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Abstract

Assume that X is a real-valued martingale starting from 0, H is a predictable process
with values in [−1, 1] and Y is the stochastic integral of H with respect to X. The
paper contains the proofs of the following sharp weak-type estimates.

(i) If X has continuous paths, then

P

(
sup
t≥0
|Yt| ≥ 1

)
≤ 2E sup

t≥0
Xt.

(ii) If X is arbitrary, then

P

(
sup
t≥0
|Yt| ≥ 1

)
≤ 3.477977 . . .E sup

t≥0
Xt.

The proofs rest on Burkholder’s method and exploits the existence of certain special
functions possessing appropriate concavity and majorization properties.
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1 Introduction

Suppose that (Ω,F ,P) is a complete probability space, filtered by a nondecreasing
right-continuous family (Ft)t≥0 of sub-σ-fields of F . Assume in addition that F0 contains
all the events of probability 0. Assume further that X = (Xt)t≥0 is an adapted real-
valued martingale with right-continuous paths that have limits from the left. Let Y be
the Itô integral of H with respect to X,

Yt = H0X0 +

∫
(0,t]

HsdXs, t ≥ 0,

where H is a predictable process with values in [−1, 1]. Let X∗ = supt≥0Xt, |X|∗ =

supt≥0 |Xt| be the one-sided and two-sided maximal functions of X, respectively. We
will also use the notation X∗t = sup0≤s≤tXs and |Xt|∗ = sup0≤s≤t |Xs|, t ≥ 0.

One of the objectives of this paper is to study maximal weak-type inequalities be-
tween X and Y . Let us take a look at some related results from the literature, which
may serve as a motivation. In the seminal paper [4], Burkholder invented a method of
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Weak-type inequality

proving general inequalities for stochastic integrals: he showed that the validity of a
given estimate can be deduced from the existence of an appropriate special function
which enjoys certain majorization and concavity properties. Burkholder applied this
method to establish the celebrated sharp Lp bound

||Y ||p ≤ max
{
p− 1, (p− 1)−1

}
||X||p, 1 < p <∞

(here and below, ||X||p = supt≥0 ||Xt||p is the p-th moment of X). If p = 1, the bound
does not hold with any finite constant, but we have the substitute (cf. [4])

P(|Y |∗ ≥ 1) ≤ 2||X||1, (1.1)

in which the constant 2 is optimal. These results, as well as the methodology, have been
extended in many directions and applied in many areas of mathematics: see e.g. [1],
[2], [5], [6], [7], [10], [11], [15], [16], [17] and references therein.

One can also ask about maximal versions of the above statements. In [8], Burkholder
enhanced his method from [4], and applied it to this new class of estimates. As an
illustration, he showed the bound

||Y ||1 ≤ γ|| |X|∗||1, (1.2)

where γ = 2.536 . . . is the unique solution of the equation

γ − 3 = − exp

(
1− γ

2

)
.

This constant is the best possible in (1.2). For further results in this direction and much
more, see [12], [13] and Chapter 7 in [14].

The purpose of this paper is to study the maximal version of (1.1), i.e., the modifica-
tion which involves the maximal function of X on the right. In view of (1.1) or (1.2), the
inequality holds with some constant if |X|∗ is used. However, what may be a little unex-
pected, the estimate is also valid if only the one-sided maximal function is involved. Let
us formulate the precise statement; for clarity, we have decided to consider the setting
of arbitrary and continuous-path martingales separately.

Theorem 1.1. Suppose that X is a real-valued continuous-path martingale starting
from 0 and Y is the integral, with respect to X, of a certain process H with values in
[−1, 1]. Then we have the inequality

P(|Y |∗ ≥ 1) ≤ 2EX∗ (1.3)

and the constant 2 is the best possible.

This result is perhaps not that surprising, especially in the light of the following rea-
soning: any continuous-path martingale can be represented as a time-changed Brown-
ian motion B; furthermore, by Levy’s theorem, the distributions of |B| and B∗ coincide.
Consequently, this suggests that the constants in the above maximal weak-type bound
and in (1.1) should coincide. Actually, we will not try to formalize the above reasoning
and present an alternative proof.

For martingales with possibly discontinuous trajectories, the situation gets much
more interesting and the description of the corresponding optimal constant is far more
complicated (see Section 3 below). Here is the precise statement.

Theorem 1.2. Suppose that X is a real-valued martingale starting from 0 and Y is the
integral, with respect to X, of a certain process H with values in [−1, 1]. Then we have
the sharp inequality

P(|Y |∗ ≥ 1) ≤ 3.477977 . . .EX∗ (1.4)

(the precise definition of the constant is given in (3.8) below).
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Our approach will depend heavily on the technique of Burkholder from [8], or rather
its appropriate modification. We establish Theorem 1.1 in the next section, and devote
the final part of the paper to the proof of Theorem 1.2.

