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Thermodynamic formalism and large deviations
for multiplication-invariant potentials

on lattice spin systems
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Abstract

We introduce the multiplicative Ising model and prove basic properties of its ther-
modynamic formalism such as existence of pressure and entropies. We generalize
to one-dimensional “layer-unique” Gibbs measures for which the same results can
be obtained. For more general models associated to a d-dimensional multiplicative
invariant potential, we prove a large deviation theorem in the uniqueness regime for
averages of multiplicative shifts of general local functions. This thermodynamic for-
malism is motivated by the statistical properties of multiple ergodic averages.
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1 Introduction

In [2] we studied large deviations of multiple ergodic averages for Ising spins with
a product distribution. We also established a relation between the partition func-
tions associated to multiple ergodic averages and partition functions of associated
shift-invariant spin systems. The dimension of the corresponding lattice spin system
is related to the number of primes involved in the multiple ergodic average. E.g.∑
i σiσ3i + σiσ9i leads to a one-dimensional model with interaction of range 2, whereas∑
i σiσ3i + σiσ2i leads to a two-dimensional model with nearest neighbor interaction.

Just as in the standard Gibbs formalism, starting from large deviation properties of
sums of shifts of a continuous function under a product measure, one is lead naturally
(by Cramér transformation, see e.g. [3, chapter 2]) from product measures towards the
set of Gibbs measures with shift-invariant interactions, and in that class one can prove
again the large deviation principle for sums of shifts of a continuous function. It is
therefore natural to extend the study of large deviation properties for multiple ergodic
averages under product measures to a class of measures which form the natural multi-
plication invariant analogue of shift-invariant Gibbs measures.
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Large deviations for multiplication-invariant potentials on lattice spin systems

It is the aim of this paper to make some steps in that direction. Just as for shift-invariant
Gibbs measures in lattice spin systems, the one-dimensional context where there is
uniqueness of Gibbs measures (with finite range or not too slowly decaying interaction)
we expect that the uniqueness transfers to the multiplication invariant context. We start
in this paper with the study of the multiplicative Ising model, which is the simplest case
to start with after having dealt with product measures. We show that there is a unique
Gibbs measure and study its thermodynamic formalism: entropy, pressure, and large
deviation rate functions. We show that under this measure, there is a large deviation
principle for ergodic sums of so-called first-layer functions. Next, we generalize this to
the context of multiplication invariant potentials in dimension one, where the associ-
ated Gibbs measure is still unique and decomposes as a product on independent layers
of Gibbs measures with a corresponding shift-invariant potential. Finally we generalize
to higher dimensional models such that on each layer we have uniqueness. This leads to
a class of so-called “layer-unique” Gibbs measures for which we have the multiplicative
analogue of relative entropy density and a corresponding large deviation principle for
the multiplicative empirical measure.

2 Some notations and definitions

2.1 Shift and multiplicative shift

We consider lattice spin systems with Ising ±1 spins on the positive integers. We
denote by N the set of positive integers and let N0 = N ∪ {0}. We simply denote
by [M,N ] the lattice intervals {M,M + 1, . . . , N} for M,N ∈ N0 such that M < N .
Configurations which are elements of Ω = {−1, 1}N will be denoted by σ, η, ξ. We also
set Ω0 = {−1, 1}N0 . We use the notation σ[M,N ] for the restriction of σ to the lattice
interval [M,N ] (σ[M,N ] is thus an element of {−1,+1}[M,N ]). The shift is defined, as
usual, by

(θi(σ))j = σi+j

for σ ∈ Ω0 (i, j ∈ N0). This is the natural way the semigroup (N,+) acts on Ω0.
We introduce the multiplicative shift by setting

(Tiσ)j = σij

for σ ∈ Ω (i, j ∈ N). This is the action of the semigroup (N,×) (which is generated by
the prime numbers). Note that the shift and the multiplicative shift do not commute.

2.2 Invariant measures

It is not a priori clear that there exist probability measures which are invariant by
the multiplicative shift, apart from the trivial case of product measures. We shall see
non trivial examples in this paper.
Product measures are also invariant under the shift. A natural question is whether they
are the only ones. In the realm of probability measures with positive entropy with re-
spect to the shift, this is indeed the case [8].
More generally, stochastic processes (Xn) that are both stationary (in the sense that
(Xn) and (Xn+k) have the same marginals for all k ∈ N) and such that (Xn) and (Xrn)

have the same marginals for all r ∈ N are called “strongly stationary” and were intro-
duced in the context of ergodic Ramsey theory. Their structure is known and involves
Bernoulli systems and rotations on nilmanifolds as building blocks [6].
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2.3 Standard Ising model

The standard Ising model on the lattice interval [0, N ] with boundary conditions ±
on the right and free on the left is the probability measure on {−1, 1}[0,N ] given by

µIsing,∅,±
N (σ[0,N ]) =

e−H
Ising;∅,±
N (σ[0,N])

ZIsing;∅,±
N

where N ≥ 1 and where the Hamiltonian is given by

H Ising;∅,±
N (σ[0,N ]) = −β

(
N−1∑
i=0

Jσiσi+1 +

N∑
i=0

hσi + σN (±1)

)
.

The parameters of this Hamiltonian are β (inverse temperature), J (coupling strength)
and h (magnetic field). Finally ZIsing;∅,±

N is the partition function given by

ZIsing;∅,±
N =

∑
σ0,...,σN=±1

e−H
Ising;∅,±
N (σ[0,N]).

The measures µIsing,∅,±
N have a unique (not depending on the right boundary condition)

weak limit as N →∞ which we denote by µIsing
∞ . The standard Ising model corresponds

to the potential (in the sense of [7])

U({i, i+ 1}, σ) = −Jβσiσi+1, U({i}, σ) = −βhσi

which is shift-invariant, i.e.,

U(A+ i, σ) = U(A, θiσ), ∀i ∈ N0.

Notice however that because we consider the Ising model on Ω0 with free boundary
condition on the left end, the corresponding µIsing

∞ need not be shift-invariant (this is the
case only when h = 0).

