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Abstract

The understanding of site percolation on the triangular lattice progressed greatly in
the last decade. Smirnov proved conformal invariance of critical percolation, thus
paving the way for the construction of its scaling limit. Recently, the scaling limit of
near-critical percolation was also constructed by Garban, Pete and Schramm. The
aim of this article is to explain how these results imply the convergence, as p tends
to pc, of the Wulff crystal to a Euclidean disk. The main ingredient of the proof is the
rotational invariance of the scaling limit of near-critical percolation proved by these
three mathematicians.
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1 Introduction

Definition of the model Percolation as a physical model was introduced by Broad-
bent and Hammersley in the fifties [5]. For general background on percolation, we refer
the reader to [21, 24, 7].

Let T be the regular triangular lattice given by the vertices m+ eiπ/3n where m,n ∈
Z, and edges linking nearest neighbors together. In this article, the vertex set will
be identified with the lattice itself. For p ∈ (0, 1), site percolation on T is defined as
follows. The set of configurations is given by {open, closed}T. Each vertex, also called
site, is open with probability p and closed otherwise, independently of the state of other
vertices. The probability measure thus obtained is denoted by Pp.

A path between a and b is a sequence of sites v0, . . . , vk such that v0 = a and vk = b,
and such that (vi, vi+1) is an edge of T for any 0 ≤ i < k. A path is said to be open if
all its sites are open. Two sites a and b of the triangular lattice are connected (this is
denoted by a ←→ b) if there exists an open path between them. A cluster is a maximal
connected graph for the relation←→ on sites of T.

The different phases Bernoulli percolation undergoes a phase transition at pc = 1/2:
in the sub-critical phase p < pc, there is almost surely no infinite cluster, while in the
super-critical phase p > pc, there is almost surely a unique one.

The understanding of the critical phase p = pc has progressed greatly these last few
years. In [29], Smirnov proved Cardy’s formula, thus providing the first rigorous proof
of the conformal invariance of the model (see also [33, 4] for details and references).
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Limit of the Wulff Crystal when approaching criticality for site percolation

This result led to many applications describing the critical phase. Among others, the
convergence of interfaces was proved in [12, 13], and critical exponents were computed
in [32].

Another phase of interest is given by the so-called near-critical phase. It is obtained
by letting p go to pc as a well-chosen function of the size of the system (see below
for more details). This phase was first studied in the context of percolation by Kesten
[25], who used it to relate fractal properties of the critical phase to the behavior of the
correlation length and the density of the infinite cluster (as p tends to pc). Recently, the
scaling limit of near-critical percolation was proved to exist in [20]. This result will be
instrumental in the proof of our main theorem.

Main statement Mathematicians and physicists are particularly interested in the fol-
lowing quantity, called the inverse correlation length. For p < pc and for any u on the
unit circle U = {z ∈ C : |z| = 1}, define

τp(u) := lim
n→∞

− 1
n logPp(0←→ n̂u),

where n̂u is the site of T closest to nu. In [32], the inverse correlation length τp(u) was
proved to behave like (pc − p)4/3+o(1) as p↗ pc.

Interestingly, conformal invariance at criticality is a strong indication that τp(u) be-
comes isotropic, meaning that it does not depend on u ∈ U. The aim of this note is to
show that this is indeed the case.

Let | · | be the Euclidean norm on R2.

Theorem 1.1. For percolation on the triangular lattice, τp(u)/τp(|u|) −→ 1 uniformly in
the direction u ∈ U as p↗ pc.

While this result is very intuitive once conformal invariance has been proved, it does
not follow directly from it. More precisely, it requires some understanding of the near-
critical phase mentioned above. The main input used in the proof is the spectacular
and highly non-trivial result of [20]. In that paper, the scaling limit for near-critical
percolation is proved to exist and to be invariant under rotations. This result constitutes
the heart of the proof of Theorem 1.1, which then consists in connecting the inverse
correlation length to properties of this near-critical scaling limit (in some sense, the
proof can be understood as an exchange of two limits).

Wulff crystal Theorem 1.1 has an interesting corollary. Consider the cluster C0 of the
origin (its cardinal is denoted by card(C0)). When p < pc, there exists a deterministic
shape Wp such that for any ε > 0,

Pp

(
dHausdorff

( C0√
n
,

Wp√
Vol(Wp)|

)
> ε

∣∣∣ card(C0) ≥ n

)
−→ 0 as n→∞,

where Vol(E) denotes the volume of the set E, and dHausdorff is the Hausdorff distance.
In the previous formula, Wp is the Wulff crystal defined by

Wp := {x ∈ C : 〈x|u〉 ≤ τp(u), u ∈ U},

where 〈·|·〉 is the standard scalar product on C.
The Wulff crystal appears naturally when studying phase coexistence. Originally,

the Wulff crystal was constructed rigorously in the context of the planar Ising model by
Dobrushin, Kotecký and Shlosman [18] for very low temperature (see [28, 22] for exten-
sions of this result). In the case of planar percolation, the first result is due to [1]. Let
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Limit of the Wulff Crystal when approaching criticality for site percolation

us mention that the Wulff construction was extended to higher dimensional percolation
by Cerf [8] (see also [6, 14] for the Ising case). We refer to [9] for a comprehensive
exposition of the subject.