2 Weak-type inequality for continuous-path martingales

We have decided to divide this section into two subsections.

2.1 Proof of (1.3)

As announced in the introduction, the key ingredient of the reasoning is a certain
special function. Let U : R3 → R be given by the formula

U(x, y, z) =

{
y2 − (x− z)2 − 2x if |y| < x− z + 1,

1− 2z if |y| ≥ x− z + 1.

It is easy to check that U is continuous. Furthermore, we have the following fact.

Lemma 2.1. Suppose that x ≤ z. Then

1{|y|≥1} − 2z ≤ U(x, y, z) ≤ 1− 2z. (2.1)

Proof. Let us start with the estimate on the right. If |y| ≥ x− z + 1, then both sides are
equal. On the other hand, if |y| < x− z + 1, then

U(x, y, z)− 1 + 2z = y2 − (x− z + 1)2 < 0.

To deal with the bound on the left, assume first that |y| ≥ 1. Since x ≤ z, we see that
|y| ≥ x − z + 1 and hence both sides are equal. If |y| < 1 and |y| ≥ x − z + 1, then
the estimate takes the trivial form −2z ≤ 1 − 2z. The final case we need to consider is
|y| < x− z + 1. Then x− z ∈ (−1, 0] and hence

U(x, y, z) + 2z = y2 − (x− z)2 − 2(x− z) ≥ 0.

This completes the proof.

We are ready to establish the estimate of Theorem 1.1.

Proof. It is convenient to split the reasoning into several parts.

Step 1. Let us start with a reduction. Namely, it is enough to prove the inequality

P(|Yt| ≥ 1) ≤ 2EX∗ for all t ≥ 0. (2.2)

Indeed, having done this, we fix ε ∈ (0, 1) and apply the bound to the stopped martin-
gales Xσ = (Xσ∧t/ε)t≥0 and Y σ = (Yσ∧t/ε)t≥0, where σ = inf{t ≥ 0 : |Yt| ≥ ε} (here and
below we use the convention inf ∅ =∞). Note that Y σ is a stochastic integral of Xσ, so
the application is permitted. Since {|Y |∗ ≥ 1} ⊆ {|Yt| ≥ ε for some t ≥ 0}, we see that

P(|Y |∗ ≥ 1) ≤ lim
t→∞

P(|Y σt | ≥ 1) ≤ 2E(Xσ)∗ ≤ 2EX∗/ε,

and letting ε→ 1 gives the claim.

Step 2. We proceed to the proof of (2.2). With no loss of generality we may as-
sume that EX∗ < ∞; otherwise, there is nothing to prove. Introduce the process
Z = (Zt)t≥0 = ((Xt, Yt, X

∗
t ))t≥0, fix T ≥ 0 and consider the stopping time

τ = inf{t ≥ 0 : |Yt| ≥ Xt −X∗t + 1}.
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We will show that
EU(ZT ) ≤ EU(Zτ∧T ) (2.3)

(the integrability of the variables on the left and on the right follows from (2.1) and the
assumption EX∗ <∞). To do this, write the trivial equality

EU(ZT )1{τ>T} = EU(Zτ∧T )1{τ>T}.

Next, observe that

U(Zτ∧T )1{τ≤T} = U(Zτ )1{τ≤T} = (1− 2X∗τ )1{τ≤T}

≥ (1− 2X∗T )1{τ≤T} ≥ U(XT , YT , X
∗
T )1{τ≤T},

where in the last passage we have used (2.1). Now take expectation throughout and
add the obtained bound to the preceding equality; we get (2.3).

Step 3. Now we will handle the term EU(Xτ∧T , Yτ∧T , X
∗
τ∧T ). By the very definition

of τ , if t ∈ [0, τ ∧ T ), then Zt takes values in the set {(x, y, z) : |y| < x− z + 1}, on which
U is of class C∞. Therefore, we are allowed to apply Itô’s formula to get

U(Zτ∧T ) = U(Z0) + I1 + I2 + I3/2, (2.4)

where

I1 =

∫ τ∧T

0+

Ux(Zs)dXs +

∫ τ∧T

0+

Uy(Zs)dYs,

I2 =

∫ τ∧T

0+

Uz(Zs)dX
∗
s ,

I3 =

∫ τ∧T

0+

Uxx(Zs)d[X,X]s + 2

∫ τ∧T

0+

Uxy(Zs)d[X,Y ]s +

∫ τ∧T

0+

Uyy(Zs)d[Y, Y ]s,

where [X,X], [X,Y ], [Y, Y ] denote the square brackets of the processes indicated (see
Dellacherie and Meyer [9] for details). Let us take a look at the terms I1 − I3. The first
of them has expectation zero, by the properties of stochastic integrals. To handle the
second one, note that the process X∗ increases on the set {t : Xt = X∗t }. However, we
easily derive that for such t, Uz(Xt, Yt, X