3 The multiplicative Ising model

We define what we call the “multiplicative Ising model” with parameters β (inverse
temperature), J (coupling strength) and h (magnetic field) as the lattice spin system on
Ω with formal Hamiltonian

H(σ) = −β

(∑
i∈N

Jσiσ2i + h
∑
i∈N

σi

)
. (3.1)

This corresponds to the potential

U({i}, σ) = −βhσi, U({i, 2i}, σ) = −Jβσiσ2i (3.2)

and U(A, σ) = 0 elsewhere. This potential is invariant by the multiplicative shift in the
sense that

U(iA, σ) = U(A, Tiσ)

for all A ⊂ N, σ ∈ Ω, i ∈ N. We shall simply say that it is multiplication invariant.
The potential U is of course non-shift invariant and long-range. The usual unique-

ness criteria for one-dimensional lattice spin systems do not apply, as well as the Do-
brushin uniqueness criterion (even for small β); see [7] for the statements of these
criteria. However we shall prove later on that uniqueness holds.
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The Hamiltonian corresponding to (3.1) in the lattice interval [1, 2N ] with boundary
condition η is defined as

Hη
N (σ[1,2N ]) = −β

(
N∑
i=1

Jσiσ2i +

2N∑
i=1

hσi ±
2N∑

i=N+1

(σiη2i)

)
.

Further H±N (σ[1,2N ]) stands for the Hamiltonian with plus or minus boundary conditions.
Finally let

H∅N (σ[1,2N ]) =

N∑
i=1

(−Jβ)σiσ2i +

2N∑
i=1

(−hβ)σi

be the Hamiltonian with free boundary conditions. Finally we introduce the correspond-
ing finite-volume probability measures µ∅N and µηN :

µ∅N (σ[1,2N ]) =
e−H

∅
N (σ[1,2N])

Z∅N
, µηN (σ[1,2N ]) =

e−H
η
N (σ[1,2N])

ZηN
(3.3)

where
Z∅N = Z∅N (β, h) =

∑
σ1,...,σ2N=±1

e−H
∅
N (σ[1,2N]) (3.4)

ZηN = ZηN (β, h) =
∑

σ1,...,σ2N=±1

e−H
η
N (σ[1,2N]). (3.5)

3.1 Layer spins

Let us put h = 0 from now on. As we sill see later, the case h 6= 0 can be taken into
account by a simple change of the a priori measure.

In [2] we introduced a natural and useful relabeling of σ spins. More precisely, to
a configuration σ ∈ Ω we associate a sequence (τ r) of configurations in Ω0, indexed by
odd numbers r defined by

τ ri = σr2i , i ∈ N0. (3.6)

We call r ∈ 2N0 + 1 the layer index and i the one-dimensional coordinate in the layer.
We thus have the following picture for this layer representation:

...
...

τ7 = σ7 σ14 σ28 σ76 σ152 . . . (layer index 7)

τ5 = σ5 σ10 σ20 σ40 σ80 . . . (layer index 5)

τ3 = σ3 σ6 σ12 σ24 σ48 . . . (layer index 3)

τ1 = σ1 σ2 σ4 σ8 σ16 . . . (layer index 1)

Then we can write
N∑
i=1

σiσ2i =
∑

1≤k≤N
k odd

∑
i:k2i≤N

τki τ
k
i+1. (3.7)

As a consequence, for r ∈ 2N0 + 1 given, under the free-boundary condition measure
µ∅N , we have

ψ2(r/N) := blog2(N/r)c
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spins in layer r which together form a standard one-dimensional Ising model on the
lattice interval [0, ψ2(r/N)], with free boundary conditions at 0 and at the right end.
Different layers are independent.

Adding plus or minus boundary conditions in (3.7) yields

H±N (σ[1,2N ]) = −β

(
N∑
i=1

σiσ2i ±
2N∑

i=N+1

σi

)

= −β
∑

1≤r≤N
r odd

ψ2(r/N)∑
i=1

τ ri τ
r
i+1

± τ rψ2(r/N)+1

 (3.8)

i.e., each term in the sum over r gets exactly one extra term τ rψ2(r/N)+1. Consequently,
for k = 2r − 1 given, we have once more ψ2(k/N) spins in layer k which together are
a standard one-dimensional Ising model on the lattice interval [0, ψ2(k/N)], with free
boundary condition at 0 but now with ± boundary condition at the right end. As before,
different layers are independent.

3.2 Layer stationarity and multiplication invariance

In this subsection we prove a general relation between layer-stationarity and multi-
plication invariance. By theorem 1.1. in [9], a non i.i.d. process which is multiplication-
invariant such a process cannot be stationary and ergodic under shifts. In our context,
an example of such a multiplication invariant dependent measure is given by the multi-
plicative Ising model with h = 0, which indeed is not stationary under shifts, as we shall
see below.

Theorem 3.1. Let the relation between σ and τ spins be as in (3.6). Suppose that
the {τ r, r ∈ 2N0 + 1} form an i.i.d. sequence of stationary processes, i.e., for every
r ∈ 2N0 + 1, τ r = {τ ri : i ∈ N0} is a stationary process, and for different r’s, τ r are
independent. Then the distribution of the corresponding σ is multiplication invariant.

Proof. We have to show that under the conditions of the theorem, for every finite col-
lection of numbers p1, . . . , pk ∈ N, and m ∈ N the joint distribution of

(σmp1 , . . . , σmpk)

coincides with that of
(σp1

, . . . , σpk).

Write pi = ri2
vi with ri ∈ 2N0 + 1, vi ∈ N0, and m = s2u. Then, using (3.6) we have to

prove that the joint distribution of

τsrivi+u, i ∈ {1, . . . , k}

coincides with that of
τ rivi , i ∈ {1, . . . , k}.

Denote r1 = rn1 < rn2 < · · · < rn` such that {r1, . . . rk} = {rn1 , . . . , rn`}. Further denote

Xw = (τsrivi+u : 1 ≤ i ≤ k, ri = rnw)

and
Y w = (τ rivi : 1 ≤ i ≤ k, ri = rnw).

