm to the neighbor v′ of v′′. If now ξm+1 = 0, then we
simply take as the next point σm+1 = v′′ and we stop our procedure. If, however,
ξm+1 = 1, then we are in Case (i). The argument there still applies and σm+1 has
to be taken as the neighbor of σm on π′. Even though π′′ has only one vertex, the
next vacant path (π′′1 in our notation) may again have more than one vertex, but
this causes no problem. At each step R becomes strictly smaller, so our process
must stop at some time. �

Corollary 1. Let (π′, π′′) be a double path with initial points (u′, u′′) and end-
points (v′, v′′). Let y ∈ π′. Then for all ξ = (ξ1, ξ2, . . . ) there exists a λ and a path
(z0 = y, z1, . . . , zλ) ⊂ R(π′, π′′) which starts at y and ends at zλ ∈ {v′, v′′} such
that (ξ1, . . . , ξλ) is seen along this path. Moreover λ ≥ min(‖v′−y‖, ‖v′′−y‖)−1.
The same holds when y ∈ π′′.

Proof. There is nothing new to prove if y = u′ or y = v′. So assume y ∈ π′\{u′, v′}.
Let π̂′ be the piece of π′ from y to v′. This is an occupied path. We next construct
a vacant path from a neighbor y′′ of y to v′′ inside R(π′, π′′). To this end, recall
that there exists a neighbor y′′ of y such that {y, y′′} ⊂ R(π′, π′′) and such that
y′′ is connected by a vacant path in R(π′, π′′), π1 say, to π′′ (see (5.5)). Let
the endpoint of π1 on π′′ be z′′. Then take for π̂′′ the concatenation of π1 and
the piece of π′′ from z′′ to v′′. By construction π̂′, π̂′′ ⊂ R(π′, π′′). Hence also
R(π̂′, π̂′′) ⊂ R(π′, π′′). (π̂′, π̂′′) is not necessarily a double path, because R(π̂′, π̂′′)
may not be minimal, but we can now find a double path in R(π̂′, π̂′′) with the
starting points (y, y′′) and endpoints (v′, v′′) by the procedure outlined just before
Lemma 3. The Corollary now follows by applying Lemma 3 to this new double
path. �

Unfortunately there are with probability 1 no infinite double paths, because
we are working with critical percolation on T . We shall now show, though, that
we can find suitable double paths between two successive circuits Ck and Ck+1.
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Let Ci be fixed as Ci for some sequence of circuits with Ci ⊂
◦
Ci+1. We first

consider the case that both Ck and Ck+1 are occupied. Let v = v(k) ∈ Ck. Because

Ck is the outermost occupied circuit in
◦
Ck+1, there exists a vacant path D = D(k)

from a neighbor w of v to a vertex u′ adjacent to Ck+1 (see Remark 1). Without
loss of generality we assume that

u′ is the only vertex of D adjacent to Ck+1. (5.8)

Since the vacant path D cannot intersect the occupied circuits Ck and Ck+1 we
may further assume that

w and D ⊂ Cext
k ∩

◦
Ck+1. (5.9)

In addition there is no vacant circuit between the successive circuits Ck and Ck+1.
Therefore, again by Remark 1, there also exists an occupied path ρ connecting
some vertex a ∈ Ck to some vertex b of Ck+1. Without loss of generality we may
assume that

ρ \ {a, b} ⊂ Cext
k ∩

◦
Ck+1.

We could construct a double path from D, ρ and pieces of Ck, Ck+1. However, we
need double paths with some further special properties.

To construct these special double paths we must first fix the constants c30−c33

appearing in Proposition 1. We take c32 so large that with probability 1

c32

2
log log(diam (Ck)) > Mk :=

⌈ 2 log k

log(β ∧ (1 − β))

⌉
eventually (5.10)

(β is the parameter in the measure µ in (1.2).) This can be done by virtue of (3.3).
We shall assume in the sequel that k is so large that (5.10) holds. Next we choose
two pairs c30, c33 and ĉ30, ĉ33 in (0, 1) with corresponding c31 and ĉ31 (see (4.92))
so that the estimate (4.5) holds for each of these choices of the parameters, and
so that

ĉ33ĉ30 > c30. (5.11)

Finally we take for j the unique integer with

2j ≤ diam (Ck+1) < 2j+1. (5.12)

Now assume that v = v(k) ∈ Ck satisfies

d(v,Ck+1) ≥ 2[diam(Ck+1)]ĉ30 (5.13)

and that Ck+1 is (ĉ30 − ĉ33)-good (with ĉ32 = c32). We shall now use Propo-
sition 1 to construct (in a deterministic way) under assumptions (5.13), (5.10)
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and the further assumptions (5.23) and (5.25) below, a double path (π′, π′′) =
(π′(k, v), π′′(k, v)) with the following properties:

the initial points of π′ and π′′ are v and w, respectively; (5.14)

the final points of π′ and π′′ are some vertices y ∈ Ck+1

and u ∈
◦
Ck+1, respectively; (5.15)

R(π′, π′′) ⊂ Cext
k ∩

◦
Ck+1 and consequently R(π′, π′′) ⊂ (Cext

k ∪Ck)∩Ck+1; (5.16)

there exists a vacant path θ = θ(k+1) = (z1, z2, . . . , zq−1, u)

⊂ Cext
k ∩

◦
Ck+1 such that θ is adjacent to Ck+1,

q = length (θ) = Mk+1, and such that z1, . . . , zq−1 /∈ R(π′, π′′);
(5.17)

there exists a vacant path τ̂ = τ̂ (k) from w to θ with only its

endpoint on θ adjacent to Ck+1; (5.18)

if v(zi) ∈ Ck+1 is a point adjacent to zi, 1 ≤ i ≤ q (with zq = u

and v(zq) = v(u) = y), and V (k+1) = {v(zi) : 1 ≤ i ≤ q}, then

d(V (k+1), Ck+2) ≥ 2[diam (Ck+2)]c30. (5.19)