∗
t ) = 0; this proves that I2 = 0. Finally, note

that Uxx(x, y, z) = −2, Uxy(x, y, z) = 0 and Uyy(x, y, z) = 2 on {(x, y, z) : |y| < x− z + 1}.
Consequently,

I3 = 2[Y, Y ]τ∧T − 2[X,X]τ∧T ≤ 0,

since d[Y, Y ]t = |Ht|2d[X,X]t ≤ d[X,X]t for all t (and thus [Y, Y ]τ∧T ≤ [X,X]τ∧T ).
Putting all the above facts together and integrating both sides of (2.4), we obtain

EU(Zτ∧T ) ≤ EU(Z0) = U(0, 0, 0) = 0.

Step 4. Now we combine the latter estimate with (2.3) and get

EU(XT , YT , X
∗
T ) ≤ 0.

By the left majorization in (2.1), this implies

P(|YT | ≥ 1)− 2EX∗T ≤ 0.

Since T was arbitrary and EX∗T ≤ EX∗, the inequality (2.2) follows. This completes the
proof of (1.3).
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2.2 Sharpness of (1.3)

We will exhibit an appropriate example. Suppose that B = (Bt)t≥0 is a standard, one-
dimensional Brownian motion starting from 0. Fix a small δ ∈ (0, 1/2) and introduce the
following stopping times: τ0 ≡ 0 and, inductively,

τ2n+1 = inf{t ≥ τ2n : Bt ≤ −1/2 or Bt ≥ δ},
τ2n+2 = inf{t ≥ τ2n+1 : Bt ≤ 0 or Bt ≥ 1/2}, n = 0, 1, 2, . . . .

Note that (τn)n≥0 is a nondecreasing sequence of stopping times, with

τ = lim
n→∞

τn = inf{t ≥ 0 : Bt ∈ {−1/2, 1/2}},

so, in particular, τ is integrable. Next, consider σ = inf{t : |Bt| ≥ 1} (satisfying σ > τ

almost surely) and the predictable process

Ht =

∞∑
n=0

(−1)n1[τn,τn+1)(t) + (sgnBτ ) · 1[τ,σ)(t).

Finally, for any t ≥ 0, put

Xt =

∫ t

0

HsdBs and Yt = Bσ∧t.

Clearly, Y is a stochastic integral of H with respect to X. Let us describe briefly the
behavior of the pair (X,Y ). It evolves according to the following, two-stage procedure.
It starts from (0, 0) and moves along the line of slope 1 until Y gets to −1/2 or to δ. If
the first possibility occurs, the first stage τ is over; if the latter case happens, the pair
starts moving along the line of slope −1, and does so until Y reaches 1/2 or 0. If Y
gets to 1/2, the first stage τ is over; otherwise, (X,Y ) begins evolving along the line of
slope 1, until Y visits −1/2 or δ. The pattern of movement is then repeated. Thus, at the
end of the first stage τ , we see that |Y | = 1/2; furthermore, we also easily check that
X∗τ −Xτ belongs to the interval [1/2− δ, 1/2 + δ]. To describe the second stage, assume
that Yτ = 1/2 (when Yτ = −1/2, the evolution is symmetric). Then (X,Y ) evolves along
the line of slope 1 until Y reaches 1 or −1; by the previous considerations, we see that
X cannot exceed X∗ + δ.

Now the remainder of the proof is straightforward. By the above analysis,

EX∗ = EX∗σ ≤ EX∗τ + δ ≤ 1

2
+ EXτ + 2δ =

1

2
+ 2δ

(in the last passage we used the integrability of τ ) and P(Y ∗ ≥ 1) ≥ P(|Yσ| = 1) = 1. So,
letting δ → 0, we see that the constant 2 is indeed the best possible in (1.3).

3 Proof of Theorem 1.2

In the non-continuous setting, the reasoning is much more involved. As previously,
we have divided the section into a few parts.

3.1 A differential equation

Consider the second-order differential equation

2(1− y)(2− y)h′′(y) + (3− 2y)h′(y) + h(y) = 0. (3.1)

Standard arguments show that there is a unique smooth solution h : (−1, 1) → R to
(3.1), satisfying the initial condition

h(0) = −1 and h′(0) = 1.