Then, by the independence of different layers, the joint distribution of

τsrivi+u, i ∈ {1, . . . , k}
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coincides with the joint distribution of

⊗`w=1X
w

where ⊗ denotes independent joining. Similarly, the joint distribution of

τ rivi , i ∈ {1, . . . , k}.

coincides with that of
⊗`w=1Y

w.

Therefore, it remains to show that for each w the distributions of Xw and Y w coincide,
but this in turn follows from the assumptions of the theorem, which imply that the layers
sri and ri have the same stationary distribution.

3.3 The infinite-volume limit µM∞

As a consequence of the correspondence between the σ and the τ spins, and the
existence of the infinite-volume limit in each layer of τ spins we have the following.

Theorem 3.2.

1. Unique limit measure: The measures µηN have a unique (η-independent) weak limit
(as N → ∞) denoted by µM∞. This measure is called the multiplicative Ising mea-
sure on {−1, 1}N. As a consequence, for the infinite-volume specification built to
the potential (3.2) corresponds a unique infinite-volume consistent Gibbs measure
(in the sense of [7]) given by the same µM∞.

2. Independent Ising layers: Under µM∞, the τ -spins defined by

τ ri = σr2i

for r odd, i ∈ N0, are independent and distributed according to the standard Ising
model measure µIsing

∞ with free boundary condition on the left.

3. Multiplication invariance: The measure µM∞ is multiplication invariant, i.e., for all
i ∈ N, σ and Tiσ have the same distribution.

Remark 3.3. It is also easy to see that for h = 0 the distribution of σi does not depend
on i (single marginal stationarity) but e.g. the distribution of σiσi+1 does depend on i

(no full stationarity).

The infinite-volume measure µIsing
∞ is a Markov measure, by the nearest neighbor

character of the interaction. The transition matrix of the corresponding Markov chain
is given by

Q(a, b) =
eG(a,b)〈eb, ẽ〉
λ〈ea, ẽ〉

where

- e+ is the unit vector (1, 0), e− the unit vector (0, 1);

- 〈·, ·〉 denotes innerproduct;

- for a, b ∈ {−1,+1}
G(a, b) = β(Jab+ hb);

- λ > 0 denotes the maximal eigenvalue of the transfer matrix K with elements
given by

K(a, b) = eG(a,b)

with corresponding eigenvector ẽ.
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The initial measure π of this Markov chain is given by the distribution of σ1 = τ1
0 , i.e.,

the first spin on every layer:

π(+1) = µIsing

∞ (σ0 = +1)

= lim
N→∞

∑
σ1,σN=±1 e

βheβJσ1eβhσ1KN−1(σ1, σN )∑
σ0,σN=±1 e

βhσ0KN (σ0, σN )

=
eβh

∑
a,b=±1 e

βJaeβha〈ea, ẽ〉〈ẽ, eb〉∑
a,b=±1 λe

βha〈ea, ẽ〉〈ẽ, eb〉
· (3.9)

For h = 0 and using ẽ = 1√
2
(1, 1), λ = e−βJ+eβJ , this gives π(+1) = 1/2, which coincides

with the stationary distribution of the Markov chain with transition matrix Q. In that
case, the distribution on layers µIsing

∞ is stationary under the shift. As a consequence, by
theorem 3.1, the measure µM∞ is multiplication invariant for h = 0.

This is no longer the case for h 6= 0. Notice that except for J = 0, the measure µM∞
is not stationary under the shift. E.g. the joint distribution of σ1, σ2 and σ3, σ4 are not
equal because σ1, σ2 are two neighboring spins on the same layer, whereas σ3, σ4 are on
different layers and hence independent.

From the Markov property of µIsing
∞ we have the following formula for the cylinders

of the layer Gibbs measures

logµIsing

∞ (η0, . . . , ηk) = logµ(η0) +

k−1∑
i=0

logQ(ηi, ηi+1) (3.10)

with the convention that the sum is zero if empty. This formula is useful, in e.g. the
computation of the entropy of the multiplicative Ising model.

3.4 Free energies

Let b ∈ {∅,±}. We are going to compute the free energies

fb = lim
N→∞

1

N
logZb

N

where the Zb
N ’s are defined in (3.4) and (3.5). Letting

ZIsing;∅,b
N =

∑
σ0,...,σN=±1

e−H
Ising;b,±
N (σ[0,N])

we get, using (3.6) and (3.8),

Zb
N =

∏
k≤N
k odd

ZIsing;∅,b
ψ2(k/N). (3.11)

The following lemma will be useful now and at several places later.

Lemma 3.4. Let φ : N0 → R be a measurable function such that there exist C > 0 and
q > 0 such that |φ(n)| ≤ Cnq for all n ∈ N0. Then we have

lim
N→∞

1

N

∑
1≤i≤N
i odd

φ (blog2(N/i)c) =

∞∑
p=0

1

2p+2
φ(p). (3.12)
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Proof. Since |φ(x)| < xq, it suffices to take the limit along the subsequence N = 2K .
Then

lim
N→∞

1

N

∑
1≤i≤N
i odd

φ (blog2(N/i)c) = lim
K→∞

1

2K

∑
0≤s≤K−1

2s+1−1∑
r=2s
r odd

φ(K − s− 1)

= lim
K→∞

1

2K

∑
1≤s≤K−1

φ(K − s− 1)2s−1 = lim
K→∞

∑
1≤s≤K−1

1

2K−s+1
φ(K − s− 1)

= lim
K→∞

K−2∑
p=0

1

2p+2
φ(p) =

∞∑
p=0

1

2p+2
φ(p).

As an application of lemma 3.4 and (3.11), we obtain for the free energies of the
multiplicative Ising model

fb =

∞∑
p=0

1

2p+2
logZIsing;∅,b

p (3.13)

with b ∈ {∅,±}. We could derive more explicit expressions for fb (see [2] for instance),
but here we just notice that, contrary to what one is used to in the shift-invariant con-
text, here the free energy is depending on the boundary conditions. This is due to the
non-shift invariant and long-range character of the interaction.