To start our construction, consider the vacant path D from w to u′. It satisfies
(for large k)

diam (D) ≥ ‖w − u′‖ ≥ ‖u′ − v‖ − ‖w − v‖ ≥ d(v,Ck+1)− 4

(because u′ is adjacent to Ck+1)

≥ 2[diam (Ck+1)]ĉ30 − 4 > [ diam Ck+1]ĉ30 . (5.20)

Therefore, the fact that Ck+1 is good implies (see (4.4)) that there exist [diam

(Ck+1)]ĉ31 ≥ 2ĉ31j vacant paths θm ⊂ Cext
k ∩

◦
Ck+1 in the vacant cluster of D in

◦
Ck+1 which are adjacent to Ck+1 and satisfy

length (θm) ≥ c32 log log(diam (Ck+1)) ≥ 2Mk+1 (5.21)
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and

d(θp, θq) ≥ [diam (Ck+1)]ĉ33 ĉ30 , p 6= q.

We take ĉ33ĉ30 > ĉ > c30 so that this implies (for k large enough)

d(θp, θq) ≥ 16[diam (Ck+1)]ĉ, p 6= q. (5.22)

For each such θm and z ∈ θm pick a neighbor v(z) of z in Ck+1 and let V
(k+1)
m =

{v(z) : z ∈ θm}. We now also assume that

N(j, ĉ) ≤ j2
and N (3)(j, ĉ30) = 0 for all j ≥ j. (5.23)

We know from Lemma 6 that with probability 1 this holds for large j. Also for
large j, 2ĉ31j > j2, so that by Lemma 7 for at least one m

d(V (k+1)
m , Ck+2) > 2ĉj . (5.24)

Pick such an m and denote θm by θ̂. Let θ̂ = (z1, . . . , zp), p ≥ 2Mk+1. It is part
of (4.3) that there exists a vacant path τ̂ from some vertex z ∈ D to some vertex

zq ∈ θ̂ such that zq is the only vertex of τ̂ adjacent to Ck+1. We can always extend
τ̂ by the piece of D from z to w, and at the other end we may stop at the first

vertex of τ̂ on θ̂. Thus we may assume without loss of generality that z = w and

τ̂ \ {zq} is disjoint from θ̂ and contains no vertex adjacent to Ck+1.

Also without loss of generality we assume that the vertices of θ̂ are indexed such
that q ≥Mk+1.

Now consider the following two paths from Ck to Ck+1 which lie inCext
k ∩

◦
Ck+1,

except for their initial and final points: the path τ , which consists of the edge from
v to w, followed by τ̂ , and finally an edge from the endpoint zq of τ̂ to y := v(zq) ∈
Ck+1 (such a neighbor y of zq exists because θ̂ is adjacent to Ck+1); and the path ρ,

which runs from a ∈ Ck to b ∈ Ck+1. These two paths divide the ring Cext
k ∩

◦
Ck+1

into two components, each of which is bounded by τ, ρ and different arcs of Ck
between v and a and of Ck+1 between b and y. One of these components contains

{z1, . . . , zq−1}, because ρ does not intersect θ̂ at all (recall that θ̂ is vacant and

ρ is occupied) and τ intersects θ̂ only in zq. We denote by W the component

of (Cext
k ∩

◦
Ck+1) \ (τ ∪ ρ) which does not contain z1, . . . , zq−1 (see Figure 10).
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Figure 10. Illustration of the region W . The circuits Ck, Ck+1 and
the path ρ are occupied. τ and θ are vacant.

Finally we define

π̂′ = the path consisting of the arc of Ck from v to a

in the boundary of W, followed by ρ and finally the

arc of Ck+1 from b to y in the boundary of W,

π̂′′ = τ̂ .

These paths are occupied and vacant, respectively, and their initial points, v,w
are adjacent, and so are their final points y, zq . Moreover the construction of our

paths is such that R(π̂′, π̂′′) = W ∪ ∆W and therefore z1, . . . , zq−1 lie outside

R(π̂′, π̂′′). Finally take for π′ and π′′ an occupied and vacant path from v to y and
from w to zq, respectively, which lie in R(π̂′, π̂′′) and form a double path. These
paths have the properties (5.14)-(5.16) by construction, with the choice zq for u.
(5.17) holds if we take θ = (zq−Mk+1+1, zq−Mk+1+2, . . . , zq = u) and renumber
its vertices. Condition (5.18) was already verified right after (5.24). Lastly, let

V (k+1) = V
(k+1)
m for the m for which θ̂ = θm. To obtain (5.19) we shall further

assume that

diam (Ck+i+1) ≤ (k + i)c10+2diam (Ck+i), i ≥ 0. (5.25)

We shall show in the next section that this is justified because this holds with
probability 1 for all large k. (5.24), (5.12), (5.25) and ĉ > c30 show that for large
j

d(V (k+1), Ck+2) ≥ 2[diam (Ck+2)]c30 ,

which gives (5.19). This completes the construction of our special double path
when Ck and Ck+1 are both occupied (or both vacant) and when (5.13), (5.23)
and (5.25) hold.
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If Ck+2 is also occupied, then we can repeat the above construction with k

replaced by k + 1 and for any v(k+1) ∈ V (k+1). (5.19) takes the place of (5.13).
However, the exponent ĉ30 in (5.13) has been replaced by the smaller c30, and
hence we are only able to construct a double path and sets θ(k+2), V (k+2) which
satisfy (5.14)-(5.17) with k replaced by k + 1, but with (compare (5.24))

d(V (k+2), Ck+3) ≥ 2[diam (Ck+3)]c

for any c < c33c30, instead of (5.19). Thus with each repetion of the construction
our estimate seems to deteriorate. We shall now prove that we can actually obtain

d(V (k+2), Ck+3) ≥ 2[diam (Ck+3)]c30 , (5.26)

so that our estimate does not deteriorate after the first repetion, and we can
continue to find double paths from v(k+i) ∈ V (k+i) ⊂ Ck+i and can satisfy (5.26)
with k + 2 replaced by k + i.