Let us study some properties of the function h.
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Lemma 3.1. For any y ∈ [0, 1) we have

h′′′(y) < 0, (3.2)

h(y) + h′(y) ≥ 0 (3.3)

and
− h′′(y) + (1− y)h′′′(y) ≥ 0. (3.4)

Proof. Let us first establish (3.2). By the direct differentiation, (3.1) gives

2(1− y)(2− y)h′′′(y) = (3− 2y)h′′(y) + h′(y). (3.5)

Furthermore, again by (3.1), we get h′′(0) = −1/2 and hence, plugging this above, we
obtain h′′′(0) < 0. Now suppose that there is y ∈ (0, 1) such that h′′′(y) ≥ 0 and let
y0 = inf{y ∈ (0, 1) : h′′′(y) = 0}. Then h′′′(y) < 0 for y ∈ (0, y0), so h′′(y) < h′′(0) = −1/2

and

h′(y) = h′(0) +

∫ y

0

h′′(s)ds < h′(0)− y/2

for these y’s. Consequently,

0 = 2(1− y0)(2− y0)h′′′(y0) = (3− 2y0)h′′(y0) + h′(y0)

< −1

2
(3− 2y0) + 1− 1

2
y0 =

y0 − 1

2
< 0,

a contradiction. This yields the validity of (3.2). Note that as a by-product, we get that
h is a concave function on (0, 1). We turn to (3.3). By (3.1), it is equivalent to saying
that 2(1− y)(2− y)h′′(y) + 2(1− y)h′(y) ≤ 0, or

F (y) := (2− y)h′′(y) + h′(y) ≤ 0 for y ∈ [0, 1).

However, we have F (0) = 2h′′(0) + h′(0) = 0 and F ′(y) = (2 − y)h′′′(y) < 0; this proves
(3.3). Finally, let us deal with (3.4). By (3.5), it can be rewritten as

(3− 2y)h′′(y) + h′(y) ≥ 2(2− y)h′′(y),

or h′(y) ≥ h′′(y). However, a stronger bound G(y) := h′(y) − yh′′(y) > 0 holds true: it
follows from the inequalities G(0) = h′(0) = 1 > 0 and G′(y) = −yh′′′(y) > 0.

Lemma 3.2. The function h extends to a continuous function on (−1, 1]. Furthermore,
the limit h′(1−) = limy↑1 h

′(y) exists and is finite.

Proof. Let us expand the function h into power series:

h(y) =

∞∑
n=0

any
n.

Directly from the initial condition, we get that a0 = −1 and a1 = 1. Furthermore, the
differential equation (3.1) gives the recurrence

ak+2 =
3(2k − 1)

4(k + 2)
ak+1 −

2k2 − 4k + 1

4(k + 1)(k + 2)
ak, k = 0, 1, 2, . . . .

Substitute bk = k(k− 1)ak for k = 0, 1, 2, . . .. Then b0 = b1 = 0 and, as we will show in a
moment,

b2 < b3 < b4 < . . . < 0. (3.6)
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To do this, note that the above recurrence for (ak)k≥0 gives

bk+2 =
3(2k − 1)

4k
bk+1 −

2k2 − 4k + 1

4k(k − 1)
bk, k = 2, 3, . . . .

We have b2 = −0.5, b3 = −0.125 and, as we will now show by induction,

bk+1 ≤ bk/2 ≤ 0 for k ≥ 3. (3.7)

This is true for k = 3, since b4 = −0.078125. Assuming that this property holds for some
k, we use the above recurrence to get

bk+2 ≤
3(2k − 1)

4k
bk+1 −

2k2 − 4k + 1

2k(k − 1)
bk+1 =

bk+1

2
+

k + 1

4k(k − 1)
bk+1 ≤

bk+1

2
,

and (3.7) follows. To show that the sequence (bk)k≥2 is nondecreasing, note that we
have b2 < b3 (recall the above values of b2 and b3). Now, assuming that bk+1 − bk ≥ 0 for
some k ≥ 2, we apply the above recurrence and the negativity of bk to get that

bk+2 − bk+1 =
2k − 3

4k
(bk+1 − bk) +

2− k
4k(k − 1)

bk ≥
2k − 3

4k
(bk+1 − bk) ≥ 0.

Thus, (3.6) is proved. This property shows that the sequence (bk)k≥0 is bounded, and
hence ak is a sequence of negative numbers with ak = O(k−2). Consequently, the series∑∞
k=0 ak converges and by Abel’s theorem, we have

h(y) =

∞∑
k=0

aky
k →

∞∑
k=0

ak < 0,

as y ↑ 1. To deal with h′(1−), note that this limit exists since h is concave on [0, 1) (see
the proof of the previous lemma). The finiteness of this limit follows from (3.3) and the
finiteness of h(1) we have just proved above.

We are ready to introduce the constant of inequality (1.4). Namely, put

C = −1/h(1) = 3.477979 . . . , (3.8)

where the approximation comes from computer simulations.