The geometry of the Wulff crystal has been studied extensively since then. Let us
mention that for any p < pc, it is a strictly convex body with analytic boundary [1, 2, 10].

The expression of Wp in terms of the inverse correlation length, together with The-
orem 1.1, implies the following result.

Corollary 1.2. When p↗ pc, Wp/
√

Vol(Wp) tends to the disk {u ∈ C : |u| ≤ 1}.

This corollary has a strong geometric interpretation. As p↗ pc, the typical shape of
a cluster conditioned to be large becomes round.

Super-critical phase For the super-critical phase, the previous results can be trans-
lated in the following way. For p > pc, define

τ f
p(u) := lim

n→∞
− 1

n
logPp(0←→ n̂u, card(C0) <∞).

One can prove that τ f
p(u) = 2τ1−p(u); see [11, Theorem A] for a much more precise (and

much harder) result. This fact, together with Theorem 1.1, immediately implies that
τ f
p(u)/τ f

p(|u|) → 1, uniformly in the direction u ∈ U, as p ↘ pc. The Wulff construction
can also be extended to the super-critical phase. When p > pc, we find that for any
ε > 0,

P0

(
dHausdorff

( C0√
n
,

W1−p√
Vol(W1−p)

)
> ε

∣∣∣ n ≤ card(C0) <∞

)
−→ 0 as n→∞.

Other models Let us mention that conformal invariance has been proved for a num-
ber of models, including the dimer model [23] and the Ising model [30, 15]; see [17]
for lecture notes on the subject. In both cases, exact computations (see [26] for the
Ising model) allow one to show that the inverse correlation length becomes isotropic,
hence providing an extension of Theorem 1.1. For the Ising model, we refer to [26] for
the original computation, and to [3] for a recent computation. For percolation, no exact
computation is available and the passage via the near-critical regime seems required.
For the Ising model, the near-critical phase was also studied in [16].

An open question To conclude, let us mention the following question, which was
asked by I. Benjamini: let p > pc and condition 0 to be connected to infinity. Consider
the sequence of balls of center 0 and radius n for the graph distance on the infinite
cluster. Show that these balls possess a limiting shape Up which becomes round as
p↘ pc.

2 Proof of Theorem 1.1

We will use standard tools of percolation theory such as correlation inequalities
(for instance the FKG and BK inequalities). The reader is referred to [21] for precise
definitions.

Points will be considered as elements of the plane and we use complex numbers to
position them. For r > 0 and u ∈ R2, let Br(u) = {z ∈ R2 : |z − u| ≤ r} be the Euclidean
ball of radius r around u. For two sets A and B in R2, we say that A ←→ B if there
exists a ∈ A ∩T and b ∈ B ∩T such that a←→ b.
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2.1 An important input

Let A4(1, n) be the event that there exist four disjoint paths from neighbors of the
origin to distance n, indexed in the clockwise order by γ1, γ2, γ3 and γ4, with the property
that γ1 and γ3 are open, while γ2 and γ4 are closed (meaning that they contain closed
sites only). For any λ > 0 and p < pc, we set

Lλp := inf
{
n ≥ 0 : n2Ppc [A4(1, n)] ≥ λ

pc−p

}
.

Let us mention that this quantity can be proved to be within bounded multiplicative
constants from the correlation length 1/τp(u).

Proposition 2.1. There exists f : R×R∗+ → [0, 1] such that for any v ∈ R2 and λ > 0,

lim
p↗pc

Pp
[
BLλp (0)←→ BLλp (Lλpv)

]
= f(λ, |v|). (2.1)

The previous proposition has two interesting features. First, the quantity on the left
possesses a limit as p tends to pc. Second, this limit is invariant under rotations. This
result is very difficult. Let us briefly explain how it can be obtained.

The scaling limit described in [20, Corollary 1.7] is a limit, in the sense of the Quad-
topology introduced in [31], of percolation configurations Pp on 1

Lλp
T. This topology is

sufficiently strong to control events considered in Proposition 2.1. The existence of the
scaling limit is justified by a careful study of macroscopic “pivotal points”. Scales Lλp
correspond to the scales for which a variation of pc − p will alter the pivotal points, and
therefore the scaling limit, but not too drastically. This fact enabled Garban, Pete and
Schramm to construct the scaling limit of near-critical percolation from the scaling limit
of critical percolation. The invariance under rotation of the near-critical scaling limit is
then a consequence of the invariance under rotation of the critical one. The existence
of the near-critical scaling limit and its invariance under rotations imply (2.1). We refer
to [20] and also to [19] for more details.