4 Large deviation properties of µM
∞

Gibbs measures with shift-invariant potentials satisfy nice large deviation proper-
ties, where the large deviation rate function is given by the relative entropy density,
and the corresponding logarithmic moment-generating function given by a difference
of free energies, see e.g. [7]. In the present context, the natural invariance is multi-
plicative rather than additive, and so other large deviation properties will appear, and
the natural quantities that are satisfying large deviation properties will be finite-volume
Hamiltonians associated to a multiplicatively invariant potential.

4.1 Free boundary conditions

As a warming-up example we consider the large deviations of the normalized sums

S
(2)
N

N
=

1

N

N∑
i=1

σiσ2i

under the measures µ∅N on {−1, 1}[1,2N ] defined in (3.3), each of them corresponding
to the multiplicative Ising model in the lattice interval [1, 2N ] with free boundary con-
ditions. In the shift-invariant context the large deviation rate functions, as well as the
entropy in the thermodynamic limit, do not depend on the boundary conditions. Here
this is not the case. The free-boundary case is the easiest.

The free energy partition function is related to the free energy partition function of
the standard Ising model via the correspondence (3.6).

We can use the Gärtner-Ellis theorem (see [3]) and first compute, using (3.13) and
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(3.4)

F (t) := lim
N→∞

1

N
logEµ∅N

(
etS

(2)
N

)
= lim

N→∞

1

N
log

Z∅N (β + t)

Z∅N (β)
= f∅(β + t)− f∅(β)

=

∞∑
p=0

1

2p+2
log

ZIsing;∅,∅
p (β + t)

ZIsing;∅,∅
p (β)

(4.1)

where ZIsing;∅,∅
p (β) is the partition function of the standard Ising model in [0, p] with free

boundary conditions:

ZIsing,∅,∅
p (β) =

∑
σ0,...,σp=±1

eβ
∑p−1
i=0 σiσi+1

where p ≥ 1. From (4.1) we obtain existence and differentiability of F (t) and we thus

can conclude that S(2)
N /N satisfies the large deviation principle under the measures µ∅N

with rate function I given by the Legendre transform of F : I(x) = supt∈R(tx− F (t)).
Similarly, we can easily obtain a formula for the “free boundary condition” entropy

in the thermodynamic limit, using lemma 3.4:

s∅(β) := lim
N→∞

1

N
s(µ∅N )

= − lim
N→∞

1

N

∑
σ1,...,σ2N=±1

µ∅N (σ[1,2N ]) logµ∅N (σ[1,2N ])

= − lim
N→∞

1

N

(
β
d

dβ
logZ∅N − logZ∅N

)
=

∞∑
p=0

1

2p+2
sIsing;∅
p+1 (β)

where

sIsing;∅
p+1 (β) :=

(
β
d

dβ
logZIsing;∅,∅

p (β)− logZIsing;∅,∅
p (β)

)
is the entropy of the standard Ising model with free boundary conditions in the lattice
interval [0, p].

4.2 Kolmogorov-Sinai entropy

In the context of shift-invariant Gibbs measures, the free energy does not depend
on the boundary condition, and therefore, neither do large properties of sums of shifts
under a shift-invariant Gibbs measure. In the multiplication invariant context, the ther-
modynamic formalism is different, as we have already witnessed in the computation of
the free energies for ± boundary conditions, which depend on the boundary condition.

To start with the study of the thermodynamic properties of µM∞, let us first consider
its Kolmogorov-Sinai (KS) entropy. First notice that by the fact that µM∞ factorizes over
different layers of τ spins, we have

logµM∞(σ[1,N ]) =
∑

1≤r≤N
r odd

logµIsing

∞ (τ r1 , . . . , τ
r
ψ2(r/N)).

Denote by

sIsing

k+1 = −EµIsing
∞

(logµIsing

∞ (τ0, . . . , τk))
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the entropy of cylinders of length k + 1 under the measure µIsing
∞ . Then, using lemma

3.4, we obtain the following explicit formula for the KS entropy of µM∞:

− lim
N→∞

1

N
EµM∞ logµM∞(σ[1,N ]) =

∞∑
k=0

1

2k+2
sIsing

k+1.

To obtain a more explicit formula in terms of the transfer matrix, we use the Markov
structure of the layer Gibbs measure µIsing

∞ .
Now, using lemma 3.4 and (3.10) we obtain

− s(µM∞) = lim
N→∞

1

N
EµM∞(logµM∞(σ[1,N ]))

=
1

2
EµIsing
∞

(logµIsing

∞ (τ0)) + lim
N→∞

1

N

∑
1≤r≤N
r odd

∑
0≤i≤ψ2(r/N)

EµIsing
∞

(logQ(τi, τi+1))

=
1

2
EµIsing
∞

(logµIsing

∞ (τ0)) +

∞∑
k=1

1

2k+2

k−1∑
i=0

EµIsing
∞

(logQ(τi, τi+1)).

Using the elementary formula

∞∑
k=1

1

2k+2

k−1∑
i=0

zi =

∞∑
i=0

zi
2i+2

and π(τ0) = µIsing
∞ (τ0), where π is defined in (3.9), we obtain the following explicit for-

mula

s(µM∞) = −1

2

(
π(+1) log π(+1) + π(−1) log π(−1)

)
− 1

2

∑
a,b,c=±1

π(a)R(a, b)Q(b, c) log(Q(b, c)) (4.2)

where

R(a, b) :=

∞∑
k=0

1

2k+1
Q(a, b)k =

1

2

(
1− Q(a, b)

2

)−1

.

Remark 4.1. 1. When J = 0, h = 0, the measure µM∞ is nothing but the product
measure giving weight 1/2 to ±1 whose entropy is log 2. Formula (4.2) indeed
gives log 2.

2. If h = 0 then

s(µM∞) =
1

2
+

1

2
H(α)

where H(α) := −α logα − (1 − α) log(1 − α) and α := (1 + e−2βJ)−1. If we fix βJ
such that EµM∞(σ1σ2) = γ then choosing α = 1−γ

2 yields

s(µM∞) =
1

2
+

1

2
H

(
1− γ

2

)
.