To see (5.26), assume we picked v(k+1) ∈ V (k+1) and then a neighbor w(k+1) ∈
Cext
k+1∩

◦
Ck+2 of v(k+1) so that w(k+1) has a vacant connection to a neighbor of Ck+2.

Then find a tentative θ̂(k+2) and V̂ (k+2) ⊂ Ck+2 as in the preceding construction
with k replaced by k + 1. By (5.18) this comes with a vacant path τ̂ (k+1) from

w(k+1) to some vertex in θ̂(k+2), such that this vertex is the only vertex of τ̂ (k+1)

adjacent to Ck+2. We identify D(k+1) with τ̂ (k+1). Now our construction only
guarantees that

diam (D(k+1)) ≥ d(v(k+1), Ck+2)− 4 ≥ 2[diam (Ck+2)]c30 − 4.

However, if actually the better estimate

diam (D(k+1)) ≥ 2[diam (Ck+2)]ĉ30 −Mk+2 − 4 > [diam (Ck+2)]ĉ30

holds, then we can simply go through the construction with k replaced by k + 1
to find a V (k+2) which satisfies (5.26). (Note that our construction did not use
(5.13) itself, but only its consequence (5.20).) We therefore only have to consider
the case when

d(V (k+1), Ck+2)− 4 ≤ diam (D(k+1)) < 2[diam (Ck+2)]ĉ30 −Mk+2 − 4.

In this case we have for any v(k+2) ∈ V̂ (k+2) some z ∈ θ̂(k+2) adjacent to v(k+2)

and

‖v(k+1) − v(k+2)‖ ≤ ‖v(k+1) − z‖+ 2

≤ diam (D(k+1)) + length(θ̂(k+2)) + 2 < 2[diam (Ck+2)]ĉ30 .
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We claim that in this case we must even have

d(v(k+2), Ck+3) ≥ 2[diam (Ck+2)]ĉ30 . (5.27)

Indeed, if this fails, then each of Ck+1, Ck+2 and Ck+3 must have a point in

v(k+2) + S(2[diam (Ck+2)]ĉ30).

Therefore, if

2j ≤ diam (Ck+2) < 2j+1,

then there would exist some r, s so that

v(k+2) ∈ [r2ĉ30(j+1), (r + 1)2ĉ30(j+1)]× [s2ĉ30(j+1), (s+ 1)2ĉ30(j+1)].

Therefore, if ĉ30q ≥ 4,

T (b2−ĉ30q(r − 2)c, b2−ĉ30q(s− 2)c; ĉ30, j + q)

= [b2−ĉ30q(r − 2)c2ĉ30(j+q+1), (b2−ĉ30q(r − 2)c + 3)2ĉ30(j+q+1)]

× [b2−ĉ30q(s− 2)c2ĉ30(j+q+1), (b2−ĉ30q(s− 2)c + 3)2ĉ30(j+q+1)]

⊃ [r2ĉ30(j+1), (r + 1)2ĉ30(j+1)]× [s2ĉ30(j+1), (s+ 1)2ĉ30(j+1)] + S(2 · 2ĉ30(j+1))

would intersect S(2j+1) ⊂ S(2j+q+1), as well asCk+1, Ck+2, Ck+3. Since diam(Ck+3)

≥ diam (Ck+2) ≥ 2j and diam(Ck+1) ≥ (k+ 1)−c10−2 diam(Ck+2) ≥ 2j−(log j)2

for
large j, we would have N (3)(j + q, ĉ30) 6= 0. This is ruled out by (5.23), so that

(5.27) must hold. Since this holds for any v(k+2) ∈ V̂ (k+2) this implies (5.26) with

θ(k+2), V (k+2) taken equal to θ̂(k+2), V̂ (k+2).
We have described a construction of double paths between two successive

circuits which are occupied. Of course this works equally well (after an interchange
of ‘occupied’ and ‘vacant’) between two successive circuits which are vacant. We
now briefly describe how to find a double path with the properties (5.14) -(5.17)
and (5.19) when Ck is vacant and Ck+1 is occupied. In fact we obtain (5.19) for
any fixed c30 < 1 for large k even without the assumption (5.13). We merely need
that the simpler (3.28) holds. The treatment of vertices adjacent to Ck+1 will be
somewhat different from the preceding construction and this is why (3.28) comes
in.

In the present situation we start again with a vertex v = v(k) ∈ Ck. Since

Ck is the outermost vacant circuit in
◦
Ck+1, there is an occupied path τ from a

neighbor w of v to a vertex x ∈ Ck+1. The occupied τ cannot intersect the vacant
circuit Ck and we may stop τ at its first vertex on Ck+1. We then have

w and τ \ {x} ⊂ Cext
k ∩

◦
Ck+1.
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In addition there is no occupied circuit between Ck and Ck+1. Therefore, again
by Remark 1, there also exists a vacant path ρ′ from some vertex in Ck to a vertex
adjacent to Ck+1. Let ρ be the piece of ρ′ from its last intersection with Ck to its
first point adjacent to Ck+1. Let ρ run from a ∈ Ck to z′ adjacent to Ck+1. Then

ρ \ {z′} does not contain any vertex adjacent to Ck+1

and ρ \ {a} ⊂ Cext
k ∩

◦
Ck+1.