In the proof, the near-critical phase will be used at its full strength. On the one hand,
the scaling limit is still invariant under rotations. On the other hand, as λ → ∞, the
“crossing probabilities” tend to 0. The existence of such a phase is crucial here.

2.2 Proof of the theorem

The proof consists in estimating the inverse correlation length τp(u) using f(λ, |u|).
It is known since [25] that the inverse correlation length is related to crossing prob-
abilities. Yet, previous studies were interested in relations which are only valid up to
bounded multiplicative constants. Here, we will need a slightly better control (roughly
speaking that these constants tend to 1 as p goes to pc).

In order to relate τp(u) and f(λ, |u|), we use the existence of different parameters
R, λ, p0 with some specific properties presented in the next proposition.

Let Ccircuit(x, n) be the event that there exists an open circuit (meaning a path start-
ing and ending at the same site) in B2n(x) \Bn(x) surrounding x.
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up := RLpu

Θ

y1
x1

y2

x2

y3 x3

x4

y4

γ

Figure 1: On the left, the events E1, E2 and E3. On the right, the construction corre-
sponding to the upper bound.

Proposition 2.2. Let ε > 0. There exist λ,R > 0 and p0 < pc such that for any p ∈
[p0, pc),

P1 for any u ∈ U, f(λ,R)1+ε ≤ Pp
[
BLλp (0)←→ BLλp (Lλp Ru)

]
≤ f(λ,R)1−ε,

P2 Pp
[
Ccircuit(0, L

λ
p)
]
≥ f(λ,R)ε,

P3 1 ≥ 4R · f(λ,R)ε.

Proposition 2.2 follows from very classical arguments using the Russo-Seymour-
Welsh theory and the study of the near-critical window. We therefore choose to present
the proof of Theorem 1.1 before sketching the proof of the proposition.

Proof of Theorem 1.1. Fix ε > 0 and u ∈ U. Define λ,R > 0 and p0 < pc such that
Proposition 2.2 holds true. Let p0 < p < pc. We drop the dependency in λ by setting
Lp := Lλp and we introduce up := LpRu.

For K ≥ 1, consider the following three events:

E1= “BLp(0) and BLp(Kup) are full ”,

E2= “ BLp(kup)←→ BLp((k + 1)up) for every 0 ≤ k < K ”,

E3= “ Ccircuit(kup, Lp) for every 0 ≤ k ≤ K ”.

As shown on Fig. 1, if all these events occur, then 0 and the site of T closest to Kup,

denoted by K̂up, are connected by an open path. The FKG inequality (see [21, Theorem
2.4]) implies that

Pp
[
0←→ K̂up

]
≥ Pp [E1]Pp [E2]Pp [E3] ≥ p8(Lp)2 · f(λ,R)(1+ε)K · f(λ,R)εK .

We have used P1 and P2 to bound the probabilities of E2 and E3 in the second inequality.
The bound on Pp[E1] comes from the fact that there are less than 8(Lp)

2 sites in BLp(0)∪
BLp(Kup).
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By taking the logarithm and letting K tend to infinity, we obtain that for p0 < p < pc,

τp(u) ≤ −(1 + 2ε)
log f(λ,R)

RLp
. (2.2)

This provides us with an upper bound that we will match with the lower bound below.
Assume that 0 and K̂up are connected. Define

Θ :=
{
up , e

πi
2Rup , e

2 πi2Rup , . . . , e
(2R−1) πi2Rup

}
.

We claim that if 0 and K̂up are connected, then there must exist a sequence of sites
0 = x0, x1, . . . , xK such that xi+1 − xi ∈ Θ and BLp(xi) ←→ BLp(xi+1) occurs for every
0 ≤ i < K. Furthermore, the events BLp(xi)←→ BLp(xi+1) occur disjointly in the sense
of [21, Section 2.3].