This corresponds to the Hausdorff dimension of the level set (see [5]){
σ : lim

n→∞

1

n

n∑
i=1

σiσ2i = γ

}
and shows that µM∞ is the natural measure concentrated on this level set. In gen-
eral, however, the telescopic measures constructed in [5] tailored for the multi-
fractal analysis of multiple ergodic averages are different from the Gibbs mea-
sures we introduce in this paper for the purpose of large deviations.
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4.3 The pressure of first-layer functions

In order to obtain large deviation results for “ergodic averages” of the form 1
N

∑N
i=1 Tif

under the measure µM∞, i.e., the infinite-volume multiplicative Ising model, we will heav-
ily rely on the independent layer decomposition. We will therefore have to restrict to
functions f such that their ergodic sums

∑N
i=1 Tif are consistent with this independent

layer structure.

Definition 4.2. A continuous function f : Ω→ R of the σ’s is called a first-layer function
if there exists a continuous f∗ : Ω0 → R of the τ ’s such that f(σ) = f∗(τ1), i.e., if f
depends only on the spins in the first layer.

For such a first-layer function we have

N∑
i=1

Tif(σ) =
∑

1≤k≤N
k odd

∑
0≤i≤ψ2(k/N)

Tk2if(σ)

=
∑

1≤k≤N
k odd

∑
0≤i≤ψ2(k/N)

f∗(θi(τ
k)). (4.3)

We then define the pressure of a first-layer function w.r.t. multiplicative Ising model
as follows. Let us first define

P k
µIsing
∞

(f∗) = logEµIsing
∞

(
e
∑k
i=0 θif

∗
)
.

Since µIsing
∞ is a one-dimensional Gibbs measure with nearest-neighbor interaction, we

have the estimate

P k
µIsing
∞

(f∗) ≤ Ck. (4.4)

Next define

PM(f |µM∞) = lim
N→∞

1

N
logEµM∞

(
e
∑N
i=1 Tif

)
.

Then, using (4.3), (4.4) and lemma 3.4 for f a first-layer function we have, using the
independence of the τ spins for different layers, and the fact that they are distributed
according to the one-dimensional Gibbs measure µIsing

∞

PM(f |µM∞) =

∞∑
k=0

1

2k+2
P k
µIsing
∞

(f∗).

We have the following result.

Theorem 4.3.

(a) Under the measure µM∞, for every first-layer function f , the random variables

XN (f) :=
1

N

N∑
i=1

Tif

satisfy the large deviation principle with rate function

If (x) = sup
t∈R

(tx− PM(tf |µM∞)) .
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(b) Moreover, they satisfy the central limit theorem, i.e.,

1√
N

(XN (f)− Eµ(XN (f)))→ N (0, σ2)

where→ means here convergence in distribution, and where

σ2 =
d2PM(tf |µ)

dt2

∣∣∣
t=0

= lim
N→∞

1

N

N∑
i,j=1

(
EµM∞(TifTjf)− (EµM∞(f))2

)
.

Proof. (a) We have ∣∣∣∣∣dP
k
µIsing
∞

(f∗)

dt

∣∣∣∣∣ ≤ c k
for some constant c > 0 and for all k. Hence the function t 7→ PM(tf |µM∞), t ∈ R, is
continuously differentiable. The result follows from Gärtner-Ellis theorem [3].

(b) By complete analyticity of one-dimensional lattice models with finite-range inter-
action [4], it follows that there exists a neighborhood V ⊂ C of the origin and
C > 0 such that for all k ∈ N

sup
z∈V

∣∣∣∣1kP kµIsing
∞

(zf∗)

∣∣∣∣ ≤ C.
Therefore the map z 7→ PM(zf |µM∞) is well defined for z ∈ V and one can apply
Bryc’s theorem [1].

We can push the large deviation result of theorem 4.3-(a) a bit further. Indeed,
using that first-layer functions form a vector space, we obtain a large deviation princi-
ple of the variables XN (f) jointly in any finite number of f ’s. More precisely, for any
choice f1, . . . , fk first-layer functions, the random vector (XN (f1), . . . XN (fk)) satifsfies
the large deviation principle with rate function

If1,...,fk(x1, . . . , xk) = sup

(
k∑
i=1

xiti − PM
(

k∑
i=1

tifi

∣∣∣µM∞
))

.

We can then take the projective limit, i.e., induce on the space of probability measures
P(Ω) the topology induced by the maps µ 7→

∫
fdµ with f a first-layer function. Then

by Dawson-Gärtner theorem [3, p. 162], we have that the random measures

1

N

N∑
i=1

δTiσ

satisfy the large deviation principle with rate function

I(λ|µM∞) = sup
f : first-layer function

(∫
fdλ− PM(f |µM∞)

)
.

This can be considered as the analogue of relative entropy density.
Let us now consider some applications of theorem 4.3. For the choice f(σ) = σ1 we

have f∗(τ1) = τ1
0

N∑
i=1

Tif =

N∑
i=1

σi
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i.e., we have the large deviation principle and the central limit theorem for the mag-
netization of the multiplicative Ising model. Choosing f(σ) = σ2 we have f∗(τ1) = τ1

1 ,
and more generally fk(σ) = σ2k , we have f∗k (τ1) = τ1

k , i.e., we have the large deviation
principle for sums of the form

1

N

N∑
i=1

σi2k

i.e., for the magnetization along decimated lattices.
For the choice f(σ) = σ1σ2 we have f∗(τ1) = τ1

0 τ
1
1 and

N∑
i=1

Tif =

N∑
i=1

σiσ2i.

The function f(σ) = σ1σ3 is however not a first-layer function and therefore, the large
deviations of

1

N

N∑
i=1

σiσ3i

do not follow from Theorem 4.3.