Now define D̂ as the path consisting of (the reverse of) ρ plus an arc of Ck starting

at a and of diameter ≥ 1
2 diam (Ck). This path lies in

◦
Ck+1 but it may contain

vertices adjacent to Ck+1 other than z′. However, the number of vertices on D̂
adjacent to Ck+1 cannot exceed

1 + (the number of vertices of Ck adjacent to Ck+1) ≤ 1 + k2,

provided (3.28) holds. Thus D̂ contains a subpath D which contains exactly one
vertex adjacent to Ck+1 and satisfies

diam (D) ≥ 1

2k2
diam (D̂)

≥ 1

4k2
diam (Ck) ≥ 2[diam (Ck+1)]ĉ30 (by (5.25)).

Indeed, we can take for D a piece of D̂ between two successive points adjacent to
Ck+1 (and including one of these points) of maximal diameter. As before, we can
now apply Proposition 1 to D and then use Lemma 7 to find in the vacant cluster

of D in
◦
Ck+1 a path θ̂(k+1) and a set V (k+1) ∈ Ck+1 such that

θ̂(k+1) is adjacent to V (k+1) ⊂ Ck+1

and such that (5.24) holds. However, D is a piece of D̂, which is part of the vacant

cluster of v. Therefore θ̂ is also in the vacant cluster of v in
◦
Ck+1. From here on

we continue essentially as from (5.24). We merely point out that for π̂′′ we shall

take a path from v to a vertex zq of θ̂(k+1) in (Cext
k ∪ Ck) ∩

◦
Ck+1 in the vacant

cluster of v (or equivalently of D); we can take this path in Cext
k ∪Ck because we

can always replace the piece from v to the last intersection of π̂′′ with Ck by an
arc of Ck. (We are not claiming this time that zq is the only point of π̂′′ which
is adjacent to Ck+1.) For π̂′ we shall take a path consisting of the path τ from
w to x ∈ Ck+1 followed by a suitable arc of Ck+1 from x to a neighbor y of zq .
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This arc can be chosen so that R(π̂′, π̂′′) ⊂ (Cext
k ∪ Ck) ∩ Ck+1. (5.16) will be a

consequence of this.
This completes our construction of special double paths. It shows that if

(5.13) holds for some k0 and some vk0 and (5.25), (3.28) hold for all k ≥ k0 and if
(5.23) holds for the corresponding j (see (5.12)), then one can successively choose
θ(k+i), V (k+i) and for v ∈ V (k+i) a special double path (π′(k+ i, v), π′′(k+ i, v) so
that (5.14)-(5.17) with k replaced by k + i hold.

6. Synthesis.
We now put the various lemmas about circuits and double paths together to

show that the probability of seeing a random word on T is bounded away from 0.
Our strategy is to first choose all the Ck and to decide whether they are occupied
or vacant. In other words, we shall condition on

{Ck = Ck, κ(Ck) = εk, k ≥ 1}. (6.1)

Here {Ck}k≥1 is a sequence of circuits for which Ck ⊂
◦
Ck+1 and εk ∈ {0, 1}.

After having chosen Ck and κ(Ck) we choose the vertices not on ∪∞1 Ck. We shall
show that by ignoring a P -null set we may assume that the following conditions
hold for k ≥ some (random) k0, respectively j ≥ some (random) j0 and fixed
c > ĉ30, ĉ ∈ (c30, ĉ33ĉ30):

Ck is good; (6.2)

diam (Ck+1) ≤ diam (Ck)[log(diam (Ck)]c10+1; (6.3)

N(j, ĉ) ≤ j2 and N(j, c) ≤ j2; (6.4)

N (3)(j, ĉ30) = 0; (6.5)

and finally (3.28) and (5.10). For an occupancy configuration which satisfies (6.3)-
(6.5), (3.28) and (5.10) we now make a number of choices recursively. At the k-th
stage we will have singled out a vertex vk ∈ Ck and a double path

(π′(k), π′′(k)) = (π′(k, v(k)), π′′(k, v(k))) ⊂ (Cext
k ∪ Ck) ∩Ck+1

such that
v(k) ∈ ∆R(π′(k, v(k)), π′′(k, v(k))).

The endpoints of π′(k) and π′′(k) are on Ck+1 or adjacent to Ck+1, depending on
whether Ck+1 is occupied or vacant. For the sake of argument let us describe the
situation when Ck+1 is occupied. Then the endpoint y(k+1) of π′(k) will lie on

Ck+1 and the endpoint u(k+1) of π′′(k) will be in Cext
k ∩

◦
Ck+1, adjacent to Ck+1.

Associated with (π′(k), π′′(k)) will be a vacant path θ(k+1) = (z
(k+1)
1 , . . . , z

(k+1)
Mk+1

)
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which is adjacent to Ck+1, ends at z(k+1)
Mk+1

= u(k+1) and is such that θ(k+1)\{u(k+1)}
lies outside R(π′(k), π′′(k)). Moreover (5.19) will hold.

We now concentrate on the case where ξ is random with the distribution µ
of (1.2). A few words to handle the case of a deterministic ξ with bounded rm(ξ)
will be said at the end. Let

Fn = σ-field in Ξ generated by ξ1, . . . , ξn.