3.2 A special function

In the proof of the inequality (1.4) and its sharpness, we will exploit the following
auxiliary function u : (−∞, 1]×R→ R:

u(x, y) =

{
1− C if x ≤ |y|,
1− Cx+ C|y|h′(x− |y|) + Ch(x− |y|) if x > |y|

(3.9)

(here h′(1) is understood as the limit h′(1−), and C is as in (3.8)). We easily see that u
is continuous. Some further properties are studied in the lemmas below.

Lemma 3.3. The function u is concave along any line segment of slope a ∈ [−1, 1]

contained in (−∞, 1]×R.

Proof. The function u is differentiable at any point of the form (x, 0), x < 1, and u(x, y) =

u(x,−y) for all x, y. Therefore, it is enough to prove the concavity along line segments
contained in (−∞, 1] × (0,∞). Fix any point (x, y) from this set, a number a ∈ [−1, 1]

and consider the function G(t) = Gx,y,a(t) = u(x + t, y + at) (defined for those t, for
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which x + t ≤ 1 and y + at ≥ 0). The claim will follow if we manage to show that G
is concave. To do this, we will prove that G′′(t) ≤ 0 for those t for which the second
derivative exists, and G′(t−) ≥ G′(t+) for the remaining t. Actually, it is enough to show
this for t = 0, due to the translation property Gx,y,a(r + s) = Gx+r,y+ar,a(s). If x < y,
then G′′(0) = 0; if x > y, then

G′′(0) = uxx(x, y) + 2auxy(x, y) + a2uyy(x, y). (3.10)

However, we have uxy(x, y) = −Cyh′′′(x− y) > 0 and

uyy(x, y) = −Ch′′(x− y) + Cyh′′′(x− y)

> C
(
− h′′(x− y) + (1− x+ y)h′′′(x− y)

)
≥ 0,

in view of (3.4). Consequently, if we fix (x, y), then G′′(0) in (3.10) is the largest when
a = 1. However, then G′′(0) = 0, since u is linear over line segments of slope 1 contained
in (−∞, 1]× [0,∞). The final case we need to consider is that of x = y. Then the second
derivative of G at t = 0 does not exist (unless a = 1: but then G′′(0) = 0, as we have
just pointed out), so we need to compare the left- and the right-hand derivative. We
compute that G′(0−) = 0 and

G′(0+) = −C + Cyh′′(0) + Ch′(0)− a · Cyh′′(0) = C(a− 1)y/2 ≤ 0.

This completes the proof.

Lemma 3.4. For any d ≥ 0 and any a ∈ [−1, 1] we have

u(1, y + ad)− Cd ≤ u(1, y) + ux(1, y)d+ auy(1, y)d. (3.11)

Some comments concerning the partial derivatives above are in order. Namely, the
symbol ux(1, y) means the left-sided derivative limh→0(u(1, y)−u(1−h, y))/h; moreover,
the derivative uy(1,±1) does not exist, and we take this symbol to be 0.

Proof. Let us first gather some information on the function y 7→ u(1, y). This function is
even and continuous on R. Moreover, it is equal to 1 − C when |y| ≥ 1, and is convex
on [−1, 1] (see the above formula for uyy). Consequently, if |y| ≥ 1, the estimate (3.11)
is clear: the left-hand side is at most 1 − C, while the right is equal to 1 − C. Suppose
then that |y| < 1; by symmetry, it is enough to study (3.11) for y ∈ (0, 1). Rewrite the
bound as

u(1, y + ad) ≤ u(1, y) + (C + ux(1, y))d+ uy(1, y)ad. (3.12)

By continuity, we may assume that a 6= 0. As we have already written above, the function
y 7→ u(1, y) is continuous on R, convex on [−1, 1] and equal to 1− C outside (−1, 1). On
the other hand, the right-hand side of (3.12) is linear in d. Since both sides are equal for
d = 0, we will be done if we show the estimate for d such that y + ad ∈ {−1, 1}. Assume
that a and d satisfy this condition and look back at (3.12). Note that C + ux(1, y) =

C
(
yh′′(1− y) + h′(1− y)

)
≥ 0. Indeed, by (3.1) and some manipulations, we rewrite this

bound as

F (y) = h′(1− y)− h(1− y) ≥ 0,

and we have F (0) = h′(1)− h(1) = −2h(1) = 2/C > 0, F ′(y) = −h′′(1− y) + h′(1− y) ≥ 0

(see the end of the proof of Lemma 3.1). Consequently, if ad and y are kept fixed, the
right-hand side of (3.12) is minimal when d is minimal. Thus it is enough to prove this
estimate when a ∈ {−1, 1}. We consider two cases separately.
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Case I: a = −1. Then d = 1 + y and the desired bound reads

1− C ≤ 1− C + Cyh′(1− y) + Ch(1− y)

+ (Cyh′′(1− y) + Ch′(1− y))(1 + y) + Cy(1 + y)h′′(1− y),

or, after some manipulations,

2y(1 + y)h′′(1− y) + (1 + 2y)h′(1− y) + h(1− y) ≥ 0.