In order to prove this claim, consider a self-avoiding open path γ = (γi)0≤i≤r from

0 to K̂up. Let y1 be the first point of this path which is outside the Euclidean ball
of radius Lp around 0. Define x1 ∈ Θ such that |y1 − x1| ≤ Lp (the point x1 exists
since 2R sin( π

2R ) ≥ 1 and therefore the balls of radius Lp and center in Θ cover well
the boundary of the Euclidean ball of radius Lp). Let y2 be the first point of γ[y1, r]

outside the Euclidean ball of radius Lp around x1. We pick x2 such that x2 − x1 ∈ Θ

and |y2 − x2| ≤ Lp. We construct (xi)0≤i≤K iteratively. See Fig. 1 for an illustration. By
construction, the events occur disjointly since the path γ is self-avoiding. The disjoint
occurrence of events A and B will be denoted by A ◦ B (see [21, Theorem 2.12] for a
formal definition of disjoint occurrence). The union bound and the BK inequality give

Pp[0←→ K̂up)] ≤
∑

(xi)i≤K

Pp

[{
BLp(x0)←→ BLp(x1)

}
◦ · · · ◦

{
BLp(xK−1)←→ BLp(xK)

}]
≤ (4R)

K
max

{
Pp[BLp(0)←→ BLp(RLpu)] : u ∈ U

}K
≤
(
4Rf(λ,R)1−ε)K ≤ f(λ,R)(1−2ε)K .

In the second inequality, we used the fact that the cardinality of Θ is bounded by 4R.
In the last line, we used P1 and then P3. By taking the logarithm and letting K go to
infinity, we obtain that for p0 < p < pc

τp(u) ≥ −(1− 2ε)
log f(λ,R)

RLp
. (2.3)

Therefore, for every p0 < p < pc and u ∈ U, (2.2) and (2.3) imply that

1− 2ε

1 + 2ε
≤ τp(u)

τp(1)
≤ 1 + 2ε

1− 2ε
.

Proof of Proposition 2.2 (sketch). Property P1 follows directly from the definition of Lλp
and f(λ,R). Thus, we simply need to prove that R and λ can be chosen in such a way
that properties P2 and P3 are satisfied.

First, recall the definition of the characteristic length from [27, Equation (7.1)]: for
p < pc and α > 0,

Lα(p) := inf
{
n ≥ 0 : Pp

(
CH([0, n]2)

)
≤ α

}
,

where CH([0, n]2) is the event that the box [0, n]2 = {k + eiπ/3` : 0 ≤ k, ` ≤ n} is crossed
from left to right by an open path. (This definition is yet again related to the correlation
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length 1/τp(u).) With this definition, [27, Proposition 34] yields that for any α > 0 there
exist cα, Cα > 0 such that

cα ≤ (pc − p)Lα(p)2Ppc [A4(1, Lα(p))] ≤ Cα (2.4)

for p < pc close enough to pc. Therefore, there exists λ = λ(α) > 0 large enough so that

lim
p↗pc

Pp
(
CH([0, Lλp ]2)

)
≤ α (2.5)

(the fact that the limit on the left-hand side exists comes from the convergence to the
near-critical regime proved in [20, Corollary 1.7]).

Define Cin/out(x, n) to be the event that there exists an open path from Bn(x) to the
boundary of B2n(x). For β > 0, the RSW theorem [27, Theorem 2] and (2.5) easily imply
the existence of λ = λ(β) and c(β) > 0 so that for p < pc close enough to pc,

Pp
[
Cin/out(0, L

λ
p)
]
≤ β and Pp

[
Ccircuit(0, L

λ
p)
]
≥ c(β). (2.6)

Now, define Θ :=
{

2Lλp , e
πi
4 2Lλp , e

2πi4 2Lλp , . . . , e
7πi4 2Lλp

}
and let u ∈ U. Following

the proof of the upper bound in the previous theorem, we may show that if BLλp (0) and

BLλp (Lλp Ru) are connected, then there must exist a sequence of sites 0 = x0, x1, . . . , xK

such that xi+1 − xi ∈ Θ and Cin/out(xi, L
λ
p) occurs disjointly for every 0 ≤ i ≤ K with

K = bR/2c − 1. As before, the union bound and the BK inequality give

Pp[BLλp (0)←→ BLλp (Lλp Ru)] ≤
∑

(xi)i≤K

Pp

[
Cin/out(x0, L

λ
p) ◦ · · · ◦ Cin/out(xK , L

λ
p)
]
≤ (8β)

K+1

uniformly in the choice of u ∈ U and p close enough to pc. In the second inequality, we
used the fact that the cardinality of Θ is bounded by 8.

We are now ready to conclude. First, we choose β := 1
9 and λ := λ(β). Then, we

choose R > 0 so that c(β) and 1/(4R) are larger than f(λ,R)ε, which is possible since

f(λ,R)ε ≤ ( 8
9 )ε(K+1) ≤ ( 8

9 )εbR/2c

decays exponentially fast in R. The claim follows by setting p0 = p0(λ,R) close enough
to pc.

Remark 2.3. In fact, [20, Theorem 11.1] shows that for any λ, u > 0, f(λ, u) = f(1, λ4/3u)

and therefore the exponential decay holds for every λ > 0.
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