To avoid double subscripts we shall write ξ(i) instead of ξi in the remainder of
this section. At stage k we will also have found an {Fn}-stopping time λk and we
will have chosen ξ(1), . . . , ξ(λk) and a path (w(0), . . . , w(λk)) such that

(w(0), . . . , w(λk)) is a selfavoiding path; (6.6)

w(i) occupied or vacant according as ξi = 1 or ξi = 0, 1 ≤ i ≤ λk; (6.7)

w(λk) = v(k) ∈ ∆R(π′(k), π′′(k)) (6.8)

but
w(i) /∈ R(π′(k), π′′(k)) ∪Cext

k for i < λk. (6.9)

We will have carried out the construction in such a way that

the construction of (w(0), w(1), . . . , w(λk)) depends only on

ξ(1), ξ(2), . . . , ξ(λk), and conditionally on this information

ξ(λk + 1), ξ(λk + 2), . . . still have the distribution µ. (6.10)

The (k + 1)-th stage will consist of first choosing the set V k+1 ⊂ Ck+1 of
neighbors to the points in θ(k+1) as described in (5.19) and then for each v ∈
V (k+1) construct the special double path (π′(k + 1, v), π′′(k + 1, v)) described in
the preceding section. We next need to choose for the (k + 1)-th stage an {Fn}-
stopping time λk+1 and the path

γk+1 := (w(λk + 1), w(λk + 2), . . . , w(λk+1))

so that (6.6) and (6.7) with k+ 1 instead of k hold. At the same time we will have
to find the new v(k+1), (π′(k+1, v(k+1)), π′′(k+1, v(k+1))) ⊂ (Cext

k+1∪Ck+1)∩Ck+2

so that also (6.8) and (6.9) with k + 1 instead of k hold. Together with this we
must also find θ(k+2) so that (5.17) holds with k replaced by k+ 1. We shall start
this all at some k0 with λ(k0) = 0 and some vertex w(0) ∈ Ck0 and with

d(w(0), Ck0+1) ≥ 2[diam (Ck0+1)]ĉ30 . (6.11)
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We shall make the choice for the starting parameters explicit when we fill in
the details. First we note that if we are successful with our construction at
every stage, then we see ξ = (ξ1, ξ2, . . . ) along the infinite selfavoiding path
(w(0), w(1), . . . ) which is the concatenation of the γk. The principal estimate will
be that the conditional probability of successfully choosing (ξ(λk+1), . . . , ξ(λk+1))
and the path γk+1 in the above manner, given the occupancy configuration, λk and
ξ(1), . . . , ξ(λk), is at least 1− 1/k2. This will then guarantee that the probability
of seeing the random word (ξ(1), ξ(2), . . . ) from some point w(0) is at least

∞∏
k0

(1− 1

k2
) ≥ 1

2
(6.12)

(if k0 is chosen sufficiently large). By the zero-one law (1.3) this will then show
that

µ{ξ : ρ(ξ) = 1} = 1

and complete the proof of our Theorem.
Let us fill in the remaining details. Most of the work has been done in Sections

2-5 already. We fix ĉ ∈ (c30, ĉ33ĉ30) and c ∈ (ĉ30, 1). First we prove that we may
assume (6.2)-(6.5), (3.28) and (5.10). Of these, (6.4), (6.5) and (3.28) are explicitly
stated in Lemma 6, and (6.2) follows from Proposition 1. As for (6.3), this is almost
immediate from Lemma 4. Indeed, for large k,

diam (Ck+1) ≤ 2 max
x∈Ck+1

‖x‖ ≤ 2
(k + 1)c10

c9
min
x∈Ck

‖x‖ (by (3.5))

≤ 2
(k + 1)c10

c9
diam (Ck) (recall that Ck surrounds 0)

≤ c52[log (diam (Ck))]c10 diam (Ck) (by (3.3)).

Finally, (5.10) follows from (3.3) when c32 is sufficiently large. From now on we
assume that (6.2)-(6.5), (3.28) and (5.10) hold for k ≥ k0, j ≥ j0, respectively,
where we assume that j0 satisfies (5.12) with k0 for k. If necessary we raise k0 so
that

∞∏
k0

(1 − 1

k2
) ≥ 1

2
, 2j0/(8 · 2cj0

√
2 + 1) > j2

0 and 2cj0 ≥ 8 · 2ĉ30j0 .

We now begin finding (w(0), w(1), . . . ) and λk satisfying (6.6)-(6.10) by an

application of Lemma 7 with V
(k0)
m = {vm} for a collection of vertices vm ∈ Ck0

with
‖vp − vq‖ ≥ 8 · 2cj0 for p 6= q.
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Since diam (Ck0) ≥ 2j0 , we can find at least 2j0/(8 ·2cj0
√

2+1) > j2
0 such vertices.

Then by virtue of (6.4) and Lemma 7 there exists at least one vm with

d(vm, Ck0+1) ≥ 2cj0 ≥ 8 · 2ĉ30j0 .

We take w(0) ∈ Ck0 as one of those vm.