5 One-dimensional multiplication-invariant Gibbs measures

The theory developed so far for the multiplicative Ising model quite easily general-
izes to one-dimensional multiplication-invariant Gibbs measures of σ spins, such that
the corresponding layers of τ spins are in the uniqueness regime. Informally speaking,
this means Gibbs measures with formal Hamiltonians∑

i∈N

∑
A

JA
∏
j∈A

σi2j (5.1)

where the second sum runs over finite subsets of N0. E.g. formal Hamiltonians∑
i∈N

σiσ2i + σiσ4i + σiσ2iσ8i

are included but not e.g. ∑
i∈N

σiσ2i + σiσ3i

which will later be called a two-dimensional model. We choose here to work with powers
of 2 in (5.1), this can be replaced without any further difficulty by any prime number.
The essential point is that in (5.1) only powers of a single prime number appear, which
makes the models one-dimensional.

5.1 One-dimensional potentials

To define the Gibbs measures with formal Hamiltonian (5.1) more precisely, we de-
fine a potential U(A, σ) to be a function of finite subsets A of N such that

1. U(A, σ) depends only on σA.

2.
∑
A3i maxσA |U(A, σ)| is finite for all i ∈ N.

We call such a potential multiplication invariant if

U(iA, σ) = U(A, Tiσ)
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for all A ⊂ N, σ ∈ Ω, i ∈ N. To construct examples of multiplication invariant potentials,
we can start from a “base” collection {JA, A ∈ A} of interactions and then define

U(iA, σ) = JA
∏
j∈A

Tiσ(j) (5.2)

and U(B, σ) = 0 for B not of the form iA,A ∈ A, i ∈ N. For the multiplicative Ising
model we had A = {{1, 2}, {1}}, J{1,2} = −βJ, J{1} = −βh. We will from now on restrict
to such potentials, which is the case of ±1 spins is not a restriction.

We call a potential one-dimensional if the set ∪A∈AA contains powers of at most a
single prime, which we choose here, without loss of generality to be 2, in other words if

∪A∈AA = {2i1 , 2i2 , . . .}.

We then have the natural correspondence of the potential U in (5.2) with the shift-
invariant potential

V (A+ i, σ) = JA
∏
j∈A

θiσ(j)

for i ∈ N0, σ ∈ Ω0, and V (B, σ) = 0 for sets not of the form i+A.
We call a multiplication-invariant potential U(A, σ) layer unique if for the corre-

sponding potential V there is a unique Gibbs measure µV∞ on Ω0 in the sense of [7].
Notice that the configuration space Ω0 corresponds to free boundary conditions at the
left end, and so in general despite shift-invariant potentials V , the corresponding unique
Gibbs measure will not necessarily be stationary under the shift.

We then have, in complete analogy with theorem 3.2, the following result.

Theorem 5.1. Let U be a multiplication invariant one-dimensional layer unique po-
tential. Then U admits a unique Gibbs measure µU∞ which is multiplication invariant.
Under this measure, the layer spins defined by

τ ri = σr2i

r ∈ 2N+ 1 are independent for different r and distributed as the unique Gibbs measure
with potential V on Ω0.

As an example, consider V the long-range Ising model: V ({i, j}, σ) = J(|j − i|)σiσj ,
with

∑
n nJ(n) < ∞. Then the corresponding multiplication invariant potential U is

given by U({r2i, r2j}, σ) = σr2iσr2jJ(|j − i|).

5.2 Large deviations in the general one-dimensional layer unique context

The large deviation properties of sums of the form 1
N

∑N
i=1 Tif are obtained just as

in the case of the multiplicative Ising model. I.e., defining for f a first-layer function
the pressure

PM (f |µU∞) = lim
n→∞

1

N
logEµU∞

(
e
∑N
i=1 Tif

)
we have

PM (f |µU∞) =

∞∑
k=0

1

2k+2
P kµV∞(f∗)

where

P kµV∞(f∗) = logEµV∞

(
e
∑k
i=0 θif

∗
)
.

As a consequence, under µU∞ we have the same results as in theorem 4.3.
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6 Higher-dimensional models in the uniqueness regime

Let us start now from a multiplication-invariant potential as constructed in (5.2) from
a collection {JA, A ∈ A}. Let us denote, for a such a collection the set ∪A∈AA = S(J).
Let us further denote by P (J) the set of primes appearing in the prime factorization of
all the numbers appearing in S(J). We assume that P (J) is a finite set. We denote by
d = d(J) = |P (J)| and call this the dimension of the underlying model and we order
P (J) = {p1, p2, . . . , pd} with p1 < p2 < · · · < pd. The analogue of the layer decomposition
then goes as follows: we write every number i ∈ N in a unique way as

i = r

d∏
i=1

pxii

where xi ∈ N0, r ∈ N, r not divisible by any of the primes p1, . . . , pd (the set of all such
r is denoted by K(p1, . . . , pd)). We further denote, for N ∈ N by Λrp1,...,pd;N the set

Λrp1,...,pd;N =
{

(x1, . . . , xd) ∈ (N0)d : r

d∏
i=1

pxii ≤ N
}
.

We then have that the Gibbs measure in the lattice interval [1, N ] associated to the po-
tential U , with boundary condition η factorizes into a product over r ∈ K(p1, . . . , pd), r ≤
N of independent Gibbs measures on the sets {−1,+1}Λ

r
p1,...,pd;N associated to the cor-

responding shift-invariant potential V , with free boundary conditions on the “left” and
more “complicated” η-dependent, (and for our purposes here unimportant) boundary
conditions on the other ends.

We assume now the following:

Definition 6.1. We call the potential U layer unique if the corresponding potential V
has a unique infinite-volume Gibbs measure µV∞ on Ω0,d = {−1, 1}(N0)d .

From the layer decomposition of the finite-volume Gibbs measures, and the unique-
ness of infinite-volume limits on each layer, we obtain the following analogue of theorem
5.1.

Theorem 6.2. Let U be a multiplication-invariant potential with associated shift-invariant
potential V . Assume that U is layer unique. Then there exists a unique Gibbs measure
µU∞ associated to U on the configuration space Ω = {−1, 1}N. Under this measure µU∞,
the τ spins defined by

τ rx1,...,xd
= σr

∏d
i=1 p

xi
i
, (6.1)

r ∈ K(p1, . . . , pd), xi ∈ N0, form independent copies (with respect to r) of the measure
µV∞.