By (3.1), we actually have equality here: we will need this fact later on.

Case II: a = 1. Then d = 1− y and the bound becomes

1− C ≤ 1− C + Cyh′(1− y) + Ch(1− y)

+ (Cyh′′(1− y) + Ch′(1− y))(1− y)− Cy(1− y)h′′(1− y),

or h(1− y) + h′(1− y) ≥ 0. However, we have already proved this in (3.3).

3.3 Proof of (1.4)

Using approximation arguments of Bichteler [3], it suffices to focus on the following
discrete-time version of the maximal bound. Suppose that (Ω,F ,P) is equipped with a
filtration (Fn)n≥0 and let f = (fn)n≥0 be an adapted real-valued martingale satisfying
f0 = 0 almost surely. Define the corresponding difference sequence (dfn)n≥0 by df0 = f0
and dfn = fn − fn−1, n ≥ 1. Let v = (vn)n≥0 be a predictable sequence, i.e., the
sequence of random variables such that for each n, the term vn is F(n−1)∨0 measurable.
A sequence g = (gn)n≥0 is a transform of f by v, if for any n = 0, 1, 2, . . . we have the
equality dgn = vndfn. Note that by the predictability of v, the sequence g is again a
martingale. By the aforementioned results of Bichteler, (1.4) will follow if we establish
the bound

P(|g|∗ ≥ 1) ≤ CEf∗,

for all f , g as above, where v is assumed to take values in [−1, 1]. Here, in analogy with
the continuous-time setting, f∗ = supn≥0 fn and |g|∗ = supn≥0 |gn|. Actually, using some
straightforward approximation and a stopping-time argument as in the continuous-time
case, it is enough to show

P(|gn| ≥ 1) ≤ CEf∗n, n = 0, 1, 2, . . . , (3.13)

for simple f and g with f0 = 0. Here by simplicity of f we mean that for any n, the
random variable fn takes only a finite number of values and there exists a deterministic
number N such that fN = fN+1 = . . .. Clearly, if f and g are simple, then the almost
sure limits f∞ and g∞ exist and are finite.

Now we will describe the appropriate modification of Burkholder’s method from [8],
which will be useful in the proof of (3.13). Let D = R×R× [0,∞) and V : D → R be any
function satisfying V (x, y, z) = V (x, y, x ∨ z). Suppose we want to prove the inequality

EV (fn, gn, f
∗
n) ≤ 0, n = 0, 1, 2, . . . , (3.14)

for all pairs (f, g), where f is a simple martingale starting from 0 and g is its transform
by a predictable sequence with values in [−1, 1]. The key idea is to study a class U(V )

which consists of all functions U : D → R satisfying the four properties below:

U(0, 0, 0) ≤ 0, (3.15)

U(x, y, z) = U(x, y, x ∨ z) if (x, y, z) ∈ D, (3.16)
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V (x, y, z) ≤ U(x, y, z) if (x, y, z) ∈ D (3.17)

and the following further condition: for all (x, y, z) ∈ D with x ≤ z, any a ∈ [−1, 1],
α ∈ (0, 1) and any t1, t2 ∈ R satisfying αt1 + (1− α)t2 = 0, we have

αU(x+ t1, y + at1, z) + (1− α)U(x+ t2, y + at2, z) ≤ U(x, y, z). (3.18)

The interplay between the maximal inequality (3.14) and the class U(V ) is described
in the theorem below. It is a simple modification of Theorems 2.2 and 2.3 in [8] (see
also Section 11 in [4] and Chapter 7 in [14]). We omit the proof, as it requires only some
straightforward minor changes.

Theorem 3.5. The inequality (3.14) holds for all n and all pairs (f, g) as above if and
only if the class U(V ) is nonempty.

To handle (3.13), we will apply the above technique to the function V (x, y, z) =

1{|y|≥1} − C(x ∨ z). Introduce U : D → R by

U(x, y, z) = u(x+ 1− (x ∨ z), y)− C((x ∨ z)− 1).

We will prove the following fact.

Lemma 3.6. The function U is an element of U(V ).