We next use the method described after (5.13) with w(0) taking the role of v(k)

there, and k = k0. We then find a double path (π′(k0), π′′(k0)), a path θ(k0+1) and
a set V (k0+1) ∈ Ck0+1 with the properties (5.14)-(5.17) and (5.19) in case Ck0+1

is occupied, and with these properties with ‘occupied’ and ‘vacant’ interchanged
in case Ck0+1 is vacant. Now we pick for each v ∈ V (k0+1) a corresponding special
double path (π′(k+ 1, v), π′′(k+ 1, v)), again following the recipe at the end of the
last section, so that these paths satisfy (5.14)-(5.17) and (5.19) with k replaced by
k + 1. Now define

R(k+1) =
⋃

v∈V (k+1)

R(π′(k + 1, v), π′′(k + 1, v)). (6.13)

At the moment we only know what this means for k = k0, but the same definition
will apply later for k > k0. We also take λk0 = 0. (We don’t need λi for i < k0,
but if desired one can set those λi = 0.) Now we choose ξ(1), ξ(2), . . . one at
a time and a corresponding path (w(0), w(1), . . . ) in R(π′(k0), π′′(k0)) such that
(6.6) and (6.7) hold, following the algorithm of Lemma 8. This lemma tells us
that we can continue with this until the w-path reaches one of the final points of
π′(k0, w(0)) or π′′(k0, w(0)). However, for the present purposes we may want to
stop earlier. We define the {Fn}-stopping time

νk+1 = min{n : w(n) = final point of π′(k, v(k)) or π′′(k, v(k)) or w(n) ∈ R(k+1)}.
(6.14)

Again we only do this for k = k0 with v(k0) = w(0) at the moment, but we will
use the same definition for general k later. If

w(νk0+1) ∈ R(k0+1), (6.15)

then we take λk0+1 = νk0+1. By the algorithm of Lemma 8, we still have

w(i) ∈ R(π′(k0, v
(k0)), π′′(k0, v

(k0))), i ≤ νk0+1. (6.16)

Moreover, (6.15) says that there exists some v(k0+1) ∈ V (k0+1) so that

w(νk0+1) ∈ R(π′(k0 + 1, v(k0+1)), π′′(k0 + 1, v(k0+1))).
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Also by definition of ν

w(i) /∈ R(π′(k0 + 1, v(k0+1)), π′′(k0 + 1, v(k0+1))) for i < νk0+1,

so that (6.9) holds for k = k0 + 1 (recall (5.16) for k = k0) and also

w(νk0+1) ∈ ∆R(π′(k0 + 1, v(k0+1)), π′′(k0 + 1, v(k0+1))). (6.17)

In turn, we get from this and (6.16) that

w(νk0+1)

∈ R(π′(k0, v
(k0)), π′′(k0, v

(k0))) ∩∆R(π′(k0 + 1, v(k0+1)), π′′(k0 + 1, v(k0+1)))

⊂ Ck0+1 (again use (5.16)).

We shall choose future points of w(·) in Cext
k0+1 ∪ Ck0+1;w(·) will not return to

◦
Ck0+1 after time νk0+1.

The second possibility in (6.14) is that w(νk0+1) is a final point of π′(k0, v
(k0))

or of π′′(k0, v
(k0)). To discuss this situation more explicitly let us assume Ck0+1

is occupied. Then the properties (5.14)-(5.17) and (5.19) tell us that the oc-
cupied path π′(k0, v

(k0)) has its final point at y = v(zq) in V (k0+1) for some

zq ∈ θ(k0+1) (with q = Mk0+1), and this y is a point of π′(k0 + 1, v(zq)) ⊂
R(π′(k0 + 1, v(zq)), π′′(k0 + 1, v(zq))). Thus, if w(νk0+1) = y, then we still are
in the situation (6.15). The only case left to consider is when

w(νk0+1) = the final point zq of the vacant path π′′(k0, v
(k0)). (6.18)

Since we chose our path so that (6.7) holds for i ≤ νk0+1, this can happen only
when ξ(νk0+1) = 0. We now successively examine ξ(i) for i > νk0+1 until we come
to the smallest r ≥ 1 with ξ(νk0 + r) = 1. We say that we have success at the
(k0 + 1)-th stage if either (6.15) holds or (6.18) holds and the r there is ≤Mk0+1.
If we are not successful at the (k0 + 1)-th stage, then we stop our construction and
we give up on seeing ξ from w(0). If (6.18) holds and r ≤ Mk0+1, then we define
λk0+1 = νk0+1 + r and take

w(νk0+i) = zq−i, 1 ≤ i < r,

w(νk0+r) = v(zq − r + 1) ∈ V (k0+1). (6.19)

Let us check that (6.6)-(6.10) hold for k = k0 + 1 with this choice. This
is easy when (6.15) applies and will be left to the reader in this case. Assume
then that (6.15) does not hold, but (6.18) prevails. Then (6.6) holds because
θ(k0+1) = (z1, . . . , zq), and θ(k0+1) \ {zq} lies outside R(π′(k0, v

(k0)), π′′(k0, v
(k0)))
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so that (w(0), . . . , w(λk0+1 − 1)) is a selfavoiding path. Even w(λk0+1) has not
been visited before, because w(λk0+1) = w(νk0+1 + r) ∈ V (k0+1) ⊂ R(k0+1) and

w(i) /∈ R(k0+1) for i < λk0+1 (recall that (6.15) does not hold and θ(k0+1) ⊂
◦
Ck0+1,

whileR(k0+1) ⊂ Ck0+1∪Cext
k0+1). Next, (6.7) holds by construction, since Ck0+1 was

occupied and θ(k0+1) was vacant. (6.8) is automatic if we take v(k0+1) = w(λk0+1)
and π′(k0 + 1) = π′(k0 + 1, v(k0+1)) and similarly for π′′. In this case also (6.9)

holds because we assumed that (6.15) does not occur and θ(k0+1) ⊂
◦
Ck0+1, and

therefore is disjoint from

R(π′(k0 + 1, v(k0+1)), π′′(k0 + 1, v(k0+1))) ∪ Cext
k0+1 ⊂ Ck0+1 ∪ Cext

k0+1.