6.1 Pressure and large deviations

In order to obtain the analogue of theorem 4.3 in the d-dimensional case, we need
the following lemma which is proved in [10].

Lemma 6.3. Let φ : N0 → R be such that there exist C > 0 and q > 0 such that
|φ(n)| < nq for all x ∈ N0. Then there exist a constant κ ∈ (0, 1) and functions, ρ+, ρ− :

N→ [0,∞) such that ρ+(`) > ρ−(`) > 0 for all ` and such that

lim
N→∞

1

N

∑
r∈K(p1,...,pd)

1≤r≤N

φ(|Λrp1,...,pd;N |) = κ

∞∑
j=1

(
e−ρ

−(j) − e−ρ
+(j)

)
φ(j). (6.2)
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Here ρ−, ρ+ are defined by

ρ−(`) = inf{ρ ≥ 0 : |D(ρ)| = `}
ρ+(`) = sup{ρ ≥ 0 : |D(ρ)| = `}

with

D(ρ) =

{
(x1, . . . , xd) :

d∑
i=1

xi log(pi) ≤ ρ

}
and

κ = κ(p1, . . . , pd) = 1− 1

2
− 1

3
+

1

2× 3
− 1

5
+

1

2× 5
+

1

3× 5
+ · · ·+ (−1)d

1

p1 . . . pd
·

Remark 6.4. Notice that in general we have the bound ρ−(`) ≥ (`1/d − 1) log(2), ensur-
ing the absolute convergence of the series in (6.2). In the particular case d = 1, p1 = 2,
we have e−ρ

−(j) − e−ρ+(j) = 1
2j+1 , κ = 1/2, consistent with our previous result (lemma

3.4).

We now define the analogue of the finite-volume pressures on layers. For a first-
layer function f : Ω → R, i.e., a continuous function depending only on τ1 defined in
(6.1) (f(σ) = f∗(τ1)), we define

PΛrp1,...,pd;N
(f∗|V ) = EµV∞

(
e

∑
x∈Λr

p1,...,pd;N
θxf
∗)

.

Notice that this function, as a function of r and N only depends on |Λrp1,...,pd;N | (cf. [10]).
Hence, if |Λrp1,...,pd;N | = `, we define

Ψ`(f
∗|V ) = PΛrp1,...,pd;N

(f∗|V ).

We can therefore use lemma 6.3 to obtain the following result. Define the pressure of a
first-layer function w.r.t. the unique Gibbs measure with potential U as before

PM(f |µU∞) = lim
N→∞

1

N
logEµU∞

(
e
∑N
i=1 Tif

)
. (6.3)

Theorem 6.5. Let U be a layer-unique d-dimensional multiplication invariant potential,
and f a first-layer function. Then the limit defining the pressure (6.3) exists and is given
by

PM(f |µU∞) = κ

∞∑
j=1

(
e−ρ

−(j) − e−ρ
+(j)

)
Ψj(f

∗|V ).

As a consequence, the random variables

XN (f) =
1

N

N∑
i=1

Tif

satisfy the large deviation principle with rate function

If (x) = sup
t∈R

(
tx− PM (tf |µU∞)

)
.

Remark 6.6. Just as in the one-dimensional case, by considering joint large deviations
of XN (f1), . . . , XN (fk) and taking a projective limit, we have the large deviation princi-
ple for the random probability measures

1

N

N∑
i=1

δTiσ

in the weak topology induced by first-layer functions.
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6.2 Dimensional extension and general large deviations

We can extend the large deviation principle in the following way. Suppose e.g. we
want to obtain the large deviation principle of

1

N

N∑
i=1

σiσ2i + σiσ3i (6.4)

under the multiplicative Ising model with h = 0, βJ = 1 (for simplicity). We can view
this multiplicative Ising model as the model with formal Hamiltonian∑

i

σiσ2i + 0.σiσ3i

i.e., a two-dimensional model consisting in each layer of independent copies of µM∞. The
corresponding two-dimensional shift-invariant potential is

V ({(x1, x2), (x1 + 1, x2)}, τ) = τx1
τx1+1

and V (A, τ) = 0 for other subsets A, i.e., the potential has only interaction in the x1

direction. This model is of course still layer unique, and hence we have the large devi-
ation principle for (6.4), because it is now a first-layer function in the two-dimensional
model.

More generally, suppose that we have a layer unique Gibbs measure µU∞ correspond-
ing to a d dimensional multiplication invariant potential, and we want to prove the large
deviation principle for

1

N

N∑
i=1

Tif

where f is a local function, i.e. a function depending only on a finite number of coordi-
nates. Since f is local we can write

f =
∑
B

JBσB

where σB =
∏
i∈B σi and where the sum over B runs over a finite number of finite

subsets B ⊂ N. Let us call π1, . . . , πk the primes involved in the prime decomposition
of ∪B and p1, . . . , pd the primes associated to the potential U . Then, to study the large
deviation of 1

N

∑N
i=1 Tif , we go to a higher dimensional model associated to the primes

{π1, . . . , πk}∪{p1, . . . , pd} := {p1, . . . , pd, p
′
d+1, . . . , p

′
d+d′}, consisting of d′ non-interacting

layers distributed according to µU∞. This new model is of course still layer-unique (as we
have not added any new interaction), and f is a first-layer function in the new model.
Therefore, 1

N

∑N
i=1 Tif satisfies the large deviation principle under µU∞.

As a conclusion, for a layer-unique multiplication-invariant potential U , we have the
large deviation principle for ( 1

N

∑N
i=1 Tif)N for every local f . Because the set of local

functions is dense in the set of continuous function for the sup-norm topology, we can
summarize our observations in the following theorem.

Theorem 6.7. Let µU∞ be a layer-unique Gibbs measure with a multiplication-invariant
potential U . For any local function f , PM(f |µU∞) exists and the sequence ( 1

N

∑N
i=1 Tif)N

satisfies the large deviation principle with rate function

If (x) = sup
t∈R

(
tx− PM (tf |µU∞)

)
.