Proof. The conditions (3.15) and (3.16) are immediate. To prove the majorization (3.17),
note that it is equivalent to u(x, y) ≥ 1{|y|≥1} − C for all x ≤ 1 and y ∈ R. If |y| ≥ 1, then
both sides are equal; if |y| < 1, then, as follows from Lemma 3.3, the function x 7→ u(x, y)

is concave on (−∞, 1], equal to 1 − C for sufficiently small x and at least −C for x = 1

(the latter statement follows from u(1, y) ≥ u(1, 0) = −C). This gives (3.17), and we turn
our attention to the final condition (3.18). Fix the parameters as in its statement and
consider the function Φ(t) = U(x+ t, y+ at, z). Clearly, we will be done if we manage to
show the existence of a linear Ψ : R→ R satisfying Ψ ≥ Φ and Ψ(0) = Φ(0). To do this,
let us look at the function Φ. If t ≤ z−x, then Φ(t) = u(x+t+1−z, y+at)−C(z−1); hence
Lemma 3.3 implies that Φ is concave on (−∞, z − x]. On the other hand, if t > z − x,
then

Φ(t) = u(1, y + at)− C(x+ t− 1)

= u
(
1, y + a(z − x) + a(t+ x− z)

)
− C(t+ x− z)− C(z − 1),

which, by Lemma 3.4, is not larger than

u(1, y + a(z − x)) + ux(1, y + a(z − x))(t+ x− z)
+ auy(1, y + a(z − x))(t+ x− z)− C(z − 1)

= Φ(z − x) + Φ′
(
(z − x)−

)
(t+ x− z).

By the concavity of Φ on (−∞, z − x] (which has just been established above), the latter
expression does not exceed Φ(0) + Φ′(0−)t. Thus we see that the choice Ψ(t) = Φ(0) +

Φ′(0−)t works.

3.4 Sharpness of (1.4)

Now we will prove that the constant 3.477977 . . . is the best in (1.4), by providing an
appropriate example. It is enough to show that this constant is optimal in the discrete-
time case, i.e., in (3.13). Let y0 ∈ (0, 1) be a fixed number, let N be a large positive
integer and put δ = (1 − y0)/(2N). Consider an auxiliary discrete-time Markov martin-
gale (Fn, Gn)n≥0 with values in R2, whose distribution is uniquely determined by the
following conditions:
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(i) We have (F0, G0) = (1, y0).

(ii) For any y ∈ [y0, 1), a state of the form (1, y) leads to (1− δ, y + δ) or to (2 + y,−1).
For any y ∈ (−1,−y0], a state of the form (1,−y) leads to (1−δ, y−δ) or to (2+y, 1).

(iii) For any y ∈ [y0, 1), a state of the form (1 − δ, y + δ) leads to (1, y + 2δ) or to
(1 − y − 2δ, 0). For any y ∈ (−1,−y0], a state of the form (1 − δ, y − δ) leads to
(1,−y − 2δ) or to (1− y − 2δ, 0).

(iv) For any y ∈ (0, 1− y0], a state of the form (y, 0) leads to (y − δ,−δ) or to (1, 1− y).

(v) For any y ∈ (0, 1 − y0], a state of the form (y − δ,−δ) leads to (y − 2δ, 0) or to
(1, y − 2δ − 1).

(vi) The state (0, 0) leads to (1, 1) or to (−1,−1).

(vii) All the other states are absorbing.

We did not specify the transition probabilities, they are uniquely determined by the
requirement that the pair (Fn, Gn)n≥0 is a martingale. To gain some intuition about the
process, it is best to look at a few first steps. The pair starts from (1, y0). In the first
step, it moves, along the line of slope −1, either to (2 + y0,−1) (and then stops), or to
(1 − δ, y0 + δ). If the second possibility occurs, the next step begins, in which the pair
moves along the line of slope 1. It moves either to (1, y0 + 2δ) (and then it evolves as
previously - along the line of slope −1, to one of the points (2+y0+2δ,−1), (1−δ, y+3δ),
and so on), or to (1−y0−2δ, 0). In the latter case, it moves, again along the line of slope
1, to (1, y0 +2δ) (and then evolves according to the above scheme), or to (1−y0−3δ,−δ).
If the latter occurs, the pair moves along the line of slope −1, to (1,−y0 − 4δ) (and
then its movement is symmetric to that corresponding to the point (1, y0 + 4δ)), or to
(1− y0− 4δ, 0) (in which the evolution is analogous to that corresponding to the starting
point (1− y0 − 2δ, 0)). The pattern of the movement is then repeated.

It is clear from the above description that for any n ≥ 1 we have dGn = vndFn, for
some predictable sequence v with values in {−1, 1}. Next, look at the processH = (|Fn−
1|+ |Gn|)n≥0. A careful inspection of the dynamics described in (i)-(viii) shows that this
process is nondecreasing; this in particular gives that the pair (Fn, Gn)n≥0 is bounded
away from (1, 0). Now, note that the martingale (Fn, Gn)n≥0 is simple: it is clear that
for each n the random variable (Fn, Gn) takes a finite number of values, and, as we will
prove now, the number of nontrivial steps is bounded by 3N . Suppose on contrary that
there is a trajectory of length exceeding 3N ; then the first 3N moves of (Fn, Gn)n≥0 must
be of type (ii)-(vii). However, if we look back at the process H = (|Fn−1|+ |Gn|)n≥0 and
the conditions (ii)-(vii), we see that during each three consecutive moves of this type,
the process H increases in at least 2δ. Since H0 = y0, we get H3N ≥ y0 + 2Nδ = 1, and
this means that the evolution of (Fn, Gn)n≥0 is over after 3N steps, a contradiction. Our
final observation is that G∞ ∈ {−1, 1} with probability 1.