(6.10) is clear from the description of the selections which we made.
It is also clear that

µ{no success at the (k0 + 1)-th stage|full occupancy configuration and Fλk0
}

≤ µ{ξ(νk0+1 + i) = 0, 1 ≤ i ≤Mk0+1|full occupancy configuration and Fλk0
}

≤ [β ∧ (1− β)]−Mk0+1 ≤ 1

(k + 1)2
(see (5.10)). (6.20)

If we were successful at stage k0 + 1, then we can now go on and repeat the above
steps with k0 replaced by k0 + 1, k0 + 2, . . . as long as we have success. Only
one step deserves further comment. In analogy with (6.17) we will have (6.8) for
k > k0, but there is no reason to believe that w(λk) will always be an initial point
of π′(k) or π′′(k). If this is not the case for a certain k, then for choosing γk+1 we
should apply Corollary 1 instead of Lemma 8. See Figure 11 for a typical step.

C

C

π

ππ

θ
’

’’’

(k+1)

k

k+1

(k)(k)

(k+1)

(k+1)

π,’

Figure 11. Construction of the path ◦ ◦ ◦◦ along which a given word ξ
is seen.
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If we are successful at the (k0 + i)-stage for all i, then we see ξ along the path
(w(0), w(1), . . . ) and we therefore proved (6.12) and our theorem for almost all
ξ[µ] follows.

Finally, when ξ is deterministic with rm(ξ) ≤M for some M <∞ and all m,
it is clear that the same method as for the random word will work. We now will
be certain of success at the k-th stage, as soon as Mk > M . Thus ρ(ξ) = 1 for
such a ξ. �

7. Appendix to Lemma 5.
The proof of (3.12) generally follows Kesten (1987), but since a nontrivial

change is needed we outline here what this change is. Roughly speaking, we have
to show that if F (w,n) occurs, then we can with a probability bounded away from
0 choose the 5 paths to ∆S(n) so that their endpoints are not too close together
and so that they can be extended to ∆S(2n). This will give

P{F (w, 2n)} ≥ c53P{F (w,n)}, w ∈ S(n(1− δ)). (7.1)

Simple monotonicity arguments then give (3.12).
We only consider n = 2k for some k. This will be enough, because P{F (w,n)}

is decreasing in n. We write (1− δ)2k instead of b(1− δ)2kc to simplify notation.
Analogously to Kesten (1987) we introduce the following four strips, whose union

is S(2k) \
◦
S((1 − δ)2k):

SR = [(1− δ)2k, 2k]× [−2k, 2k];

SL = [−2k,−(1− δ)2k]× [−2k, 2k];

ST = [−2k, 2k]× [(1− δ)2k, 2k];

SB = [−2k, 2k]× [−2k,−(1− δ)2k].

For any occupied left-right crossing r of SR we denote its endpoint on the right
edge of ∆S(2k) by a(r) = (a1(r), a2(r)) = (2k, a2(r)). For a vacant crossing r∗ of
the same rectangle we denote its endpoint on the right edge of ∆S(2k) by a∗(r∗).

If r is a left-right crossing of SR, then
◦
SR \ {r} has two components, the

component below r, denoted by S−R (r), and the component above r, denoted by

S+
R (r) (compare Kesten (1987)). We say that a left-right crossing r′ of SR lies

below another left-right crossing r′′ of SR if S−R (r′) ⊂ S−R (r′′). Now define r1 as
the lowest occupied left-right crossing of SR. When ri exists, define ri+1 as the
lowest occupied left-right crossing of SR in S+

R (ri). Note that this requires in
particular that ri+1 is disjoint from ri, ri−1, . . . , r1. We continue choosing such ri
as long as they exist. Let r1, r2, . . . , rν be all the occupied left-right crossings of
SR which can be found in this way. We use the same procedure to find a maximal
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sequence of disjoint vacant left-right crossings r∗1, . . . , r
∗
ν∗ of SR, beginning with

the lowest vacant left-right crossing r∗1.

Next we define an (η, k)−fence for one of the ri. We say that an occupied
left-right crossing ri in our sequence r1, . . . , rν has an (η, k)-fence if the following
four analogues of (2.26)-(2.28) in Kesten (1987) hold.

if rj , j 6= i, is any other occupied left-right crossing of SR
in {r1, . . . , rν}, then |a2(rj)− a2(ri)| > 2

√
η2k; (7.2)

if r∗j is any of the vacant left-right crossings of SR in {r∗1 , . . . , r∗ν∗},
then |a∗2(r∗j )− a2(ri)| > 2

√
η2k; (7.3)

there exists an occupied vertical crossing s of the rectangle

[a1(ri), a1(ri) +
√
η2k]× [a2(ri)− η2k, a2(ri) + η2k]

= [2k, 2k +
√
η2k]× [a2(ri)− η2k, a2(ri) + η2k]

which is connected to ri by an occupied path in a(ri) + S(
√
η2k);

(7.4)

‖a(ri)− (2k, 2k)‖ > 2
√
η2k and ‖a(ri)− (2k,−2k)‖ > 2

√
η2k. (7.5)

The last requirement is just that a(ri) should not lie too close to the corners of
S(2k) and is only needed to keep a(ri) away from the endpoints of top-bottom
crossings of ST and of SB.