As a consequence, by taking the projective limit, we have that the sequence of random
measures ( 1

N

∑N
i=1 δTiσ)N satisfies the large deviation principle in the weak topology

with rate function

I(λ|µM∞) = sup
f local

(∫
fdλ− PM(f |µU∞)

)
.
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6.3 A Shannon-McMillan-Breiman theorem

In Subsection 4.2 we computed the Kolmogorov-Sinai entropy of the multiplicative
Ising model. Here we prove the corresponding almost-sure convergence in the more
general context of layer-unique Gibbs measures in dimension one. Then we explain
how to extend it, in the same spirit as we did for our large deviation results.

Theorem 6.8. Let U be a layer-unique one-dimensional multiplication invariant poten-
tial and µU∞ the corresponding Gibbs measure. Then µU∞-almost surely, we have

lim
N→∞

− 1

N
logµU∞(σ[1,N ]) =

∞∑
k=0

1

2k+2
sVk+1 (6.5)

where
sVk+1 = −EµV∞ (logµV∞(τ0, . . . , τk)) .

Proof. We are going to use the large deviation principle for the sequence (− 1
N logµU∞(σ[1,N ]))N

and consequent strong law of large numbers.
We again use the following formula

logµU∞(σ[1,N ]) =
∑

1≤r≤N
r odd

logµV∞(τ r0 , . . . , τ
r
ψ2(r/N)).

As a consequence, using the fact that different layers are independent and have the
same distribution µV∞, we have for every t ∈ R

FN (t) := logEµU∞

(
e−t log µU∞(σ[1,N])

)
=

∑
1≤r≤N
r odd

logEµV∞

(
e−t log µV∞(τ0,...,τψ2(r/N))

)
.

Because µV∞ is a Gibbs measure, there exist strictly positive constants c1, c2 such that
for all k

e−c1k ≤ µV∞(τ0, . . . , τk) ≤ e−c2k. (6.6)

It follows from lemma 3.4 that

F (t) := lim
N→∞

1

N
FN (t) =

∞∑
k=0

1

2k+2
sVk+1(t)

where
sVk+1(t) := logEµV∞

[
(µV∞(τ0, . . . , τk))−t

]
.

The map t 7→ sVk+1(t) is continuously differentiable and strictly convex for every k. More-
over, ∣∣∣∣ d

dt
sVk+1(t)

∣∣∣∣ =

∣∣∣∣∣EµV∞
(
etYkYk

)
EµV∞ (etYk)

∣∣∣∣∣
≤ c1k

where Yk = − logµV∞(τ0, . . . , τk). Therefore F is strictly convex and continuously differ-
entiable. By Gärtner-Ellis theorem (see [3]) the sequence (− 1

N logµU∞(σ[1,N ]))N satisfies
a large deviation principle with a strictly convex rate function. As a consequence, we
have exponential convergence and by the Borel-Cantelli lemma, the strong law of large
numbers.
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Remark 6.9.

1. In the spirit of Theorem 6.5, we can easily extend the previous theorem to layer-
unique d-dimensional multiplication-invariant potentials, but the analogue of for-
mula (6.5) is quite cumbersome.

2. The theorem is valid beyond Gibbs measures, namely if the different layers are
independent and have the same distribution and estimates (6.6) hold, then the
same proof works.

References

[1] Bryc, W.: A remark on the connection between the large deviation principle and the central
limit theorem. Stat. Prob. Letters 18, 253-256, 1993. MR-1245694

[2] G. Carinci, G., Chazottes, J.-R., Giardinà, C. and Redig, F.: Nonconventional averages along
arithmetic progressions and lattice spin systems, Indagationes Mathematicae 23, 589-602,
2012. MR-2948646

[3] Dembo, A. and Zeitouni, O.: Large Deviations, techniques and applications, Springer, 2009.
MR-2571413

[4] Dobrushin, R.L. and Shlosman, S.B.: Completely analytical interactions: constructive de-
scription. J. Stat. Phys. 46 (1987), 983-1014. MR-0893129

[5] Fan, A.-H., Schmeling, J. and Wu, M.: Multifractal analysis of some multiple ergodic
averages. Comptes Rendus Mathématique 349 (2011), 961-964. For the full version:
arXiv:1212.2764. MR-2838244

[6] Frantzikinakis, N.: The structure of strongly stationary systems. J. Anal. Math. 93 (2004),
359-388. MR-2110334

[7] Georgii, H.O.: Gibbs measures and phase transitions. Second edition. de Gruyter Studies in
Mathematics 9. Walter de Gruyter, Berlin, 2011. MR-2807681

[8] Hochman, M.: private communication.

[9] Jenvey, E.: Strong stationarity and De Finetti’s theorem, Journal d’analyse math. 73, 1-18,
1997. MR-1616457

[10] Kifer, Y. and Varadhan, S.: Nonconventional large deviations theorems. Probab. Theory Re-
lated Fields 158 (2014), no. 1-2, 197-224. MR-3152784

Acknowledgments. This work was completed during a 3-month stay of F. R. at the
Centre de Physique Théorique funded by the CNRS. J.-R. C. thanks Mike Hochman for
enlightening dicussions and Benjy Weiss for having pointed to him reference [9].

EJP 19 (2014), paper 39.
Page 19/19

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1245694
http://www.ams.org/mathscinet-getitem?mr=2948646
http://www.ams.org/mathscinet-getitem?mr=2571413
http://www.ams.org/mathscinet-getitem?mr=0893129
http://arXiv.org/abs/1212.2764
http://www.ams.org/mathscinet-getitem?mr=2838244
http://www.ams.org/mathscinet-getitem?mr=2110334
http://www.ams.org/mathscinet-getitem?mr=2807681
http://www.ams.org/mathscinet-getitem?mr=1616457
http://www.ams.org/mathscinet-getitem?mr=3152784
http://dx.doi.org/10.1214/EJP.v19-3189
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