The key fact is that the sequence (EU(Fn, Gn, F
∗
n))n≥1 is “almost” nondecreasing.

Here is the precise statement.

Lemma 3.7. There is a constant K depending only on y0 such that for each n,

EU(Fn+1, Gn+1, F
∗
n+1) ≥ EU(Fn, Gn, F

∗
n)−Kδ2.

Proof. The idea is that ((Fn, Gn, F
∗
n))n≥0 evolves along the directions along which U is

linear, or almost linear. We will present a detailed analysis for the moves described in
(ii) and (iii), the remaining ones can be handled similarly. As we have proved in Lemma
3.4, for any y ∈ (0, 1) we have

u(1,−1)− C(1 + y) = u(1, y) + ux(1, y)(1 + y)− uy(1, y)(1 + y)
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(see the proof of (3.11) with a = −1 and d = 1 + y). Now, suppose that P((Fn, Gn) =

(1, y)) > 0. Then

E
[
U(Fn+1, Gn+1, F

∗
n+1)

∣∣(Fn, Gn) = (1, y)
]
− U(1, y, 1)

=
1 + y

1 + y + δ
U(1− δ, y + δ, 1) +

δ

1 + y + δ
U(2 + y,−1, 1)− U(1, y, 1)

=
1 + y

1 + y + δ
u(1− δ, y + δ) +

δ

1 + y + δ

(
u(1,−1)− C(1 + y)

)
− u(1, y)

=
1 + y

1 + y + δ

[
u(1− δ, y + δ)− u(1, y) + ux(1, y)δ − uy(1, y)δ

]
.

By the mean value property, this is bounded from below by−Kδ2, for someK depending
on the second-order partial derivatives of u. But these partial derivatives are uniformly
bounded, since the process (F,G) is bounded away from (1, 0); thus K can be chosen
to depend only on y0. The boundedness of the derivatives is due to an appropriate
extension argument. Consider the function v(x, y) = 1−Cx+C|y|h′(x−|y|)+Ch(x−|y|),
−1 < x − |y| < 1. This function coincides with u on the set |y| ≤ x ≤ 1 (see (3.9)) and
is of class C2 on {(x, y) : −1 < x − |y| < 1, |y| 6= 0}, so in particular it has uniformly
bounded second-order derivatives on each set of the form {1}× ([−1,−y0]∪ [y0, 1]) (and
hence the same is true for u).

For the moves in (iii), the argumentation is much simpler, as then (F,G) moves along
line segment of slope 1 contained in (−∞, 1]×R, along which u is linear. Consequently,
if P((Fn, Gn) = (1− δ, y + δ)) > 0 for some y ∈ (0, 1), then

E
[
U(Fn+1, Gn+1, F

∗
n+1)

∣∣(Fn, Gn) = (1− δ, y + δ)
]

= U(1− δ, y + δ, 1),

i.e., the desired bound holds with K = 0. We leave the analogous analysis of the moves
from (iv)-(vi) to the reader.

Equipped with the above statements, we can now prove the sharpness of (1.4). Con-
sider a “shifted” modification of the process (F,G): assume that (f, g) is a Markov
martingale starting from (0, 0), which, at its first move jumps to (−1,−1) or to (y0, y0);
next, if it went to (−1, 1), it stops; if it went to (y0, y0), then it evolves as (F − 1 + y0, G).
We easily see that G is a transform of F by a predictable sequence with values in {−1, 1}
and P(|G|∗ ≥ 1) = 1. To handle EF ∗, we use Lemma 3.7. Namely,

Ef∗ =
1

1 + y0
E(F − 1 + y0)∗

=
1

1 + y0
(EF ∗ − 1 + y0)

=
1

1 + y0

(
1− U(F3N , G3N , F

∗
3N )

C
− 1 + y0

)
≤ 1

1 + y0

(
1− U(F0, G0, F

∗
0 )

C
− 1 + y0

)
+O(δ)

=
1

1 + y0
(−y0h′(1− y0)− h(1− y0) + y0) +O(δ).

Therefore, letting N → ∞ (or δ → 0), we see that the best constant in (1.4) must be at
least (

1

1 + y0
(−y0h′(1− y0)− h(1− y0) + y0)

)−1
.

However, y0 was an arbitrary number; letting y0 → 0, we see that the above expression
converges to h(1)−1 = C. This establishes the desired sharpness.
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