The main step is to prove an analogue of Lemma 2 in Kesten (1987), namely
that for all δ > 0, ε > 0 there exists an η = η(δ, ε) > 0 such that

P{there exists an occupied ri which does not have an (η, k)-fence} ≤ ε. (7.6)

Analogously to the reference we guarantee the existence of an (η, k)-fence for all
ri by the occurrence for each ri, 1 ≤ i ≤ ν, of an event Ej(η, k, ri) for some

η−3/8 ≤ 2j ≤ η−1/2, as well as of an Ej(1)(η, k, ri) and an E∗j(2)(η, k, ri), for

some 2η−1/2 < 2j(1), 2j(2) < η−5/8, and finally the existence of vacant circuits
surrounding (2k, 2k) and (2k,−2k) in the annuli

(2k, 2k) + [S(η1/42k) \ S(2
√
η2k)] and (2k,−2k) + [S(η1/42k) \ S(2

√
η2k)], (7.7)
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respectively. Here,

Ej(η, k, r) :=
{

there exist top-bottom crossings of the strips

[2k − η2k+j, 2k − η2k+j−1]× [a2(r)− η2k+j, a2(r) + η2k+j]

and [2k + η2k+j−1, 2k + η2k+j]× [a2(r)− η2k+j, a2(r) + η2k+j],

and left-right crossings of the strips

[2k − η2k+j, 2k + η2k+j]× [a2(r)− η2k+j, a2(r) − η2k+j−1]

and [2k − η2k+j, 2k + η2k+j]× [a2(r) + η2k+j−1, a2(r) + η2k+j];

all vertices on these crossings which

are outside the closure of S−R (r) are occupied
}
. (7.8)

E∗j (η, k, r) is defined in the same way as Ej(η, k, r) except that now all vertices

outside S−R (r) on the relevant crossings have to be vacant instead of occupied. The
occurrence of an E∗j was not required in Kesten (1987). We add this requirement
here because occurrence of an E∗j with j in the prescribed range will prevent
another occupied left-right crossing t of SR which lies above r to have |a2(t) −
a2(r)| ≤ 2

√
η2k. The necessary Ej(η, k, ri) and E∗j (η, k, ri) for all 1 ≤ i ≤ ν

occur with high probability when η is small. Also the vacant circuits surrounding
(2k,±2k) in the annuli of (7.7) occur with high probability when η is small. In
this way we obtain (7.6) for sufficiently small η, entirely as in Kesten (1987).

Finally we must show how to use (7.6) to show that if F (w, 2k) occurs, then
we can keep the endpoints of the five paths from w to ∆S(2k) a distance 2

√
η2k

apart. This rests on the following deterministic facts:

each occupied left-right crossing r of SR intersects some ri; (7.9)

if s1, . . . , sp are disjoint occupied left-right crossings of SR,
then there exist ri1 , . . . , ripwith i1, . . . , ip distinct and

p disjoint occupied left-right crossings of SR, t1, . . . , tp,
such that tq has the same initial point as sq on the left

edge of SR, and such that tq has the same endpoint as riq

on the right edge of SR, 1 ≤ q ≤ p. (7.10)

(7.9) is easy, because for any two disjoint left-right crossings of SR, one has
to lie above the other. Thus any collection of disjoint left-right crossings can be
ordered so that if r′ and r′′ belong to this collection and r′ precedes r′′, then r′ lies
below r′′. Therefore, if r is an occupied left-right crossing of SR which is disjoint
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from all the ri, then it lies between two successive ri and should have been counted
as one of the ri.

(7.10) follows from the fact that there exists a path τ which connects the top
and bottom edge of SR in SR such that τ intersects each ri in exactly one vertex
vi, and except for these vertices vi, τ is vacant. To see that such a τ can be found,
recall that r1, . . . , rν are all the disjoint ri. Then by Proposition 2.2 of Kesten
(1982) there exists a vacant path in SR from some vertex wν in the top edge of
SR to a vertex uν which is adjacent to some vν ∈ rν . If we have found vj ∈ rj for
j ≥ i, then again by Proposition 2.2 of Kesten (1982) there exists a vacant path
from some neighbor wi of vi to a neighbor ui−1 of ri−1. The vacant piece from wi
to ui−1 lies below ri and above ri−1. The concatenation of the pieces from wi to
ui−1 and the edges {ui−1, vi−1}, {vi−1, wi−1} give the desired path τ .

Once we have τ with the properties of the preceding paragraph and disjoint
occupied left-right crossings s1, . . . , sp, then we construct the desired left-right
crossings t1, . . . , tp by the following method: τ separates the left edge of SR from
its right edge, so that each sq must intersect τ in some point. Since sq is occupied
this intersection must be at one of the vi. Let the first intersection of sq with τ be
at viq . These viq must be distinct for different q, because the sq are disjoint. Now
take for tq the first part of sq from its initial point on the left edge of SR till viq ,
followed by the part of riq from viq till its endpoint a(riq ) on the right edge of SR.
Note that the tq for different q are disjoint, because the piece of sq till it reaches
viq lies to the ‘left of τ ’ and cannot intersect the piece of some rj with j 6= iq from
vj to a(rj), because this lies to the ‘right of τ ’.

From here on we can basically follow Kesten (1987). If F (w, 2k) occurs, or
even just the event in the middle member of (3.7), and all occupied and vacant
crossings of the strips SR,SL,ST and SB which are analogues of the ri, have (η, k)-
fences, then by (7.9) and (7.10) we can modify the paths from w to ∆S(2k) so that
their last piece coincides with one of the ri or r∗j or one of the analogues of these for
the strips SL,ST or SB. Now one argues as in Lemma 4 of Kesten (1987) to show
that the conditional probability given F (w, 2k), or given the event in (3.7), that
there are five paths from w to ∆S(2k) (appropriately occupied or vacant) which
end in crossings which have an (η, k)-fence, is bounded away from zero (bounded
in k, that is). From there one obtains (7.1) and (3.12) as in Corollary 3 of Kesten
(1987).

It also follows by the same argument that the probability in (3.7) is at most
c54P{G(0, n)}.
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